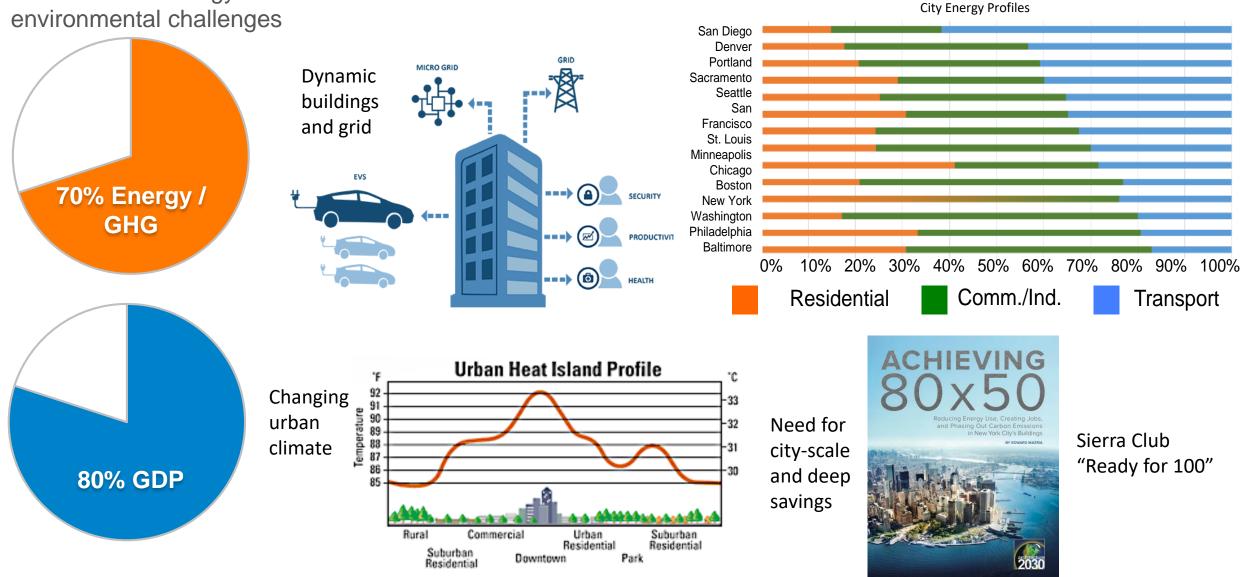


Urban Information and Energy Modeling

Tianzhen Hong Rishee Jain Joshua New Ben Polly Christoph Reinhart Lawrence Berkeley National Laboratory Stanford University Oak Ridge National Laboratory National Renewable Energy Laboratory MIT

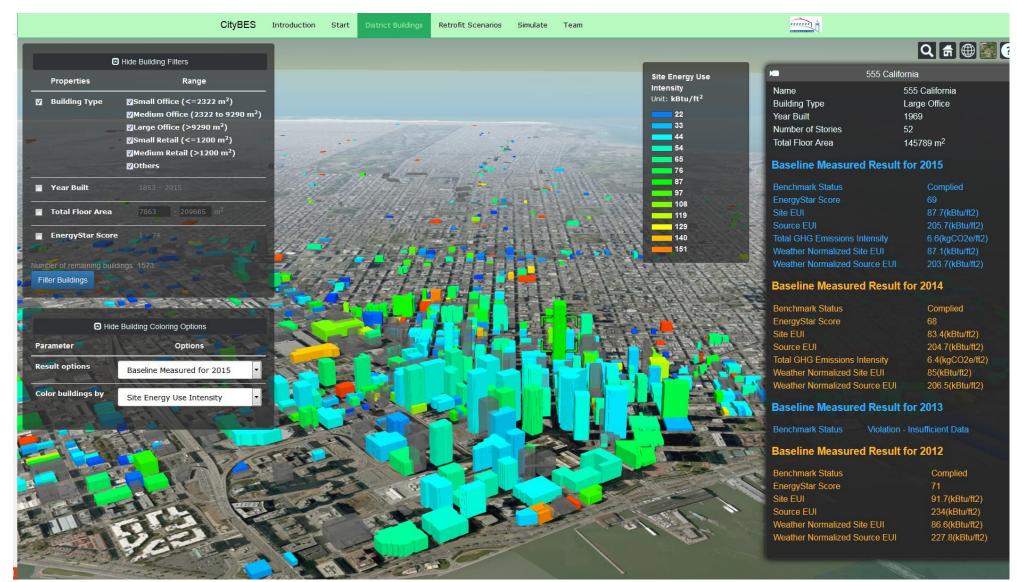
Contribution Number	120
Presentation Date	2019-09-02
Presentation Time	11:35am – 12:35pm



Massachusetts Institute of Technology

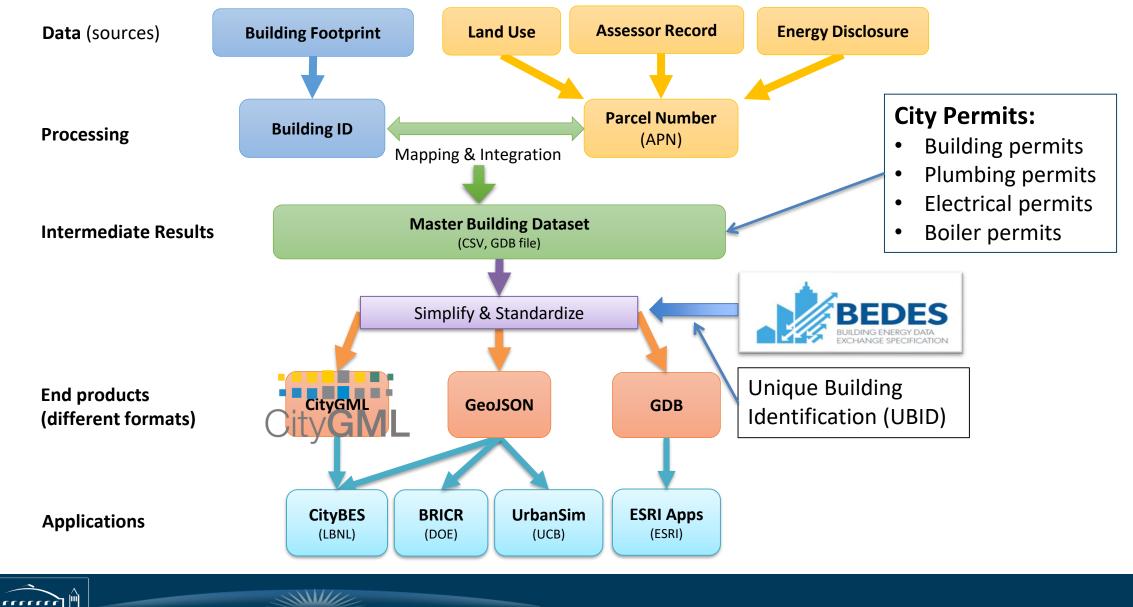
Cities drive our economy and dominate energy and environmental challenges

Urban Megatrend

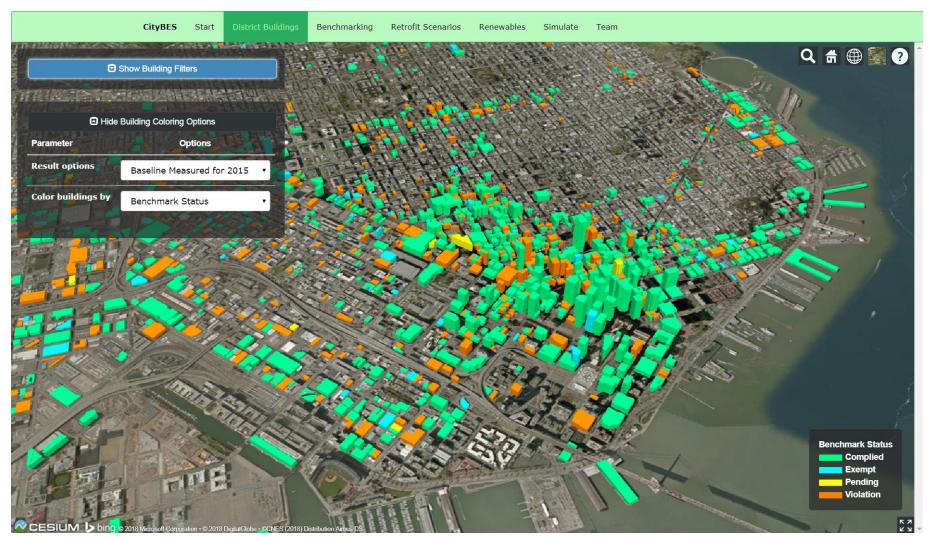


CityBES: A Data and Computing Platform for Urban Buildings

Tianzhen Hong


LBNL

CityBES.LBL.gov



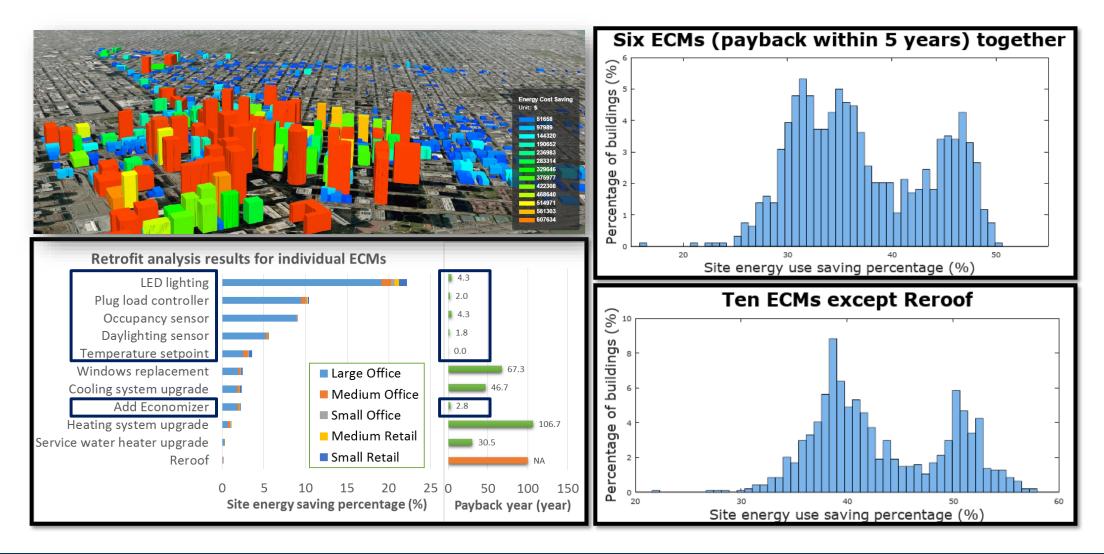
Integrating City Data in Open Standards

BERKELEY LAB

Visualize Building Energy from City Ordinance

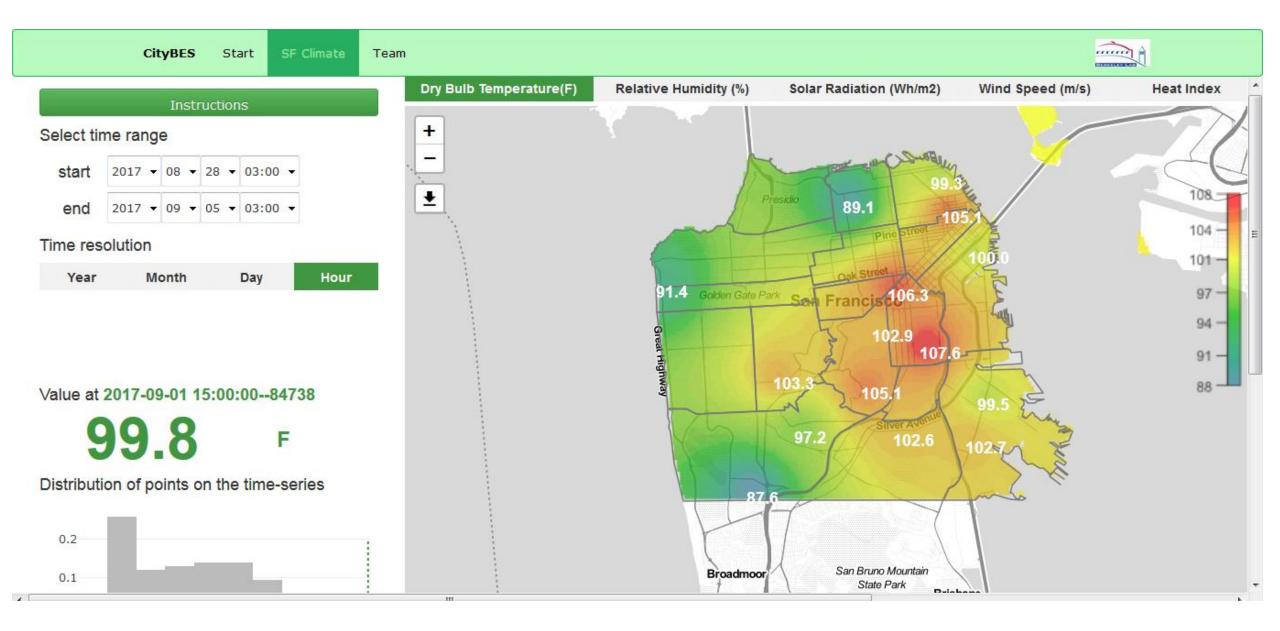
https://citybes.lbl.gov/?sf_ecbo=1

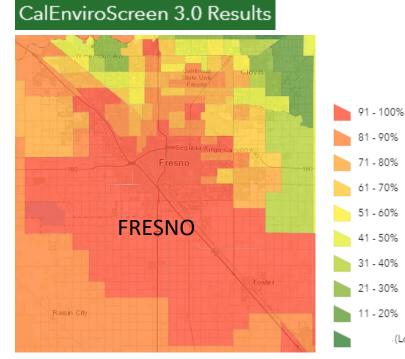
ENERGY TECHNOLOGIES AREA


Evaluate Photovoltaic Potential

BES Start District Buildings Ber	nchmarking Retrofit Scenarios	Renewables District Energy Simulate Team	CityBES Start District Buildings Benchmarking Retrofit Scenarios Renewables District Energy Simulate	
Renewables: Photovo	the photovoltaic (PV) energy system parameters of a PV module in the fo	llowing panels.	Show Buiking Filters Hide Buiking Coloring Options Parameter Options Result options Photovoltaics Potential	Q # # #
Parameters of a PV module (Avail	able from manufacturer's sp	ecifications)	Show summary by Current result option	4570
Cell Type	CrystallineSilicon		A CANADA AND A CANADA	
Number of cells in a module	60		Show Debug Options	
Current at maximum power (A)	7.5	Cell		
Voltage at maximum power (V)	30	Module		
Short circuit current (A)	8.3	Array Fig. Illustration of a PV system: Cell=>Module=>Array		1-1- TO- A
Open circuit voltage (V)	36.4		Carl House and a second second second	The DE
Area of the PV module (m ²)	1.65			
Area for PV				
ercentage of roof area for PV (%)		60		PV Generated Energy Intensity Unit: kWh/m ² (roof
ilt angle from horizontal (degree)		31.8	Roof Area (m2) PV Generated Energy (GWh) =	area)
rientation		South	Sould Office Sould Office Sould office Sould office Sould office Sould field Sould field Sould field Sould field Sould field Sould field	88 97 107 116
lick the Calculate Photovoltaic Potential bu Calculate Photovoltaic Potential	iton below to start the simulation.		Stand Backar S5X S5X	128 135 144 154 154 163 173 162
			Total: 814,762 m2	191

Evaluate the photovoltaic potential of 8,665 buildings in Northeast San Francisco


Evaluate building retrofits at large scale: 940 office and retail buildings in Northeast San Francisco


ENERGY TECHNOLOGIES AREA

Visualize San Francisco Climate

CAL-THRIVES: A California Toolkit for Heat Resiliency in Vulnerable Environments

- A project funded by the California Strategic Growth Council
- Project location: Fresno, California
- Partners: West Fresno Family Resource Center, Indicia Consulting, USC

Project Objectives:

- Increase resilience to heat waves in vulnerable
- disadvantaged communities
- Provide tools and resources that help local governments, communities, and utilities
- Incorporate community needs and inputs throughout the project

Technologies and Strategies:

<mark>CALIFORNIA</mark> STRATEGIC G R O W T H

COUNCIL

 Assess viable passive cooling measures

Cap and Trade Dollars at Work

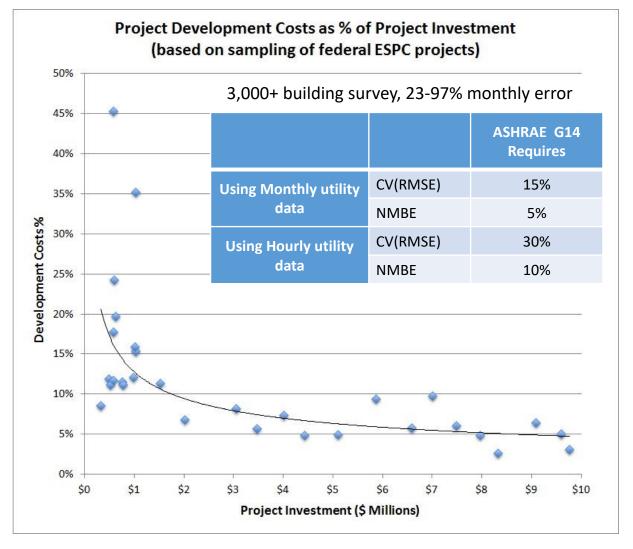
- Assess viable, low-GHG active cooling measures
- Map extreme heat vulnerability within the disadvantaged communities
- Improve efficacy of cooling shelters

Note: Higher score is more disadvantaged community

Data-driven Urban Energy (DUE-) - Simulation (S), Benchmarking (B), Analytics (A)

Rishee Jain

Stanford University


Digital Twin – a virtual utility for analyzing building energy

Joshua New

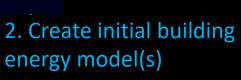
ORNL

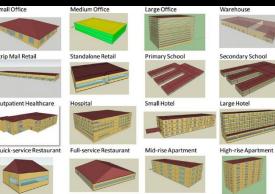
Building Energy Modeling

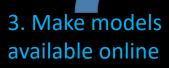
- Option D (BEM) only used in ~8% of federal performance contracts
- Only cost-effective for large projects
 (>\$2 million)
- What about cities?

Model America 2020 – BEM for every U.S. Building

Reduce


1. Extract important inputs from available data



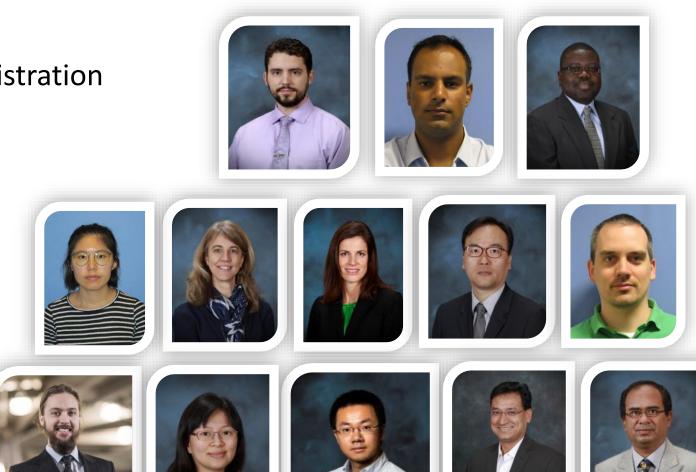


Benchmark

DOE Prototype Buildings

Offset

Download BEM via street address


Goal: Stimulate private sector activity for efficient buildings

> IGAWalkthrough Audit

 Calibration to measured data

Acknowledgements

- U.S. Department of Energy
- National Nuclear Security Administration
- Oak Ridge National Laboratory
- Building Technologies Office
- Office of Electricity

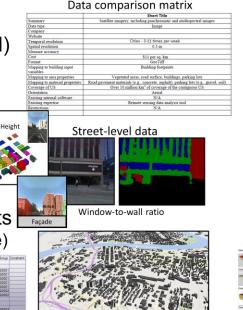
Overview of data and software

 124 million BEM by 12/31/20

 Analysis of energy and demand measures

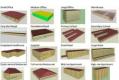
 Freely available in 2021

Automatic Detection and Building Energy Model Creation (AutoBEM)


Data Sources

- Imagery (satellite, aerial)
- Street-level imagery
- Cartographic layers

- Elevation, GIS


- Tax assessors
- Ranking of descriptors
 EE and Demand impacts
 (281–4,617 per building type)

Software Tools

- Occupancy (every 90m)
- Aerial best footprints
- Street height, type, WWR
- LiDAR geometry
- GIS database API
- Building type
- Model generator
- Fastest buildings simulator
- Web-based visual analytics

Result: Simulated buildings for any area of interest that match 15-minute electrical data more accurately than most manually created models

What matters and how much?

- Sensitivity analysis for all building types
 - 80% of commercial buildings 16 climate zones, 16 building types, averaging 5.75 vintages
 - 281-4,617 building descriptors (e.g. thermostat, insulation level) were modified
 - Fractional Factorial (FrF2) resolution IV statistical design of experiments
- Summarize 768 lists of impactful variables
 - 254,544 annual simulations were completed on the nation's fastest supercomputer (Titan)
 - 216 Excel spreadsheets were created listing the energy and demand impacts of each building property
- Quantify Most Important Building Parameters
 - Top 10 annual <u>energy (kWh)</u> and <u>demand/peak-shaving (kW)</u> variables for each of the 16 building
 - Publication in-review with supplemental Excel spreadsheets for each bldg. type, location, and vintage for 47-470 variables each.

	Small Office	Outpatien t	Large Office	Medium Office	Hospital	Warehous e	Small Hotel	Large hotel
Inputs	458	3483	1072	760	1955	333	1823	887
	Strip Mall	Retail	Quick Service Restaurant	Full Service Restaurant	Mid Rise Apt	High Rise Apt	Secondary School	Primary School
Inputs	800	438	281	286	1464	4617	1621	1051

Data sources

• Database and image sources for urban model generation

.

Satellite and airborne imagery

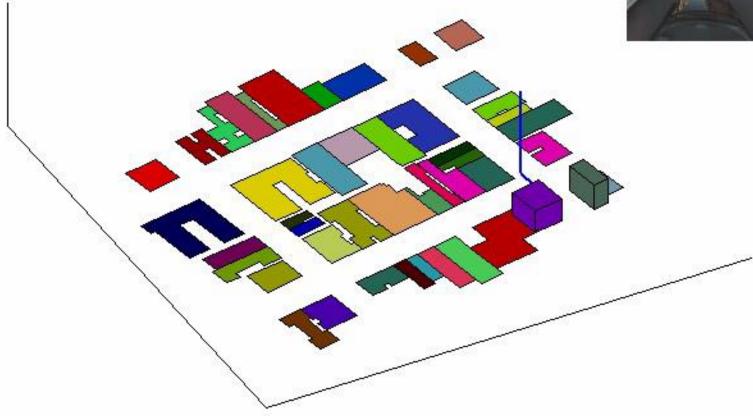
Cartographic data

- Ground level images
- Elevation data
- Building information databases
- 3D building model databases

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input	Building footprints
variables	
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Computer Vision for DC

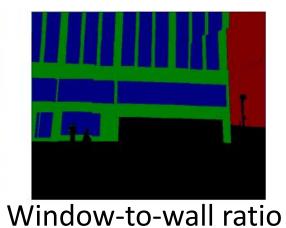
Open Competition Precision/Recall – 30/35 ORNL Current Precision/Recall – 60+/60+

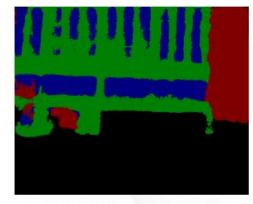

Actional Laboratory

3D Building Model Generation

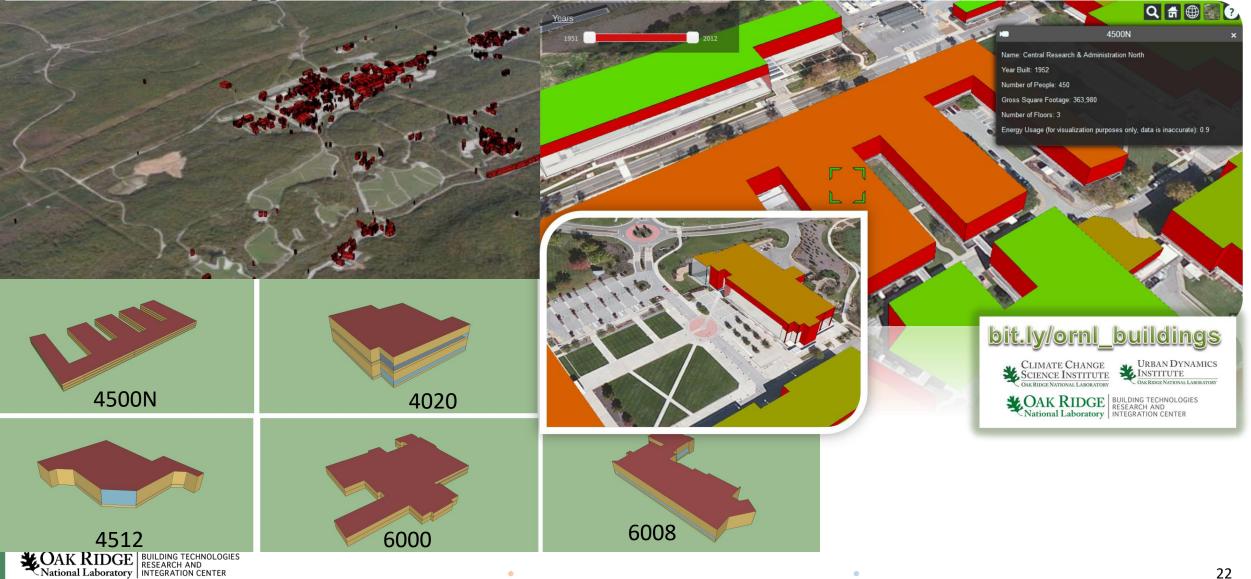
Street-level Image Processing (height)

.


Street-level details


Windows (blue) Façade (green) Street/open (black) Other building (red)

Input image


Ground truth

Oak Ridge National Laboratory

The University of Tennessee (2 days)

The AutoBEM Technology "axe"

135,481 building models have been created and matched to EPB's PremiseID

Limitations: limited building types, not calibrated, will improve quarterly QA/QC: will show how close our simulations are to 15-min data

3.5+ million EnergyPlus building energy models using AutoBEM technology, Titan, cloud, and local servers to produce and analyze 13 TB of simulation data.

- 1. Generate baseline building OpenStudio (1.5-3h Amazon, 30h internal)
- 2. Run ECM measures OS Measure (30 mins AWS, 2h internal), Custom (1m AWS, 5m intl.)
- 3. Copy data to Titan 1 min (1.2GB tar.gz)
- 4. Submit to Titan 0-2 hours in queue
- 5. EnergyPlus simulation time 30-45 mins (5mins/sim = 1.4 years to simulate EPB on 1 core)
- 6. Data transfer 40 mins (160GB tar.gz)
- 7. Uncompress 10-15 mins
- 8. Reformat data 20-30 mins
- 9. Analysis 5-10 mins

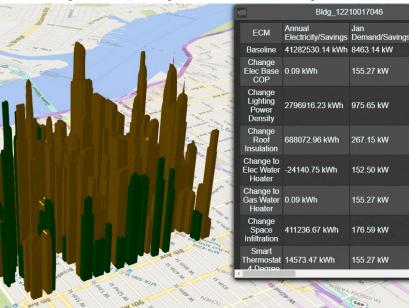
Time for creation, annual simulation, and analyzing "all" EPB buildings 6.5 hours (6.1h –36.5h)

Virtual Utility – interactive results

IG TECHNOLOGII CH AND ATION CENTER
2

	60246		
	ID	60246	
	DOE Building Type	SmallOffice	
	Num Floors	3	
	Percentile	87.70 %	
	Estimated wholesale vs retail cost	\$ 9797.07	
	CO2 emissions	222052.32 lbs/year	
	Smart Thermostat - 4F cost savings	\$ 1316.61	
	Smart Thermostat - 8F cost savings	\$ 2325.84	
	TMY->AMY Smart Thermostat - 4F cost savings	\$ 204.99	
	TMY->AMY Smart Thermostat - 8F cost savings	\$ 103.41	
	HVAC Efficiency ECM	\$ 1291.79	
	Gas HVAC ECM	\$ 4276.69	
	Gas Water Heater ECM	\$ 725.58	
	Heat Pump Water Heater ECM	\$ 476.95	
	Insulation ECM	\$ 736.27	
	Infiltration ECM	\$ 1577.50	
	Lighting ECM	\$ 2898.95	
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A			

E=energy (MWh), D=demand (kW), [min,avg,max]


1. Lighting Efficiency (0.85 W/ft²)

E=[77, 784, 6757] D=[23, 999, 14410]

- **2.** Infiltration (reduce 25%) E=[40, 774, 4648] D=[-0.8
 - D=[-0.8, 840, 14020]
- **3.** Insulation (R16.12 to R28.57) E=[12, 204, 1600] D=

D=[1.9, 817, 13928]

4. Smart thermostat **2.2C (4F)** pre-condition E=[-72, 1.4, 525] D=[-938, 918, 13907]

3426 13 k

3232.78 k

3597.39 k

3348.45 k

3230.01 k

3232.78 k

3436.11 k\

4155.11 kV

Accuracy compared to 15-minute data

ORNL posts

OPNI

Creates & maintain

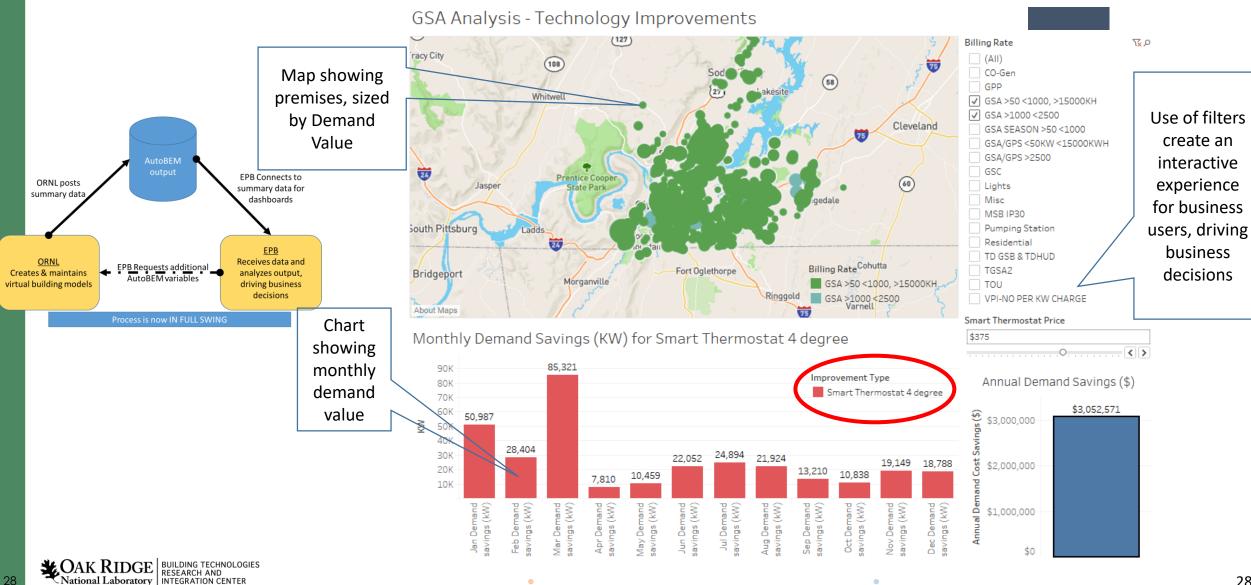
virtual building

Empirical Validation

- 15-minute wholebuilding electrical for 178,368 bldgs
- More accurate than BEM created by a human¹
 - ½ error of the average manually-created **BEM** when compared to measured data
- **Use Cases** Peak rate structure Demand-side mgmt Emissions Energy efficiency Customer education **EPB** retrieves data for output dashboards EPB requests AutoBEM data Analyzes data to drive

Operational Use of BEM Simulations

Measures


- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11–35 million/year in potential savings identified via simulation-informed data and valuation for energy, demand, emissions, and cost impact to EPB and each customer for each building under five use cases covering nine monetization scenarios

¹Garrison, Eric, New, Joshua R., and Adams, Mark (2019). "Accuracy of a Crude Approach to Urban Multi-Scale Building Energy Models Compared to 15-min Electricity Use." Best PhD Student Paper award. In Proceedings of the ASHRAE Winter Conference, Atlanta, GA, Jan. 12-16, 2019. [PDF] [PPT]

Virtual Utility Integration

Tech Commercialization Fund with Google

- Environmental Insights Explorer
 - <u>https://insights.sustainability.google/</u>

ENVIRONMENTAL INSIGHTS EXPLORER

Impact begins with insights. Explore data to make informed decisions and inspire action.

AutoBEM ROM Estimates

Cost estimation*:

- \$50,000/building Typical cost of walkthrough audit and model creation (medium size and complexity)
- \$5,000/building high-fidelity model creation and visual analytics incorporating street-level imagery
- \$900/building AutoBEM model creation and visual analytics
- \$7/building Utility-scale AutoBEM model creation and visual analytics

*this is only a ROM estimate. Final costs are determined by the funding mechanism, applicable overhead rates, and the final statement of work. Strategic Partnership Projects (SPPs), formerly known as Work For Others (WFO), recommends \$50,000 minimum per project.

URBANopt: An Open Source Software Development Kit For Urban Energy Modeling

Ben Polly

NREL

Urban building energy modeling methods

Christoph Reinhart

MIT

Panel Discussion

- Modeling approaches: physics vs data-driven
- **3D city models: data and standards; interoperability**
- Multi-physics co-simulation: tight vs loose coupling
- Uncertainty: quantification and reduction
- Multi-scale: city block, district, neighborhood, city, urban area

Questions and Discussion

Stanford

Tianzhen Hong Rishee Jain Joshua New Ben Polly Christoph Reinhart Lawrence Berkeley National Laboratory Stanford University Oak Ridge National Laboratory National Renewable Energy Laboratory MIT

Massachusetts Institute of Technology

