

DISTRIBUTECH

January 28-30, 2020 • #DTECH2020

Title

Creating a Virtual Utility: Energy and Demand Opportunities via Automatic Building Energy Modeling (AutoBEM)

Presenter

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM Senior R&D Staff, Oak Ridge National Laboratory Oak Ridge, TN

Date

January 30, 2020

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM

Career

- 2009+ Oak Ridge National Laboratory, R&D staff
 - ETSD, Building Technology Research & Integration Center (BTRIC), Building Integration & Control Research Group
 - Climate Change Science Institute, Urban Dynamics Institute
- 2012+ The University of Tennessee, Joint Faculty

Education

•

- The University of TN, (2004-2009), Knoxville; Ph.D. Comp. Sci.
- Jacksonville State University, AL (1997-2001, 2001-2004)
 M.S. Systems&Software Design, double-B.S. Computer Science and Mathematics, Physics minor

Professional Involvement

- IEEE, Senior Member (top 8%)
- ASHRAE, defines international building codes
 - TC1.5, Computer Applications, Voting member and officer
 - TC4.2, Climatic Information, Voting member and officer
 - SSPC169, Weather Data for Building Design Standards (24% of page count of building code), Voting member
 - TC4.7, Energy Calculations, Voting member and officer
 - SSPC140 and ASHRAE Guideline 14 involvement

Certifications

- AEE, Lifetime Member
 - Certified Energy Manager
 - Certified Measurement & Verification
 Professional
- PMI, Member
 - Project Management Professional
- Certified Scrum Master

Artificial Intelligence

President's <u>National S&T Council</u>'s <u>Machine Learning</u> and <u>Artificial Intelligence</u> Subcommittee's <u>Artificial</u> <u>Intelligence Consortium</u>

Energy and Buildings Overview

CAK RIDGE

Motivation: BEM for every U.S. Building by 12/31/2020

Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important building inputs

	Small Office	Outpatien t	Large Offic	e Medium Offic	e Hospita	l Wa	rehous e	Small Ho	tel	Large hotel
puts	458	3483	1072	760	1955	3	333	1823		887
	Strip Mall	Retail	Quick Servio Restauran	te Full Service t Restaurant	Mid Rise Apt	e Higi	h Rise Apt	Seconda School	ry f	rimany School
6		Chiect		Field	Detault	Minimum	Maximum	Distribution T	nelGroup	Constra
g Parat	meters			Heating Sizing Factor	1.33	0.931	1.72	Diuniform Te	NAL COLOR	-
g Paran	meters	201700		Cooling Sizing Factor	1.33	3 0.931	1.72	Juniform th	at	
5		Core b	ottom Lights	Watts per Zone Floor Area	10.76	7.53	13.98	Buniform Re	at G000	4
9		Core_m	rid_Lights	Watts per Zone Floor Area	10.76	7.53	13.98	Buniform Re	at GOOD	4
		Core It	o Lights	Watts per Zone Floor Area	10.76	5 7.532	13.98	Bunform Re	at G000	t .
		1.000		Watts per Zone Floor Area	10.76	8 7.532	13.98	Buniform Re	pat G000	1
8		Perintet	er too ZN 4 Lights	Watts per Zone Floor Area	10.70	5 7.55	13.98	Buniform the	at G000	d
ricliqu	pment	Core b	ottom PlugMisc Equip	Watts per Zone Floor Area	10.76	7.55	13.98	Bundorm fic	at Goots	2
		1000310		Watts per Zone Floor Area	10.70	7.532	13.98	Buniform the	at Gooos	2
trictique	pment .	Core_b	ottom_Elevators_Equa	DesignLevel	32109.89011	122476.93	841742.0	Butiform fit	to	
rior Ligt	nta .	Exterior	Facade Lighting	Dasign Level	14804	4 10362.8	19245.	2juniform fit	at	
intitut	Ion DesignF	owRate FirstFlo	or_Plenum_infitration	Flow per Exterior Surface Ar	es 0.000303	20.00021	0 00039	Junitorm Re	at GOOD	3
				Flow per Exterior Surface Ar	** 0.000303	20 00021	0 00039	Suniform Re	en (2000)	3

Sensitivity Analysis

3. Identify and compare data sources for important inputs

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, soad surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Comparison Matrix

2. Time on world's #1 fastest HPC resources

4. Establish partnerships and APIs for scalable data retrieval

Satellite/Aerial StreetView

LIDAR

5. Algorithms to extract bldg properties

Computer Vision

6. Create OpenStudio, EnergyPlus models

DOE Prototype Buildings Goal: Stimulate private sector activity and academic research for a sustainable built environment

Download BEM via

street address

Potential use cases:

- Load management
- Utility program formulation
- Sales/market leads
- Incentive structure
- EaaS business model
- IGA walkthroughs
- Automated financing
- Simulation-

informed analysis

Acknowledgements

- U.S. Department of Energy
- National Nuclear Security Administration
- Oak Ridge National Laboratory
- Building Technologies Office
- Office of Electricity

What matters and how much?

- Sensitivity analysis for all building types
 - 80% of commercial buildings 16 climate zones, 16 building types, averaging 5.75 vintages
 - 281-4,617 building descriptors (e.g. thermostat, insulation level) were modified
 - Fractional Factorial (FrF2) resolution IV statistical design of experiments
- Summarize 768 lists of impactful variables
 - 254,544 annual simulations were completed on the nation's fastest supercomputer (Titan)
 - 216 Excel spreadsheets were created listing the energy and demand impacts of each building property
- Quantify Most Important Building Parameters

CAK RIDGE

National Laboratory

- Top 10 annual <u>energy (kWh)</u> and <u>demand/peak-shaving (kW)</u> variables for each of the 16 building
- Publication in-review with supplemental Excel spreadsheets for each bldg. type, location, and vintage for 47-470 variables each.

Keeping ORNL at the forefront in Computing: #1 Jaguar, Titan, Summit, Frontier?

Titan is the world's fastest buildings energy model (BEM) simulator

>500k building simulations in <1 hour

130M US buildings could be simulated in 2 weeks

8M simulations of DOE prototypes (270 TB)

CPU Cores	Wall-clock Time (mm:ss)	Data Size	EnergyPlus Simulations
16	18:14	5 GB	64
32	18:19	11 GB	128
64	18:34	22 GB	256
128	18:22	44 GB	512
256	20:30	88 GB	1,024
512	20:43	176 GB	2,048
1,024	21:03	351 GB	4,096
2,048	21:11	703 GB	8,192
4,096	20:00	1.4 TB	16,384
8,192	26:14	2.8 TB	32,768
16,384	26:11	5.6 TB	65,536
32,768	31:29	11.5 TB	131,072
65,536	44:52	23 TB	262,144
131,072	68:08	45 TB	524,288

Data Sources

- Database and image sources for urban model generation
 - Satellite and airborne imagery
 - Cartographic data
 - Ground level images
 - Elevation data
 - Building information databases
 - 3D building model databases

	Short Title		
Summary	Satellite imagery, including panchromatic and multispectral images		
Data type	Image		
Company			
Website			
Temporal resolution	Cities - 3-11 times per week		
Spatial resolution	0.3 m		
Measure accuracy			
Cost	\$11 per sq. km		
Format	GeoTiff		
Mapping to building input	Building footprints		
variables			
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots		
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)		
Coverage of US	Over 10 million km ² of coverage of the contiguous US		
Orientation	Aerial		
Existing internal software	N/A		
Existing expertise	Remote sensing data analysis tool		
Restrictions	N/A		
Comments			

Automatic Detection and Building Energy Model Creation (AutoBEM)

Data Sources

- Imagery (satellite, aerial)
- Street-level imagery
- Cartographic layers
 - Elevation, GIS
- Tax assessors
- Ranking of descriptors EE and Demand impacts (281–4,617 per building type)

Class	Object	Field	Default	Minimum	Maximum	Distribution	Type	Group	Constrai
Sizing:Parameters		Heating Sizing Factor	1.33	0.931	1.729	uniform	float		
Sizing:Parameters		Cooling Sizing Factor	1.33	0.931	1.729	uniform	float		
Lights	Core bottom Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_mid_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_top_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
.1		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Perimeter_top_ZN_4_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
ElectricEquipment	Core bottom PlugMisc Equip	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
ElectricEquipment	Core_bottom_Elevators_Equip	Design Level	32109.89011	22476.92	41742.86	uniform	float		
Exterior:Lights	Exterior Facade Lighting	Design Level	14804	10362.8	19245.2	uniform	float		
ZoneInfiltration:DesignFlowRate	FirstFloor_Plenum_Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
		Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
ZoneInfiltration:DesignFlowRate	TopFloor Plenum Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	

Data comparison matrix

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km2 of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A

Occupancy

PB (535 mi

Building footprints

Software Tools

- Occupancy (every 90m)
- Aerial best footprints
- Street height, type, WWR
- LiDAR geometry
- GIS database API
- Building type
- Model generator
- Fastest buildings simulator
- Web-based visual analytics

Result: Simulated buildings for any area of interest that match 15-minute electrical data more accurately than most manually created models

Building Footprints from Satellite Imagery

Open Competition Precision/Recall – 30/35 ORNL Current Precision/Recall – 60+/60+

Processing Street-Level Imagery (Jiangye Yuan)

3D Building Model Generation

Street-level imagery (Lexie Yang)

Façade Type

Windows (blue) Façade (green) Street/open (black) Other building (red)

Input image

Window-to-wall ratio

Model output

Prototype Buildings

CAK RIDGE National Laboratory

Oak Ridge National Laboratory

The University of Tennessee (2 days)

Digital Twin of a Utility

Use Case - Scenarios

 Preliminary building-specific estimates of energy, demand, and cost savings totaling \$11-\$35 million per year based on 9 scenarios prioritized by EPB.

1. Peak Rate Structure

- 1. Scenario #1a, Peak contributions for each building
- 2. Scenario #1b, Cost difference, in terms of dollars per year, for all building

2. Demand Side Management

- 1. Scenario #2a, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings.
- 2. Scenario #2b, Location-specific deferral of infrastructure cost savings potential

3. Emissions

1. Scenario #3a, Emissions footprints for each building

4. Energy Efficiency

- 1. Scenario #4a, Optimal retrofit list of independent ECMs
- 2. Scenario #4b, Optimal retrofit package of dependent ECMs

5. Customer Education

- 1. Scenario #5a, Percentile ranking of each building's EUI by building type and vintage
- 2. Scenario #5b, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings compared to AMY weather file scenario.

The AutoBEM technology "axe"

135,481 building models have been created and matched to EPB's PremiseID Limitations: limited building types, not calibrated, will improve quarterly QA/QC: will show how close our simulations are to 15-min data

2.3 million EnergyPlus building energy models using AutoBEM technology, Titan, cloud, and local servers to produce and analyze 13 TB of simulation data.

- 1. Generate baseline building OpenStudio (1.5-3h Amazon, 30h internal)
- 2. Run ECM measures OS Measure (30 mins AWS, 2h internal), Custom (1m AWS, 5m intl.)
- 3. Copy data to Titan 1 min (1.2GB tar.gz)
- 4. Submit to Titan 0-2 hours in queue
- 5. EnergyPlus simulation time 30-45 mins (5mins/sim = 1.4 years to simulate EPB on 1 core)
- 6. Data transfer 40 mins (160GB tar.gz)
- 7. Uncompress 10-15 mins
- 8. Reformat data 20-30 mins
- 9. Analysis 5-10 mins

Time for creation, annual simulation, and analyzing "all" EPB buildings 6.5 hours (6.1h –36.5h)

Virtual Utility – interactive results

60246	
ID	60246
DOE Building Type	SmallOffice
Num Floors	3
Percentile	87.70 %
Estimated wholesale vs retail cost	\$ 9797.07
CO2 emissions	222052.32 lbs/year
Smart Thermostat - 4F cost savings	\$ 1316.61
Smart Thermostat - 8F cost savings	\$ 2325.84
TMY->AMY Smart Thermostat - 4F cost savings	\$ 204.99
TMY->AMY Smart Thermostat - 8F cost savings	\$ 103.41
HVAC Efficiency ECM	\$ 1291.79
Gas HVAC ECM	\$ 4276.69
Gas Water Heater ECM	\$ 725.58
Heat Pump Water Heater ECM	\$ 476.95
Insulation ECM	\$ 736.27
Infiltration ECM	\$ 1577.50
Lighting ECM	\$ 2898.95

E=energy (MWh), D=demand (kW), [min,avg,max]

Lighting Efficiency (0.85 W/ft²) 1.

E=[77, 784, 6757]	D=[23, 999, 14410]

Infiltration (reduce 25%) 2. E=[40, 774, 4648]

D=[-0.8, 840, 14020]

3. Insulation (R16.12 to R28.57) E=[12, 204, 1600]

D=[1.9, 817, 13928]

4. Smart thermostat 2.2C (4F) pre-condition E=[-72, 1.4, 525] D=[-938, 918, 13907]

	17/4	Bldg_122	10017046	
-	ECM	Annual Electricity/Savings	Jan Demand/Savings	Feb Demand/Sa
	Baseline	41282530.14 kWh	8463.14 kW	8426.13 kW
11:00	Change Elec Base COP	0.09 kWh	155.27 kW	3232.78 kW
	Change Lighting Power Density	2796916.23 kWh	975.65 kW	3597.39 kW
4	Change Roof Insulation	688072.96 kWh	267.15 kW	3348.45 kW
1 ×	Change to Elec Water Heater	-24140.75 kWh	152.50 kW	3230.01 kW
~	Change to Gas Water Heater	0.09 kWh	155.27 kW	3232.78 kW
A GON	Change Space Infiltration	411236.67 kWh	176.59 kW	3436.11 kW
15	Smart Thermostat	14573.47 kWh	155.27 kW	4155.11 kW
140	4			•

Accuracy compared to real 15-minute data for each building

Emissions

ORNL posts

ummar

ORNL

Creates & maintains

virtual buildings

output

- Empirical Validation
 - 15-minute wholebuilding electrical for 178,368 bldgs
 - More accurate than BEM created by a human¹
 - ½ error of the average manuallycreated BEM when compared to measured data

Measures

- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11–35 million/year in potential savings identified via simulation-informed data and valuation for energy, demand, emissions, and cost impact to EPB and each customer for each building under five use cases covering nine monetization scenarios

Operational Use of BEM Simulations

¹Garrison, Eric, New, Joshua R., and Adams, Mark (2019). "Accuracy of a Crude Approach to Urban Multi-Scale Building Energy Models Compared to 15-min Electricity Use." Best PhD Student Paper award. In Proceedings of the ASHRAE Winter Conference, Atlanta, GA, Jan. 12-16, 2019. [PDF] [PPT]

Clustering of (real) 15-min electrical data

Load Factor summary

- Utility load factorLoadFactor = Total(kWh) / (kWpeak * numHours)
 - Close to 0, more opportunity for energy storage

	Vintage	Num Bldgs	% of all Bldgs	Avg. Load Factor
Re	2006	16217	9.1%	0.170
sident	2009	6357	3.6%	0.177
tial	2012	149247	84.0%	0.163
	Pre-1980	670	0.4%	0.405
	1980-2004	1064	0.6%	0.296
Comn	90.1-2004	1478	0.8%	0.255
nercia	90.1-2007	268	0.2%	0.338
1	90.1-2010	1224	0.7%	0.208
	90.1-2013	1808	1.0%	0.256

Building Type	Num Bldgs	% of all Bldgs	Avg. Load Factor
IECC Residential	171821	96.35%	0.164
Warehouse	799	0.45%	0.166
MidriseApartment	851	0.48%	0.261
SmallHotel	1557	0.87%	0.261
HighriseApartment	2068	1.16%	0.263
LargeHotel	408	0.23%	0.365
QuickServiceRest.	318	0.18%	0.380
Hospital	319	0.18%	0.399
Outpatient	59	0.03%	0.501

CAK RIDGE National Laboratory

Load Factor summary

CAK RIDGE

24

Virtual Utility integration

National Laboratory

Presenter

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM Senior R&D Staff, Oak Ridge National Laboratory newjr@ornl.gov

Virtual Utility via AutoBEM Modeling and Simulation Capturing building energy consumption

12

WWW WAR January 28-30, 2020 • #DTECH2020 INTERNATIONAL -