2017 Annual Conference | Long Beach, CA

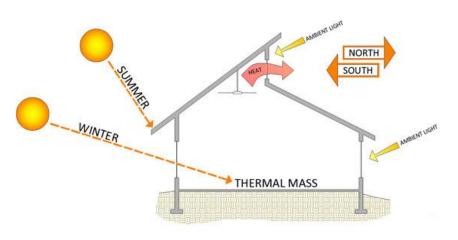
Joon-Ho Choi, Ph.D., LEED AP Assistant Professor Director, Human-Building Integration Research Group University of Southern California joonhoch@usc.edu Seminar #29: Urban-Scale Building Energy Modeling, Part 5

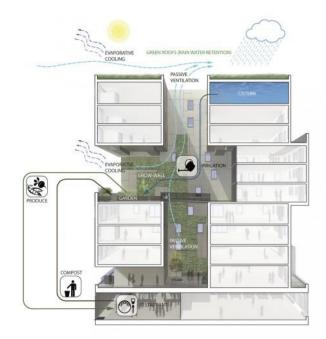
Simplified Estimation of Energy Use Intensity Based on Building Façade Features

Learning Objectives

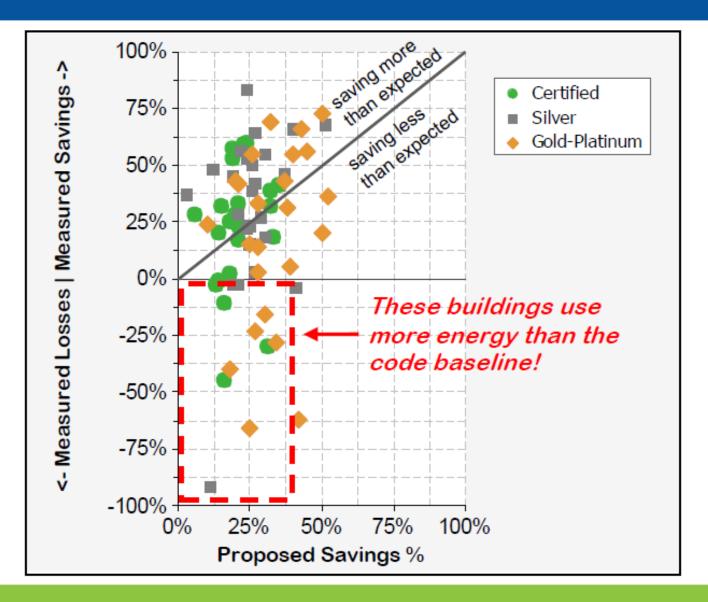
- 1. Provide the amount of energy consumed by buildings and cities.
- 2. Provide a method to develop a customized building energy use baseline estimation tool by using a data-driven approach.
- 3. Describe how façade features could influence certain building energy use in a specific climate condition and a particular building geometry.
- 4. Demonstrate how district-scale energy retrofit analysis can be performed using existing urban modeling tools.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

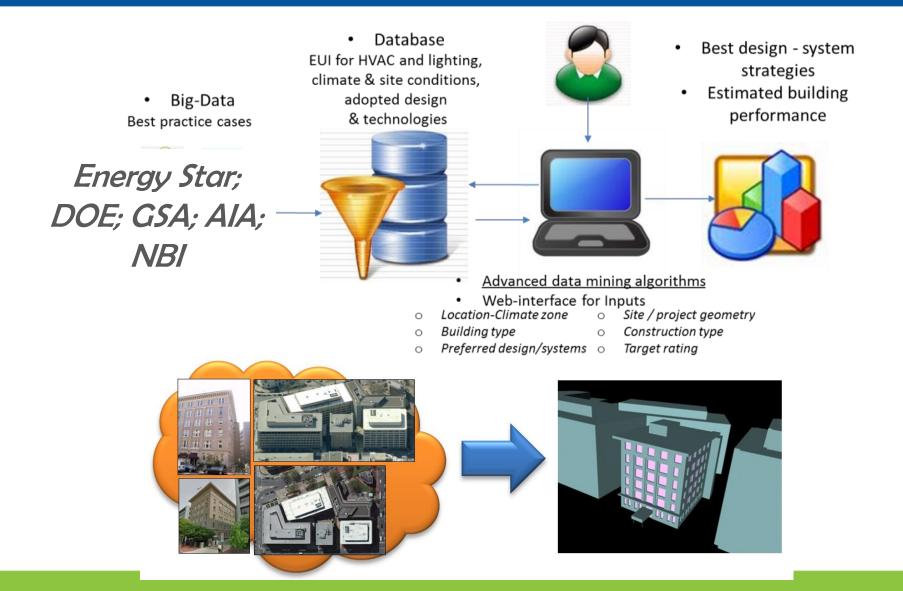

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

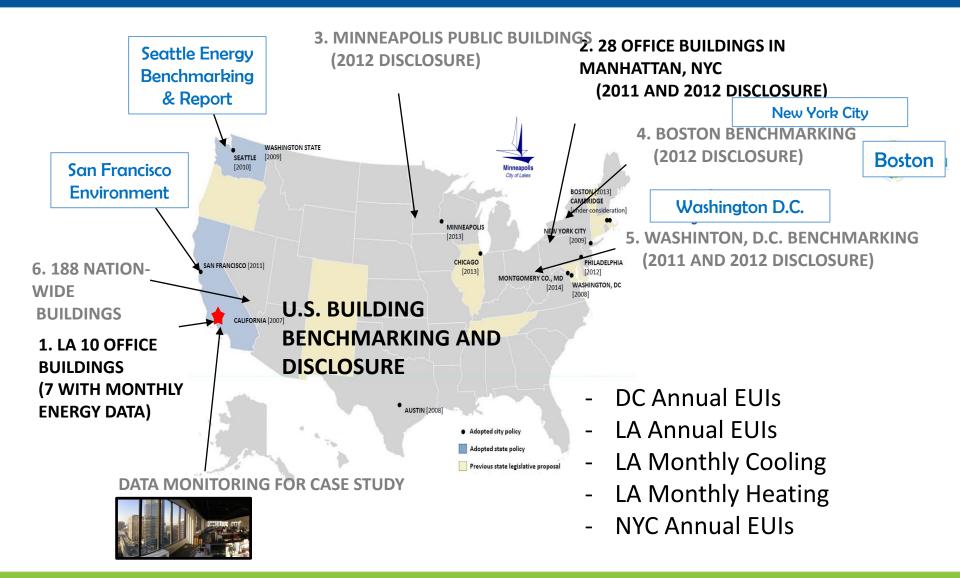

Outline/Agenda

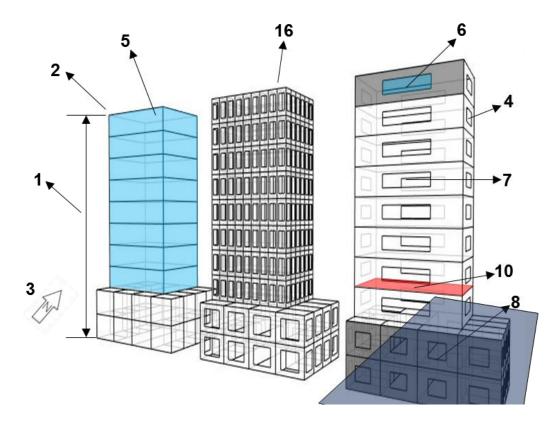
- Introduction
- Existing Problems
- Research Results
- Discussion
- Conclusion
- References


California Energy Commission

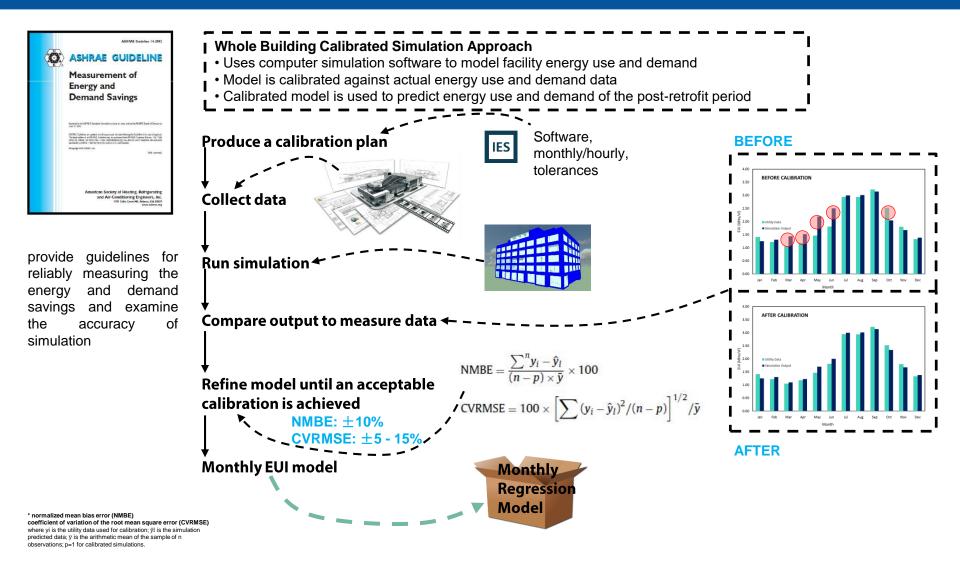
- California Net-Zero 2020
 - ZNEnergy residential by 2020
 - ZNEnergy non-residential by 2030



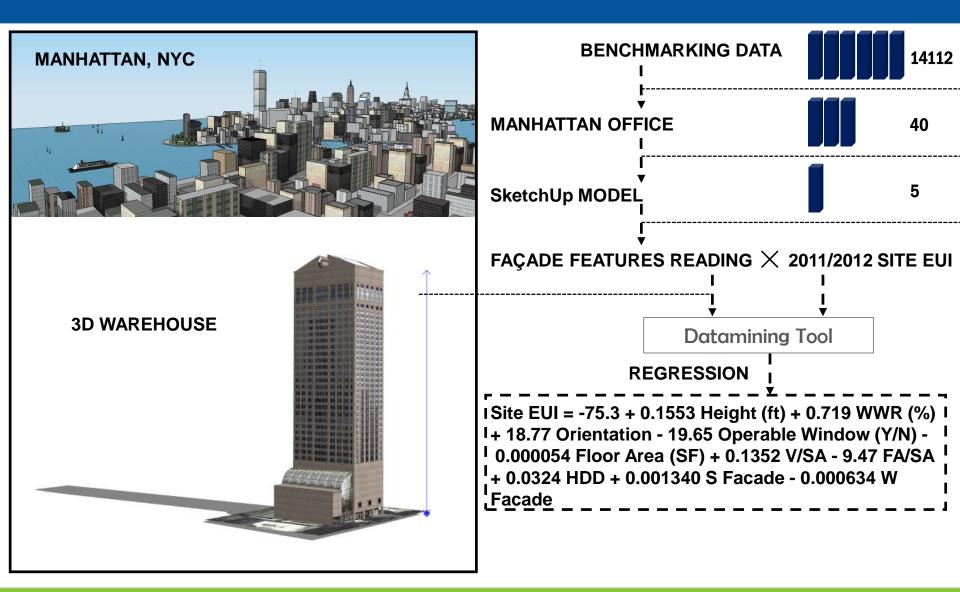

Measured Vs. Proposed Savings Percentages


Vision-based Building Energy Assessment

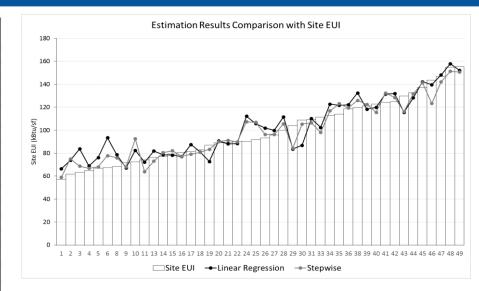
Data Collection/Model Development



Methodology

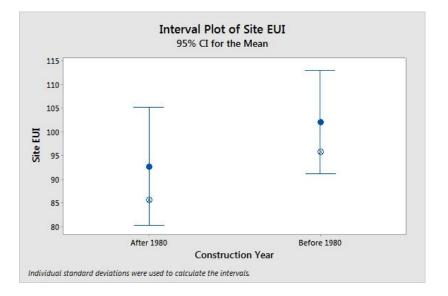


<u> </u>	Height	11. V/FA
2.	Floors	12. V/SA
3.	Orientation	13. FA/SA
4.	Operable window	I I I I I I I I I I I I I I I I I I I
5.	Volume	15. CDD
6.	WWR	
7.	Windowarea	16. Adjacent I building I
8.	Façade area	17. Built year
9.	Site area	!
10.	Floor area	18. Other factors


Methodology

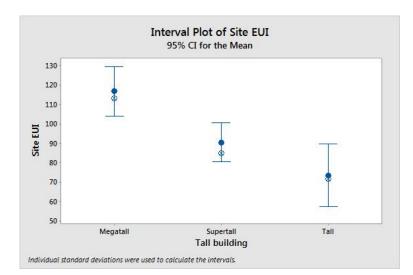
Methodology

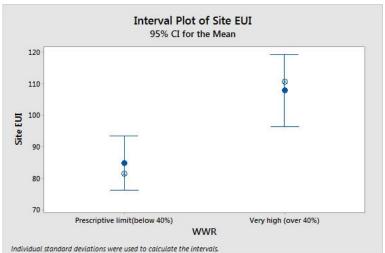
Determination	L	inear Regres	sion	Stepwise Regression			
R ² /R ² (Adj)/R ² (pre)	77.64%	56.18%	-	88.15%	84.66%	77.72%	
D-W	2.022			1.989			
Predictors	Coef	P-value	VIF	Coef	P-value	VIF	
Constant	27302	0.174		-75.3	0.047	0	
Height	0.087	0.593	83.84	0.1553	0.000	3.85	
Floors	0.06	0.979	78.14			0	
Built year	-0.339	0.586	17.67			- 23	
WWR	0.542	0.507	25.16	0.719	0.000	2.03 4.53	
Orientation	26	0.033	25.61	18.77	0.000		
Operable Window	-29.9	0.15	12.2	-19.65	0.000	2.11	
Volume	0	0.995	605.78			0	
Window Area	0.000149	0.55	100.77				
Site Area	0.00035	0.729	54.2			c	
Floor Area	-0.00007	0.031	29.78	-0.000054	0.000	8.55	
V/FA	-0.84	0.809	127.38			C	
V/SA	0.185	0.515	132.69	0.1352	0.001	4.52	
FA/SA	-10.29	0.11	77.31	-9.47	0.000	8.61	
Adjacency	-1.85	0.502	12.44				
HDD	5.86	0.178	53879.79	0.0324	0.006	1.02	
CDD	-22.7	0.181	53885.9				
N Façade Area	-0.01101	0.201	6298.99	60	1	0	
S Façade Area	0.125	0.23	1023528.62	0.001340	0.000	11.46	
W Façade Area	-0.00249	0.2	598.28	-0.000634	0.009	13.83	
E Façade Area	-0.0889	0.243	862326.34			3	
NW Façade Area	-0.000146	0.806	49.89				
NE Façade Area	-0.00017	0.892	553.6				
SW Façade Area	-0.000118	0.849	148.17				
SE Façade Area	0.000571	0.471	101.53				

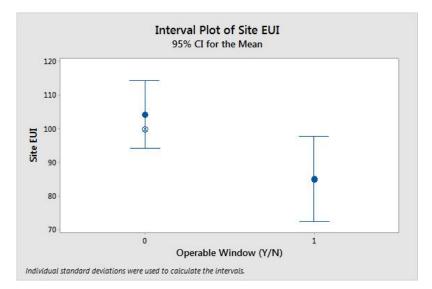

KEY INDICATORS:

R²: explain 88% of variance in the annual EUI value.

R²(adj): how well the model fits the model well.

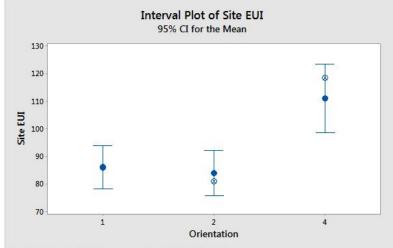

Durbin-Watson statistic: 2 means no autocorrelation


P-value: significantly related to annual EUI at a α -level of 0.05 **VIF**: multicollinearity

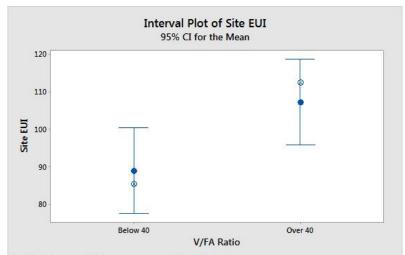


ANALYSIS

- 1. 1979 NYC 1st state energy code
- 2. Tall (165-300 ft), Supertall (300-600), Megatall (600+)
- 3. WWR \leq 40%, NYCECC prescriptive requirement

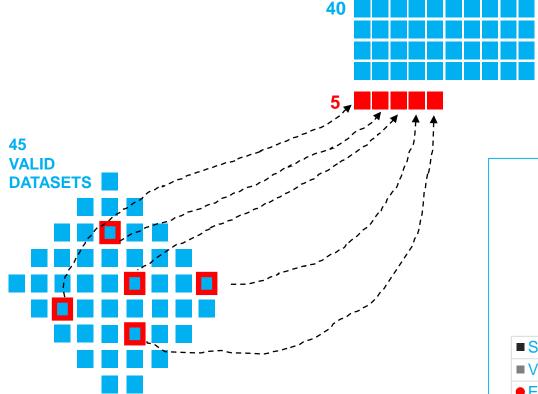

ANALYSIS

- 1. Operable window
- 2. Orientation (N-S/NE-SW/NW-SE)
- 3. Volume/Façade Area ratio


HDD/CDD Impact

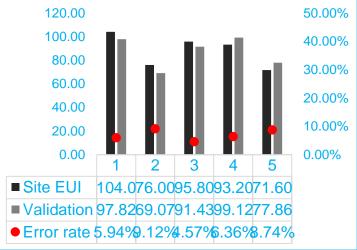
2011: 3272/2018

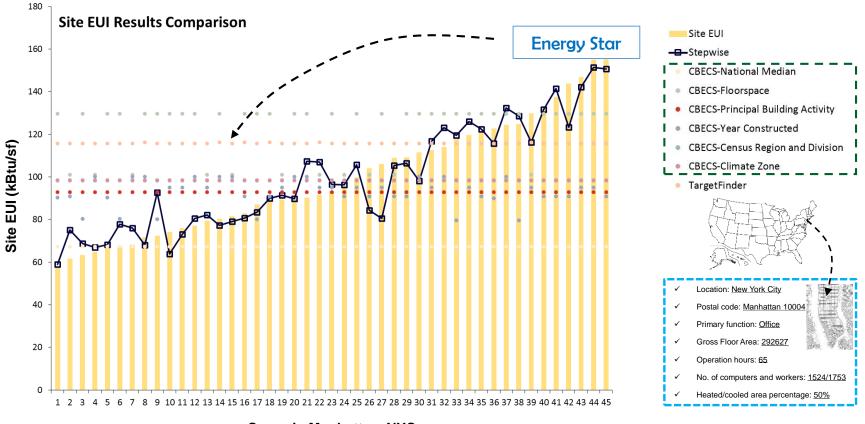
2012: 2988/1945



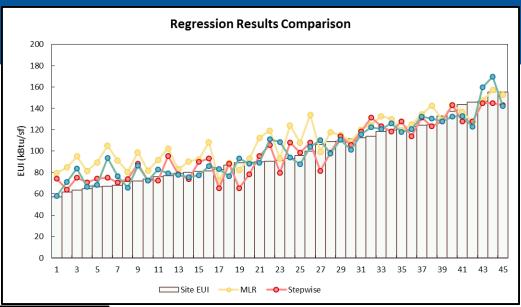
Individual standard deviations were used to calculate the intervals.

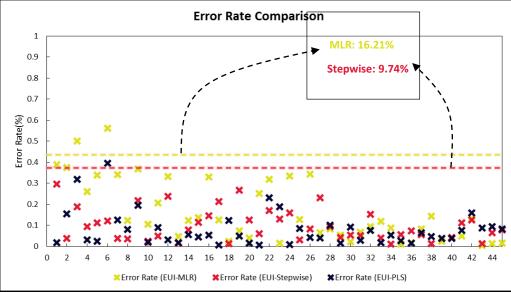
Individual standard deviations were used to calculate the intervals.


10 – Cross Validation


90% TRAINING SAMPLES

Test EUI Regression Model R²/ R² (Adj) = 91.02%/85.98% D-W = 2.04


10% RANDOMLY SELECTED VALIDATION SAMPLES



Determination	Multiple Line	ar Regression	Stepwise Reg	ression	
R2/ R2 (Adj)/ R2 (pre)	77.64%	56.18% -	88.15%	84.66%	77.72%
D-W	2.022		1.989		
Predictors	Coef	P-value	Coef	P-value	
Constant	27302	0.174	-75.3	0.047	
Height	0.087	0.593	0.1553	0.000	
Floors	0.06	0.979	-	-	
Built year	-0.339	0.586	-	-	
WWR	0.542	0.507	0.719	0.000	
Orientation	26	0.033	18.77	0.000	
Operable Window	-29.9	0.15	-19.65	0.000	
Volume	0	0.995	-	-	
Window Area	0.000149	0.55	-	-	
Site Area	0.00035	0.729	-	-	
Floor Area	-0.00007	0.031	-0.000054	0.000	
V/FA	-0.84	0.809	-	-	
V/SA	0.185	0.515	0.1352	0.001	
FA/SA	-10.29	0.11	-9.47	0.000	
Adjacency	-1.85	0.502	-	-	
HDD	5.86	0.178	0.0324	0.006	
CDD	-22.7	0.181	-	-	
N Façade Area	-0.01101	0.201	-	-	
S Façade Area	0.125	0.23	0.001340	0.000	
W Façade Area	-0.00249	0.2	-0.000634	0.009	
E Façade Area	-0.0889	0.243	-	-	-
NW Façade Area	-0.000146	0.806	-	-	-
NE Façade Area	-0.00017	0.892	-	-	-
SW Façade Area	-0.000118	0.849	-	-	-
SE Façade Area	0.000571	0.471	-	-	-

Cases in Manhattan, NYC

Discussion - Case Study

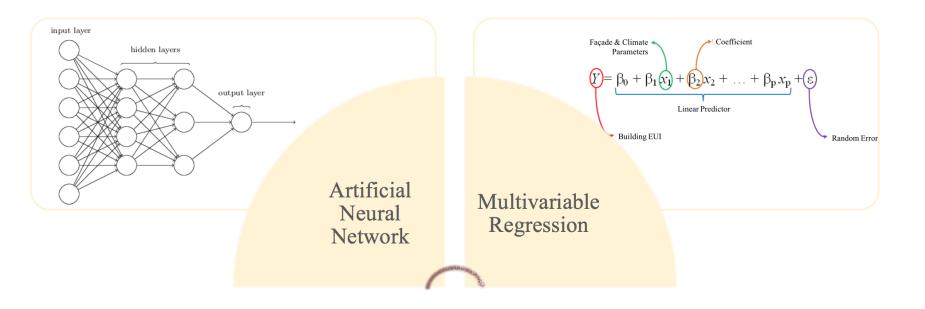
ONT CENTE LEGEND 2,500,00 - FIELD HOUSE 66 500,00 6BTU bBTU ENERGY USE INDEX CENTRAL PLANT 106 PHYSICAL ED 119-STUDENT CENTER 106 HOT WATER EXISTING CLASSROOM BUILDING 92 POWER - LIGHTING LEARNING RESOURCES 33 - HEATING CONCESSION 57 AUTOMOTIVE TECH 7 - COOLING PHYSICAL SCIENCE 82 HEIGHT = AUTOMOTIVE PARTNERS 36 FINE ARTS 44 SKILLS LAB 38 CHILD DEVELOPMENT 38 CENTRAL PLANT 106 FACULTY PURCHASING COMPLEX GYM 53 CLASSROOMS BOOKSTORE 54 SAUGUS HIGH SCHOOL NDG. SITE BUILDING NAME Classroom Building A Classroom Building B Classroom Ruilding (lassroom Build og I MPR Building E PUBLIC AFFAIRS 25 Gymnasium Duilding Gin 's Locker Room Boy's Locker Room Boy's Locker Hoori Classroom Building J Classroom Building J Classroom Building L Classroom Building M Classroom Building M Classroom Building G Classroom Building G Classroom Building R 681 BURNIGHT CENTER 26 ADMIN. 42 Classroom Building S Classroom Building X SOCIAL SCIENCES 51 Administration Building Library Building Y Weight Room Maintenance Building COMMUNITY EDUCATION 58 Maintenance Bullding I ENERGY CONSUMPTION (kBTU) LEARNING RESOURCE CENTER 33 Servery Portcold Building Portes e Building 3.000.001 an above METALS 43 2 500 001 to 3 000 000 PHYSICAL SCIENCE TECH 69 2,000,001 to 2,500,000 1.500.001 to 2.000.000 SCIENCE 65 1,000,001 to 1,500,000 Portao e Building Portas e Building Portas e Building Portas e Building 500 001 to 1 000 000 AD 250.001 to 500.000 LIBERAL ARTS 18 M 40 Porteo e Building Porteo e Building 0 to 250,000 Portas e Buildina BUSINESS ED 100 CAMPUS ENERGY USE INTENSITY LEGEND 41 AI Portes e Building EUI (kBTU/SF/Year) 71 and above 41 to 50 61 to 70 31 to 40

51 to 60

0 to 30

Local College School District – 100 buildings

Source: Harley Ellis Devereaux

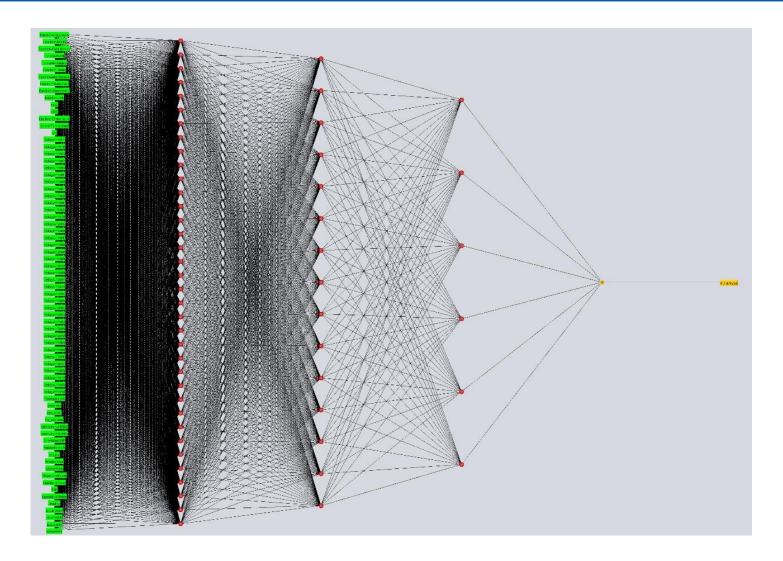

Discussion - Case Study

No.	Façade & Climate	Definition	Tit	le 24 Buildin	g Energy Efficie	ncy Standa	ard
1	Function	Building occupant pricipal activities			Btu/(hr.ft.°F)		
2	Vintage	Year of construction complete	Version	Wall	Roof	Floor	Window
3	Height	From open air pedestrian entrance to highest occupied floor					
4	Floorspace	Total floor area inside the building envelope	1980	0.44 ow	0.1 ow	N/A	N/A
5	Orientation	Positing of a building with respect to the North	1982	0.44 ow	0.1 ow	0.29	N/A
6	WWR	Window-to-wall ratio (total window area/total exterior wall area)	1702	0.77 0 %	0.1 0	0.27	
7	Volume	Inner space volume enclosed by external envelope	1984	0.44 ow	0.1 ow	0.29	N/A
8	Window Area	Total glazing area	1986	0.44 ow	0.1 ow	0.29	N/A
9	Façade Area	Total area of all parts of the structure's facade	1980	0.44 Ow	0.1 Ow	0.29	1N/A
10	Aspect Ratio	proportional relationship between the width and height	1987	0.44 ow	0.1 ow	0.29	N/A
11	Shape Coefficient	Ratio of volume to facade area	1000	0.44	0.1	0.00	NT / A
12	Shading	any external shading device	1988	0.44 ow	0.1 ow	0.29	N/A
13	Number of Floors	Total occupied stories or levels	1992	0.43	0.078	0.158	1.23
14	FAR	Floor to Area Ratio					
15	Operable Window	Window could be open or close based ventilation need4	1995	0.43	0.078	0.158	1.23
16	South WWR	Window-to-wall ratio of south facing façade	1998	0.43	0.078	0.158	1.23
17	West WWR	Window-to-wall ratio of west facing façade	1770			0.150	
18	North WWR	Window-to-wall ratio of north facing façade	2001	0.43	0.078	0.158	1.23
19	East WWR	Window-to-wall ratio of east facing façade	2005	0.43	0.078	0.158	1.23
20	Monthly CDD	Cooling degree day (the demand for energy to cool a building)	2003	0.45	0.078	0.138	1.25
21	Monthly HDD	Heating degree day (the demand for energy to heat a building)	2008	0.44	0.039	0.269	0.77
22	Dry-Bulb Temperature	Monthly average outdoor air temperature	2013	0.44	0.039	0.269	0.36
23	Diurnal Temperature	Monthly average daily temperature swing range					
24	Monthly Average RH	average of relative humidity	2016	0.44	0.034	0.269	0.36

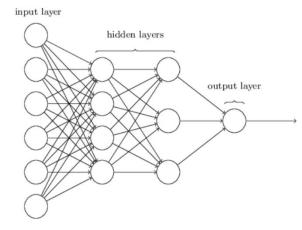
Sample Data Organization

	Month	EUI (kBtu/sf)	HDD	CDD	Dry-Bulb Temperature	Diurnal Temperature	RH	Vintage	Floorspace (sf)	WWR (%)	Height (ft)	Façade Area	Orientation	Volume	Window Area	Aspect Ratio
	Jan	3.163	275	21	58.8	16.9	68.6									
	Feb	2.857	150	131	60.1	19.9	70.8									
	Mar	3.226	147	62	61.2	18.7	71									
	Apr	3.324	93	111	63.8	18.2	67.7									
	May	3.730	70	71	64.3	15.7	71.1									
BLDG	Jun	3.824	23	225	77.7	16.7	72.7									
1 1	Jul	4.131	4	339	82.3	18.1	72.2	1963	45568	20	16	65765.6	1	729088	4008	1.540
1	Aug	4.094	1	313	83.1	16.7	70.8									
	Sep	3.666	12	264	80	17.1	71									
	Oct	4.026	34	169	73	23.7	69.7									
	Nov	3.101	197	79	64.9	14.3	65.8									
	Dec	3.025	324	33	60.5	12.9	67.3									
	Total	42.165	1330	1818	69.1	17.4	70.1									

Data Mining Techniques adopted

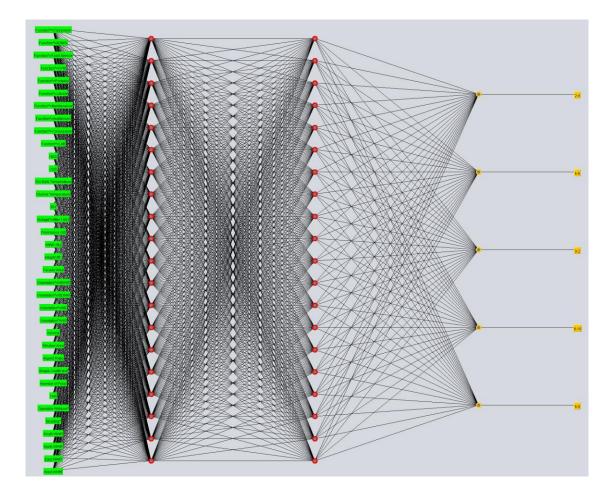


Stepwise Regression Output


	Step	o 1	Step	2	Step	3	Step	4	Step	5
	Coef	Р	Coef	Р	Coef	Р	Coef	Р	Coef	Р
Constant	0.897		-26.21		-28.49		-39.51		-43.68	
HDD	0.025429	0.000	0.027461	0.000	0.027622	0.000	0.027856	0.000	0.027869	0.000
Dry-Bulb Temperature			0.3873	0.000	0.3839	0.000	0.3537	0.000	0.3422	0.000
South WWR					0.138	0.000	0.1009	0.000	0.0932	0.000
RH							0.2159	0.000	0.3124	0.000
Façade Area									-0.000039	0.000
S		6.78355		6.10505		5.70983		5.57225		5.48038
R-sq		68.27%		74.36%		77.63%		78.75%		79.49%
R-sq(adj)		68.19%		74.24%		77.47%		78.54%		79.24%
R-sq(pred)		67.14%		73.16%		76.06%		77.14%		77.84%
Mallows' Cp		232.84		111.03		46.65		25.96		12.81

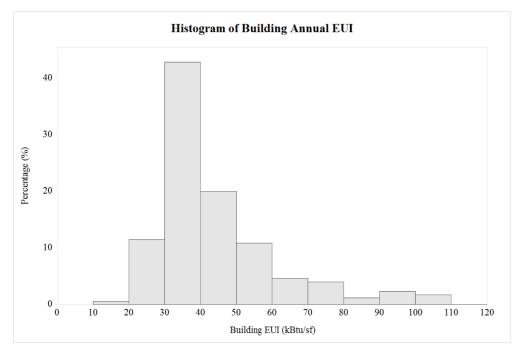
Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-43.68	3.58	-12.20	0.000	
HDD	0.027869	0.000715	39.00	0.000	1.08
Dry-Bulb Temperature	0.3422	0.0358	9.56	0.000	1.12
South WWR	0.3124	0.0521	6.00	0.000	1.64
RH	-0.000039	0.00001	-3.86	0.000	1.32
Façade Area	0.0932	0.0189	4.93	0.000	1.23

Artificial Neural Network (EUI value prediction)


Artificial Neural Network (EUI value-prediction)

Correlation coefficient	0.9939
Mean absolute error	0.7325
Root mean squared error	1.4335
Relative absolute error	12.1756%
Root relative squared error	11.9319%
Total Number of Instances	416

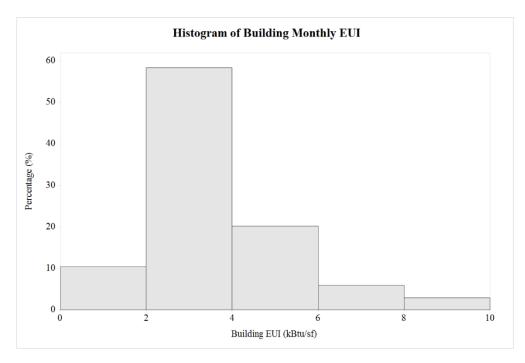
- Correlation coefficient
 - Annual EUI: 99.39%
 - Monthly EUI: 99.5%
- Relative absolute error
 - Annual EUI: 12.13%
 - Monthly EUI: 11.87%


Artificial Neural Network (EUI value range prediction)

Annual EUI estimation

Artificial Neural Network (Classification)

Annual EUI Range Prediction Model

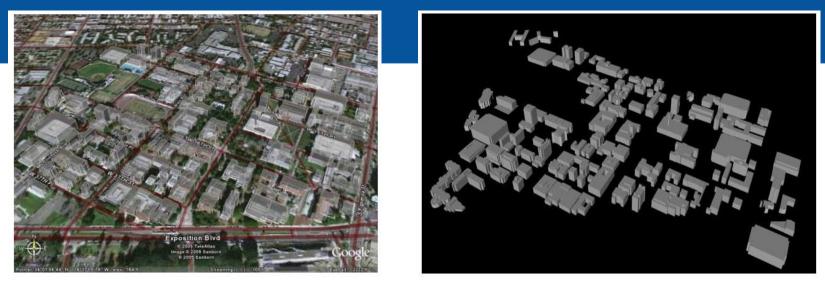


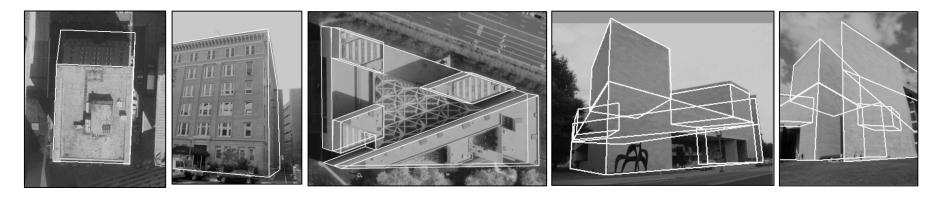
Correctly classified instances	90.3%
Incorrectly classified instances	9.7 %
Kappa statistics	0.8941
Mean absolute error	0.0314
Root mean squared error	0.201
Relative absolute error	15.3%
Root relative squared error	42.2%
Total number of stances	100

Monthly EUI estimation

Artificial Neural Network (Classification)

Monthly EUI Range Prediction Model


Correctly classified instances	93.5%
Incorrectly classified instances	6.5 %
Kappa statistics	0.981
Mean absolute error	0.0258
Root mean squared error	0.012
Relative absolute error	9.6%
Root relative squared error	28.2%
Total number of stances	1200


Bird's eye view images in Internet

Street view images

3D building models generated by the campus semi-automatic building systems and the obtained 3D building models

Examples of pose estimation of 3D building models in ground view images; wireframe of 3D model is overlaid from aerial image (left) and ground view images (right) per example

Example of extracting windows from a facade

Camil

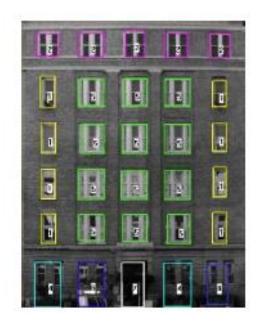
듣

....

H

H

H


H

12)

Π

C

E

Conclusions

- The research outcome revealed that the building façade features and the relevant information can be used as significant building EUI performance indicator.
- Multiple linear regression including stepwise regression and multivariable regression based on selected principal components were capable of investigating the relationship among numerous façade attributes and the building EUIs, but a limited accuracy issued was raised.
- The advantages of using artificial neural network and decision tree were presented with the high predictive ability of the EUI performance model.
- The studied data-driven approach has a high potential to be applicable to urban-scale energy modeling applications.

Bibliography

- Hong, Tianzhen, Yixing Chen, Sang Hoon Lee, and Mary Ann Piette. "CityBES: A Web-based Platform to Support City-Scale Building Energy Efficiency". (2016).
- Andrews, Clinton J., and Uta Krogmann. 2009. "Technology Diffusion and Energy Intensity in US Commercial Buildings." *Energy Policy* 37 (2) (February): 541–553.
- Asadi, Somayeh, Shideh Shams, and Mohammad Mottahedi. 2014. "On the Development of Multi-Linear Regression Analysis to Assess Energy Consumption in the Early Stages of Building Design." *Energy & Buildings* 85: 246–255.
- CBECS. 2007. "Total Energy Consumption by Major Fuel for Non-Mall Buildings, 2003" (October 2006): 1–269.
- Crawley, Drury B., Jon W. Hand, Michaël Kummert, and Brent T. Griffith. 2008. "Contrasting the Capabilities of Building Energy Performance Simulation Programs." *Building and Environment* 43 (4) (April): 661–673.
- Ekici, Betul Bektas, and U. Teoman Aksoy. 2009. "Prediction of Building Energy Consumption by Using Artificial Neural Networks." *Advances in Engineering Software* 40 (5) (May): 356–362.

Joon-Ho Choi

joonhoch@usc.edu