Creating a Digital Twin of an Electric Utility

Reimagining building energy modeling in a world of high performance computing, big data, imagery, and advanced metering infrastructure

Presented at:

Argonne National Laboratory Chicago, IL

Presented by:

Joshua New, Ph.D., C.E.M., PMP, CMVP
Building Technologies Research & Integration Center
Subprogram Manager, Software Tools & Models
Oak Ridge National Laboratory

September 25, 2018

Overview

- Jim Ingraham's vision for Utilities of the Future
- Introduction and Context
- 2 Nation-Scale Use Cases
 - Climate zone assessment
 - GEB market creation
- Urban-Scale modeling
 - Automatic Building detection and Energy Model creation (AutoBEM)
- Virtual EPB project (Electric Power Board of Chattanooga, TN)
 - Utility-prioritized use cases
 - Developed capabilities
 - Preliminary results

Virtual EPB – bios

- Joshua New, Ph.D., C.E.M., PMP, CMVP
 - BTRIC "Software Tools & Models" responsible for development of DOE's building simulation tools, HPC, and AI for big data mining.
 - Led 62 projects (9.4/year) totaling \$10M/\$28M (\$1.3M/yr)
 - 133/133 deliverables (44/yr) on-time and on-budget; 100+ publications (13.8/yr)
- James (Jim) Ingraham, B.S. Finance
 - EPB, VP of Strategic Research; electric utility and broadband communications; market research and data modeling
- William (Bill) Copeland, B.S. Economics, MBA
 - EPB, Director of Business Intelligence, EPB business systems, visual analytics
- Hsiuhan (Lexie) Yang, Ph.D. Civil Engineering
 - Computer vision specializing in aerial imagery
 - Machine learning for large data: NASA, AIST, NSF, DOE
- Mark Adams, M.S. Ag&Bio, Mechanical Engineering
 - Building simulation expert, EnergyPlus/OpenStudio developer

AUTOBEM: New Age Energy Security You Can Trust

Jim Ingraham: EPB Vice President Strategic Research

A 21st Century Crossroads

Technology Adoption Rates Accelerate

Wireless Broadband IoT Age Is Upon Us

Papal Conclave 2005

Gigabit Speed Wireless Broadband Coming Soon in 2018-2019

Papal Conclave 2013

ENERGY and INTERNET NETWORKS

A New Generation of Smart Energy Appliances

2011

\$250 Artificial Intelligence 2015

\$5000 5KWh

Commercial Customer Net-Zero That Works

OATI Microgrid Technology Center

02017 OATI, Inc

Residential Customer November 2016 Surprise

Why Tesla's new solar roof tiles and home battery are such a big deal

New Residential Customers Rising

The The Fortune 500 Is All In - Customer Demand

CORPORATE RENEWABLE ENERGY BUYERS' PRINCIPLES: INCREASING ACCESS TO RENEWABLE ENERGY

Some Partner With The Electric Company

Some Do It On Their Own

SIGNAL ENERGY®

CONSTRUCTORS

WE HARNESS CREATIVE ENERGY

Or Hire An Energy Service Company

An MGM Resorts Luxury Destination

Energy Service Smoke And Mirrors Are Back

Who Can You Trust? DOE BTO AUTOBEM Can Be an Answer

Who Will Die

AUTOBEM Integrated With EPB Appliance Models

THE UTILITY OF THE FUTURE AT THE CUSTOMER PREMISE

4G TO 5G

COMMERCIAL

MOBILE

RESIDENTIAL

Control and Manage Load Factor Is The Key

AUTOBEM = MANAGE LOAD FACTOR

DARPA'S INTERNET CHANGED THE WORLD

ENERGY EFFICIENCY

AUTOBEM COULD BE THE NEXT GAME CHANGER

ORNL/EPB Coordination

EPB's operational systems

Overview

- Jim Ingraham's vision for Utilities of the Future
- Introduction and Context
- 2 Nation-Scale Use Cases
 - Climate zone assessment
 - GEB market creation
- Urban-Scale modeling
 - Automatic Building detection and Energy Model creation (AutoBEM)
- Virtual EPB project (Electric Power Board of Chattanooga, TN)
 - Utility-prioritized use cases
 - Developed capabilities
 - Preliminary results

Joshua New, Ph.D., C.E.M., PMP, CMVP

Career

- 2009+ Oak Ridge National Laboratory, R&D staff
 - ETSD, Building Technology Research & Integration Center (BTRIC), Building Envelope & Urban Systems Research Group (BEUSR)
 - Urban Dynamics Institute, Resiliency Team member
- 2012+ The University of Tennessee, Joint Faculty

Education

- The University of TN, (2004-2009), Knoxville; Ph.D. Comp. Sci.
- Jacksonville State University, AL (1997-2001, 2001-2004)
 M.S. Systems&Software Design, double-B.S. Computer Science and Mathematics, Physics minor

Professional Involvement

- IEEE, Senior Member
- ASHRAE, defines international building codes
 - TC1.5, Computer Applications, Voting member and officer
 - TC4.2, Climatic Information, Voting member and officer
 - SSPC169, Weather Data for Building Design Standards (24% of page count of building code), Voting member
 - TC4.7, Energy Calculations, Voting member and officer
 - SSPC140 and ASHRAE Guideline 14 involvement

Certifications

- AEE, Lifetime Member
 - Certified Energy Manager
 - Certified Measurement & Verification Professional
- PMI, Member
 - Project Management Professional

40 Years: Energy and Quality of Life

Energy Efficiency and Sustainability - global

- Buildings (China, India, US, UK, Italy) 39% to 45% of primary energy
- Buildings in U.S.
 - 45% of primary energy & CO₂; 74% of electricity
- Buildings in China
 - 60% of building floor space in 2030 has yet to be built
- Buildings in India
 - 67% of building floor space in 2030 has yet to be built

1 GJ = 1.000,000,000 J

Source: Energy Information Administration

Energy Consumption and Production

Source: U.S. Energy Information Administration, January 2016 to January 2017, Monthly Energy Review — Table

124 million U.S. buildings \$395 billion/yr energy bills

Goal of the DOE
Building Technologies Office:
45% energy reduction per sq. ft.
by 2030 compared to 2010 baseline

Building Energy Modeling – building descriptions + weather = estimated building energy consumption

\$9B/yr – ESCO; \$7B/yr – utility EE \$14B/yr – DR management systems 0.3% modified, BEM < 10% of those Building Energy Modeling

+
Resilience of the Electric Grid
+
ASHRAE's Changing Climate
Zones

ASHRAE Climate Zones

Based on weather stations, most Portland w/ 18+ yrs of quality data (1961-1990)

ZONE NUMBER	THERMAL CRITERIA	
	IP Units	
1	9000 < CDD50°F	
2	6300 < CDD50°F ≤ 9000	
3A and 3B	4500 < CDD50°F ≤ 6300 AND HDD65°F ≤ 5400	
4A and 4B	CDD50°F ≤ 4500 AND HDD65°F ≤ 5400	
3C	HDD65°F ≤ 3600	
4C	3600 < HDD65°F ≤ 5400	
5	5400 < HDD65°F ≤ 7200	
6	7200 < HDD65°F ≤ 9000	
7	9000 < HDD65°F ≤ 12600	
8	12600 < HDD65°F	

Climate Zone 0 (extremely hot): $10,800 < CDD 50^{\circ}F$ Int'l Energy Conservation Code (IECC) adopts for 2018 code

Cooling Degree Days:

 $CDD = \sum (\langle T_i \rangle - T_{hass})^*$

Thank = 10°C (50°F)

Building-adjusted CZ improvement

- What other (e.g. political) variables should be included?
- How could the nation's energy security and critical infrastructure resiliency be improved by incorporating future scenarios into the built environment?
- How much energy and \$ could be saved by having a forward-looking climate-aware building code?

Climate Change Impacts

Building Energy Modeling

±

Grid-interactive Efficient Buildings

+

New Energy Market (save x ± y at confidence level of z, time-sensitive value trades)

Building Energy Modeling

Optimal Return on Investment (for building energy savings)

Simulation Engine and Analysis Platform U.S. Dept. of Energy \$93M, 1995–?

EnergyPlus

OpenStudio

Free, open-source (GitHub), free support community (unmethours.com)

HPC scalability for desktop software

Titan is the world's fastest buildings energy model (BEM) simulator

>500k building simulations in <1 hour

130M US buildings could be simulated in 2 weeks

8M simulations of DOE prototypes (270 TB)

CPU	Wall-clock	Data	EnergyPlus
Cores	Time (mm:ss)	Size	Simulations
16	18:14	5 GB	64
32	18:19	11 GB	128
64	18:34	22 GB	256
128	18:22	44 GB	512
256	20:30	88 GB	1,024
512	20:43	176 GB	2,048
1,024	21:03	351 GB	4,096
2,048	21:11	703 GB	8,192
4,096	20:00	1.4 TB	16,384
8,192	26:14	2.8 TB	32,768
16,384	26:11	5.6 TB	65,536
32,768	31:29	11.5 TB	131,072
65,536	44:52	23 TB	262,144
131,072	68:08	45 TB	524,288

MLSuite: HPC-enabled suite of Artificial Intel.

- **Linear Regression**
- Feedforward Neural Network
- Support Vector Machine Regression
- Non-Linear Regression
- K-Means with Local Models
- Gaussian Mixture Model with **Local Models**

- Self-Organizing Map with Local Models
- Regression Tree (using Information Gain)
- Time Modeling with Local Models
- Recurrent Neural Networks
- Genetic Algorithms
- **Ensemble Learning**

Acknowledgment: Dr. Lynne Parker (NSF Div. Dir. Info. and Intel. Systems); Dr. Richard Edwards (doctoral student, now Amazon's ad analytics)

Calibration Performance – automated M&V

National HPC Resources

Applied Research

Industry and building owners

High Performance Computing

- Different calibration algorithms
- Machine learning big data mining
- Large-scale calibration tests

Features

- Calibrate any model to data
- Calibrates to the data you have (monthly utility bills to submetering)
- · Runs on a laptop and in the cloud
- 35 Publications:

http://bit.ly/autotune_science

Open source (GitHub):

http://bit.ly/autotune code

Results

		ASHRAE G14 Requires	Autotune Results
Monthly	CVR	15%	1.20%
utility data	NMBE	5%	0.35%
Hourly	CVR	30%	3.65%
utility data	NMBE	10%	0.35%

Results of 20,000+ Autotune calibrations (15 types, 47-282 tuned inputs each)

Other error metrics

Residential	Tuned input			
home	avg. error			
Within 30¢/day (actual	Hourly – 8% Monthly – 15%			
use \$4.97/day)	3 bldgs, 8-79 inputs			

Leveraging HPC resources to calibrate models for optimized building efficiency decisions

Model America 2020 - BEM for every U.S. building

Acknowledgements

- U.S. Department of Energy
- National Nuclear Security Administration
- Oak Ridge National Laboratory
- Building Technologies Office
- Office of Electricity

Data Sources

- Database and image sources for urban model generation
 - Satellite and airborne imagery
 - Cartographic data
 - Ground level images

- Elevation data
- Building information databases
- 3D building model databases

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Manual Segmentation of DC

Automatic Road Extraction

Automatic Building Footprint Extraction

Algorithm: Deep Learning extended and using GPUs for fast building footprint and area extraction over large geographical areas.

Multi-company Competition Precision/Recall – 30/35; Current Precision/Recall – 60+/60+

Automatic Building Footprint Extraction

Portland, OR (25,393 m²) Imagery: June – July 2012 Lidar: September 2010

Frankfort, KY (14,801 m²) Imagery: June 2012 Lidar: June 2011

Part of Knox County, TN (18,527 m²) Imagery: June 2012 Lidar: October 2014

Processing Street-Level Imagery – Jiangye Yuan

LandScan USA – Amy Rose

- 90-meter grid of daytime (commercial) and night time (residential) population
 - ~14 different data sources (e.g. anonymized cell phone GPS)
 - Building occupancy and schedule adaptation

Prototype Buildings

Small Office

Strip Mall Retail

Outpatient Healthcare

Quick-service Restaurant

Medium Office

Standalone Retail

Hospital

Full-service Restaurant

Large Office

Primary School

Small Hotel

Mid-rise Apartment

Warehouse

Secondary School

Large Hotel

High-rise Apartment

Prototype and Reference Building Updates

- 70, 80 \rightarrow 90% of U.S. commercial floor space
- 16 types, 16 climate zones, 3 vintages = 768 buildings
 - 17-19+ types, 16-17 climate zones, 5-16+ vintages = 1,360-5,168 models
- ~3,000 avg. parameters per building
 - Square footage, HVAC layout, infiltration (i.e. airflow)
 - Construction (e.g. wall, layers of envelope)
 - Material properties (ASHRAE Handbook of Fundamentals)
 - Equipment and occupancy schedules

Physical Properties of Materials

33.3

	Specific Heat,	Density,	Thermal Conductivity,	Emissivity		
Material Description	Btu/lb-°F	lb/ft ³	Btu/h·ft·°F	Ratio	Surface Condition	
Aluminum (alloy 1100)	0.214 ^b	171 ⁿ	128 ^u	0.09° 0.20°	Commercial sheet Heavily oxidized	
Aluminum bronze					-	
(76% Cu, 22% Zn, 2% Al)	0.09^{u}	517 ^{ss}	58 ¹¹			
Asbestos: Fiber	0.25b	150°	0.097 ^a			
Insulation	0.20t	36 ^b	0.092b	0.93b	"Paper"	
Ashes, wood	0.20 ^t	40 ⁶	0.041b (122)			
Asphalt	0.22 ^b	132 ^b	0.43b			
Bakelite	0.35 ^b	81 ^u	9.7□			
Bell metal	0.086 ^t (122)					
Bismuth tin	0.040*		37.6*			
Brick, building	0.2 ^b	123 ^u	0.4 ^b	0.93*		

Table 3 Properties of Solids

Street-level imagery (Lexie Yang)

Façade Type

Windows (blue)
Façade (green)
Street/open (black)
Other building (red)

Window-to-wall ratio

Input image

Model output

Oak Ridge National Laboratory

Oak Ridge National Laboratory (interactive)

The University of Tennessee (2 days)

Virtual EPB – bios

- Joshua New, Ph.D., C.E.M., PMP, CMVP
 - BTRIC "Software Tools & Models" responsible for development of DOE's building simulation tools, HPC, and AI for big data mining.
 - Led 62 projects (9.4/year) totaling \$10M/\$28M (\$1.3M/yr)
 - 133/133 deliverables (44/yr) on-time and on-budget; 100+ publications (13.8/yr)
- James (Jim) Ingraham, B.S. Finance
 - EPB, VP of Strategic Research; electric utility and broadband communications; market research and data modeling
- William (Bill) Copeland, B.S. Economics, MBA
 - EPB, Director of Business Intelligence, EPB business systems, visual analytics
- Hsiuhan (Lexie) Yang, Ph.D. Civil Engineering
 - Computer vision specializing in aerial imagery
 - Machine learning for large data: NASA, AIST, NSF, DOE
- Mark Adams, M.S. Ag&Bio, Mechanical Engineering
 - Building simulation expert, EnergyPlus/OpenStudio developer

Virtual EPB Summary

- DOE's Building Technologies Office and Office of Electricity
 - Goal: create a digital twin of every building in EPB's service area
 - Final Deliverable: Simulation-informed data and valuation report for energy, demand, emissions, and \$ impact to EPB for each building in EPB's service area for 5 prioritized use cases covering 9 monetization scenarios
 - 2 projects, funded and tracked separately
 - Total \$700k (OE-\$450k, 41 tasks; BTO-\$250k, 15 tasks + BTO: \$400k FY19)
 - 56 tasks, 12 milestones, 1 Go/No-Go (passed)
 - On-schedule except for 1 technical input (High-res bldgs) and 1 task (QA/QC)

Utility Use Cases for Virtual EPB

- **Peak Rate Structure** model peak segment customers in aggregate as disproportionate contributors to electric utilities' wholesale demand charges for more equitable rate structures.
- **Demand Side Management** identify DSM products and grid services for better distribution grid management that allow both utilities and rate-payers to share in peak reduction
- **Grid stability services** quantify improved load models
- Emissions accurately account for emissions contributed by each building, providing enhanced abilities for utilities to best comply with national emission policies.
- **Energy Efficiency** accurate modeling/forecasting of every building energy profile virtually in a scalable fashion allows better follow-up and more targeted energy audits/retrofits.
- **Customer Education** better understand building's energy usage as a function of weather to provide better information during customer billing enquiries.

Energy, Demand, Emissions, and \$ for 9 scenarios (Customer->EPB, EPB->TVA)

EPB buildings in Tennessee (166,944)

EPB buildings in Tennessee (166,944)

EPB buildings in Tennessee (166,944)

Chattanooga, TN (100,000+ buildings)

Scientific results

- 100+ page internal report NDA/OUO
 - New, Joshua R., Hambrick, Joshua, and Copeland, William A. (2017). "Assessment of Value Propositions for Virtual Utility Districts: Case Study for the Electric Power Board of Chattanooga, TN." ORNL internal report ORNL/TM-2017/512, December 15, 2017, 107 pages.
- Sensitivity analysis for all building types
 - 80% of commercial buildings 16 climate zones, 16 building types, averaging 5.75 vintages
 - 281-4,617 building descriptors (e.g. thermostat, insulation level) were modified

	Small Office	Outpatien t	Large Office	Medium Office	Hospital	Warehous e	Small Hotel	Large hotel
Inputs	458	3483	1072	760	1955	333	1823	887
	Strip Mall	Retail	Quick Service Restaurant	Full Service Restaurant	Mid Rise Apt	High Rise Apt	Secondary School	Primary School
Inputs	800	438	281	286	1464	4617	1621	1051

- Fractional Factorial (FrF2) resolution IV statistical design of experiments
- Summarize 768 lists of impactful variables
 - 254,544 annual simulations were completed on the nation's fastest supercomputer (Titan)
 - 216 Excel spreadsheets were created listing the energy and demand impacts of each building property
- Quantify Most Important Building Parameters
 - Top 10 annual energy (kWh) and demand/peak-shaving (kW) variables for each of the 16 building types

The AutoBEM technology "axe"

135,481 building models have been created and matched to EPB's PremiseID

Limitations: limited building types, not calibrated, will improve quarterly QA/QC: will show how close our simulations are to 15-min data

2.3 million EnergyPlus building energy models using AutoBEM technology, Titan, cloud, and local servers to produce and analyze 13 TB of simulation data.

- Generate baseline building OpenStudio (1.5-3h Amazon, 30h internal)
- 2. Run ECM measures OS Measure (30 mins AWS, 2h internal), Custom (1m AWS, 5m intl.)
- 3. Copy data to Titan 1 min (1.2GB tar.gz)
- 4. Submit to Titan 0-2 hours in queue
- 5. EnergyPlus simulation time -30-45 mins (5mins/sim = 1.4 years to simulate EPB on 1 core)
- 6. Data transfer 40 mins (160GB tar.gz)
- 7. Uncompress 10-15 mins
- 8. Reformat data 20-30 mins
- 9. Analysis 5-10 mins

Time for creation, annual simulation, and analyzing "all" EPB buildings **6.5 hours** (6.1h –36.5h)

Use Case - Scenarios

• **Preliminary** building-specific estimates of energy, demand, and cost savings totaling \$11-\$35 million per year based on 9 scenarios prioritized by EPB.

1. Peak Rate Structure

- 1. Scenario #1a, Peak contributions for each building
- 2. Scenario #1b, Cost difference, in terms of dollars per year, for all building

2. Demand Side Management

- 1. Scenario #2a, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings.
- 2. Scenario #2b, Location-specific deferral of infrastructure cost savings potential

3. Emissions

1. Scenario #3a, Emissions footprints for each building

4. Energy Efficiency

- 1. Scenario #4a, Optimal retrofit list of independent ECMs
- 2. Scenario #4b, Optimal retrofit package of dependent ECMs

5. Customer Education

- Scenario #5a, Percentile ranking of each building's EUI by building type and vintage
- 2. Scenario #5b, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings compared to AMY weather file scenario.

1a - Peak contribution percentile by type

2a - Smart Thermostat

- Pre-heat/pre-cool 2 or 4 hours prior to peak demand hour each month
 - Single Heating or Single Cooling thermostat up or down 4°F and 8°F
 - Dual Setpoint Thermostat Average of baseline cooling and heating setpoints with a 0.5°C deadband
- Setback thermostat setpoint by 4°F or 8°F for peak demand hour and 4 hours after peak for each month
- Altered thermostat values affects 38 (1-4 per building type) thermostat schedules in 518 (3-118 per building type) thermal zones for 16 different building types
- The 4°F and 8°F runs are compared to baseline, unaltered simulation to determine demand reduction and energy savings potential

2a - Smart Thermostat: Maximum Demand and Energy Reduction Potential

Resiliency and Emissions Footprints

- 2b: Demand Side Management
 - Resiliency of critically-loaded feeders and substations

Circuit: Customer Information

Premise Number

Circuit: Circuit Count:1
As of Date: XFMR Count: 146

Meter Count: 703

Circuit ID Xfmr Structure Number - Compressed

Account Number - Formatted

Premise Service Address

Meter Number

- 3a: Emission Footprint for each building
 - Carbon footprint (CO₂)
 - Nitrogen oxides (NOx)
 - Sulfur Dioxide (SO₂)
 - Methane (CH4)
 - Nitrous Oxide (N2O)

Demand and EE opportunities

 Energy, demand, emissions, savings (customer and utility) for every building every 15 minutes

ECMs	Different Fields Calculated for Each ECM							
HVAC	1.Total	2.Annual	3.Energy	4.Annual	5.Annual	6.Annual	7.Annual	8.Total
Lighting	Cost	Electric	Cost	Electric	Demand	Demand	Demand	Cost
Infiltration	Savings	Savings	Savings		Savings	Cost		Savings
8F setback						Savings		
HVAC Efficiency	\$	kWh	\$	kWh	kW	\$	kW	\$
4F setback								
Insulation	9.Annual	10.Energy	11.Annual	12.Percent	13.Annual	14.Annual		
Water heater	Electric	Cost	Electric	Savings	Demand	Demand		
Heat pump	Savings	Savings			Cost Savings			
Smart WH	kWh	\$	kWh	\$	\$	kW		

Related Work

Combined Heat and Power (CHP)

Sizing micro-CHP based on heating, cooling, and electrical demands

Transactive HVAC Control

EnergyPlus models for transactive control

Microgrid

- Simplified model replaced with EnergyPlus
- Run for area within EPB for considering microgrid

VOLTTRON Deployment

 B2G services deployment of hardware and control strategies

Virtual EPB – interactive results

Exascale Computing Project

Coupling:

- Transportation (CommuterSim)
- Weather (WRF, Nek5000)
- Buildings (OpenStudio/EnergyPlus)
- Population (LandScan)
- Socio-economics
- Individual-person, agent-based models, fully-coupled simulations running on the fastest computers in the world

Titan (ORNL), when the world's fastest 27 petaflops, world's 7th (top500.org)

Summit (ORNL), world's fastest in June, 207 PF

Aurora (ANL), Frontier (ORNL)

Exascale...

