2020 Building Performance Analysis Conference and SimBuild co-organized by ASHRAE and IBPSA-USA

Seminar 24 –
Systems,
Components and
Loads Analysis

Brett Bass, University of Tennessee Oak Ridge National Laboratory bbass11@vols.utk.edu

Future Meteorological Year weather data from IPCC Scenarios

Learning Objectives

- Understand how climate models can be used to modify *.epw files for building simulation.
- Describe the impacts of changing weather conditions on building energy use in Chattanooga, TN.

ASHRAE is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to ASHRAE Records for AIA members. Certificates of Completion for non-AIA members are available on request.

This program is registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

2020 Building Performance Analysis Conference and SimBuild

Acknowledgements

Funding

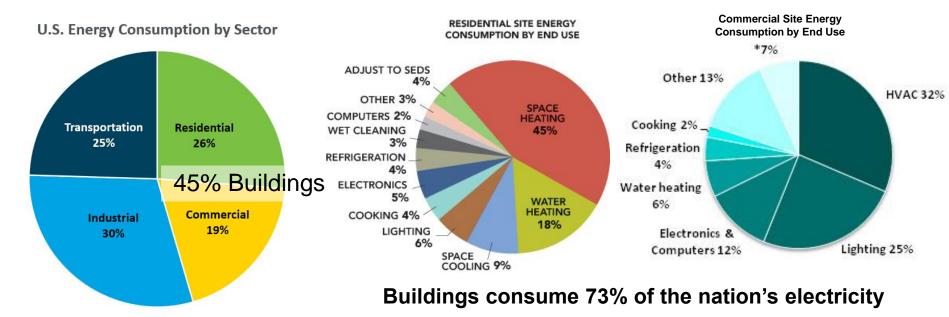
- U.S. Department of Energy
- National Nuclear Security Administration
- Building Technologies Office
- Office of Electricity
- Oak Ridge National Laboratory
- Oak Ridge Leadership Computing Facility HPC1
- Argonne Leadership Computing Facility HPC2

Team Members

- ORNL Joshua New
- Counties of Hamilton, Rhea, and Marion

Software

- EnergyPlus Software 1
- OpenStudio Software 2
- Automatic Building Energy Modeling (AutoBEM) Software 3
 - AutoGen Software 4
 - AutoSim Software 5



Outline/Agenda

- Building Energy/Building Energy Modeling
- Virtual EPB Project (Electric Power Board of Chattanooga, TN)
- Climate Modeling

Building Energy

Source: U.S. Energy Information Administration, January 2016 to January 2017, <u>Monthly Energy Review – Table 2.1</u>.

125 million U.S. buildings \$412 billion/yr energy bills (2019)

Goal of the DOE
Building Technologies Office:
30% energy reduction per sq. ft.
by 2030 compared to 2010 baseline

Building Energy Modeling – building descriptions + weather = estimated building energy consumption

Outline/Agenda

- Building Energy/Building Energy Modeling
- Virtual EPB Project (Electric Power Board of Chattanooga, TN)
- Climate Modeling

Building Energy Modeling - Process

Digital Twin of every U.S. building

Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important building inputs

Sensitivity Analysis

2. Time on world's #1 fastest high-performance machines

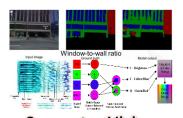
3. Identify and compare data sources for important inputs

	Short Title	
Summary	Satellite imagery, including panchromatic and multispectral images	
Data type	Image	
Company		
Website		
Temporal resolution	Cities - 3-11 times per week	
Spatial resolution	0.3 m	
Measure accuracy		
Cost	\$11 per sq. km	
Format	GeoTiff	
Mapping to building input variables	Building footprints	
Mapping to area properties	Vegetated areas, soud surface, buildings, parking lots	
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)	
Coverage of US	Over 10 million km ² of coverage of the contiguous US	
Orientation	Aerial	
Existing internal software	N/A	
Existing expertise	Remote sensing data analysis tool	
Restrictions	N/A	

Comparison Matrix

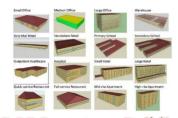
4. Establish partnerships and APIs for scalable data retrieval

Mine agradio


Mi

Databases

Demonstrate and stimulate GEB opportunities toward a sustainable built environment


HPC2, Software 4-5, Software 1-2

5. Algorithms to extract building properties

Computer Vision

6. Create BEM data and models

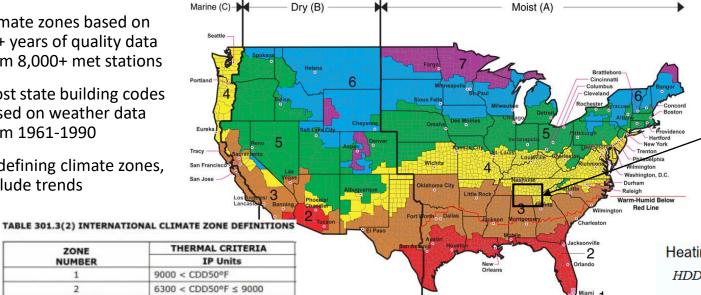
DOE Prototype Buildings

7. Make BEM info freely available online

Download BEM via street address

Use cases:

- Simulationinformed analysis
- Sales/market leads
- Utility program formulation
- Rate structures
- Resilience
- Automated financing
- Business model evaluation
- Climate model simulation


Outline/Agenda

- Building Energy/Building Energy Modeling
- Virtual EPB Project (Electric Power Board of Chattanooga, TN)
- Climate Modeling

Climate Modeling – Climate Zones

- Climate zones based on 18+ years of quality data from 8,000+ met stations
- Most state building codes based on weather data from 1961-1990
- Redefining climate zones, include trends

ZONE	THERMAL CRITERIA IP Units	
NUMBER		
1	9000 < CDD50°F	
2	6300 < CDD50°F ≤ 9000	
3A and 3B	4500 < CDD50°F ≤ 6300 AND HDD65°F ≤ 5400	
4A and 4B	CDD50°F ≤ 4500 AND HDD65°F ≤ 5400	
3C	HDD65°F ≤ 3600	
4C	3600 < HDD65°F ≤ 5400	
5	5400 < HDD65°F ≤ 7200	
6	7200 < HDD65°F ≤ 9000	
7	9000 < HDD65°F ≤ 12600	
8	12600 < HDD65°F	

Updated every 4 years (2021)

2017 - Climate Zone 0 (extremely hot): 10,800 < CDD 50°FInt'l Energy Conservation Code (IECC) adopts for 2018 code

Heating Degree Days:

Chattanooga

$$HDD = \sum (T_{base} - \langle T_i \rangle)^{+}$$

$$T_{base} = 18^{\circ}\text{C } (65^{\circ}\text{F})$$

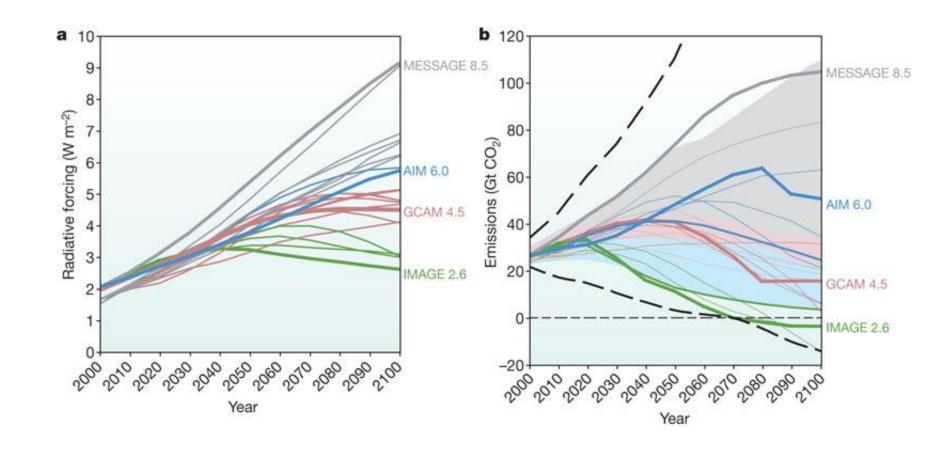
Cooling Degree Days:

$$CDD = \sum \left(< T_i > -T_{base} \right)^+$$

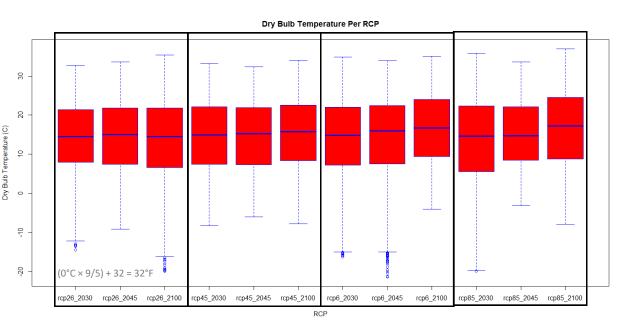
$$T_{base} = 10^{\circ}\text{C} (50^{\circ}\text{F})$$



Climate Modeling – Climate Zones


Clustering-based Climate Zones (K=5): HadGCM A1FI 2050

Clustering-based Climate Zones (K=5): HadGCM A1FI 2100



Climate Modeling – RCP Scenarios

Climate Modeling – Model Outputs

Project	CMIP5		
Model	MRI-CGCM3		
Modeler	Meteorological Research Institute		
Experiment	2.6, 4.5, 6, 8.5		
Time Frequency	3hr		
Modeling Realm	atmos		
Ensemble	r1i1p1		
Version	20120119		

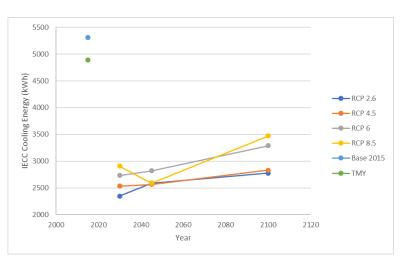
Variable Long Name	Variable Short Name	Unit
Near-Surface Air Temperature	tas	K
Surface Downwelling Shortwave Radiation	rsds	W m-2
Surface Diffuse Downwelling Shortwave Radiation	rsdsdiff	W m-2
Surface Air Pressure	ps	Pa
Near-Surface Specific Humidity	huss	1

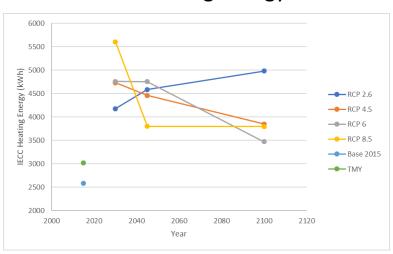
 $(0K - 273.15) \times 9/5 + 32 = -459.7$ °F

3.1549 W/m² = 1 BTU/Hour*Ft²

1 Pa = 0.00014503773 Psi

Climate Modeling – Energy Use/Demand


Total Energy Use


Aggregated Monthly Demand

Residential Cooling Energy Use

Residential Heating Energy Use

Next Steps

- Commercial Buildings simulation using FMY files for Entire US
- All US Climate Zones

Brett Bass bbass11@vols.utk.edu