

Digital Twin of a Utility: Beyond Urban-Scale Building Energy Modeling

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM Senior R&D Staff Oak Ridge National Laboratory

Presented at: ETSD's June "Energy Talks" June 11, 2020

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM

Career

- 2009+ Oak Ridge National Laboratory, R&D staff
 - ETSD, Building Technology Research & Integration Center (BTRIC), Building Integration & Control Research Group
 - Climate Change Science Institute, Urban Dynamics Institute
- 2012+ The University of Tennessee, Joint Faculty

Education

•

- The University of TN, (2004-2009), Knoxville; Ph.D. Comp. Sci.
- Jacksonville State University, AL (1997-2001, 2001-2004)
 M.S. Systems&Software Design, double-B.S. Computer Science and Mathematics, Physics minor

Professional Involvement

- IEEE, Senior Member (top 8%)
- ASHRAE, defines international building codes
 - TC1.5, Computer Applications, Voting member and officer
 - TC4.2, Climatic Information, Voting member and officer
 - SSPC169, Weather Data for Building Design Standards (24% of page count of building code), Voting member
 - TC4.7, Energy Calculations, Voting member and officer
 - SSPC140 and ASHRAE Guideline 14 involvement

Certifications

- AEE, Lifetime Member
 - Certified Energy Manager
 - Certified Measurement & Verification
 Professional
- PMI, Member
 - Project Management Professional
- Certified Scrum Master

Artificial Intelligence

 President's National S&T Council's Machine Learning and Artificial Intelligence Subcommittee's Artificial Intelligence Consortium

Overview

- Context: ORNL's program, sponsor missions, why buildings?
- Buildings subprogram "Software Tools and Models" project overview
- Virtual EPB project (Electric Power Board of Chattanooga, TN)

Overview

- Context: ORNL's program, sponsor missions, why buildings?
- Buildings subprogram "Software Tools and Models" project overview
- Virtual EPB project

ORNL's BTO Subprogram Managers

EERE/Building Technologies Office (BTO)

CAK RIDGE

BERD Antonio Bouza

Ayyoub Momen

RBI Joan Glickman

Residential André Desjarlais

CBI **Amy Jiron**

Envelope

Diana Hun

BERD Erika Gupta

Standards

John Cymbalsky

BERD & CBI Amir Roth

Tools/Models Joshua New

Teja Kuruganti

Crosscut Mary Hubbard

Energy and Buildings Overview

Buildings consume 73% of the nation's electricity 80% of energy during peak hours

Goal of the DOE Building Technologies Office: 30% energy reduction per sq. ft. by 2030 compared to 2010 baseline

Office of Electricity vision: Harness innovation for a stronger, more resilient and reliable North American energy system while maintaining energy independence. Building Energy Modeling – building descriptions + weather = estimated building energy consumption

Grid-interactive Efficient Buildings (GEB) Vision: integration and continuous optimization of DERs for the benefit of building owners, occupants, and the grid.

Overview

- Context: ORNL's program, sponsor missions, why buildings?
- Buildings subprogram "Software Tools and Models" project overview
- Virtual EPB project

System/building integration: Research facilities (residential)

- Residential (~15 min. data)
 - Yarnell (37 sensors)
 - Wolf Creek (4x 356 sensors/building)
 - Campbell Creek (3x 144 sensors/bldg.)
 - Temperatures – Dryer
 - Plugs _
- Refrigerator
- Lights —
- Range _
- Dishwasher
- Heat pump air flow
- Washer
- Shower water flow
- Radiated heat Etc.

Measured performance of multiple HVACs (same building, occupancy, weather)

(~1,000 sensors @ 30-second resolution)

Professional Involvement – ASHRAE Climate Zones

- Climate zones based on 18+ years of quality data from 8,000+ met stations
- Most state building codes based on weather data from 1961-1990
- Redefining climate zones, include trends

CAK RIDGE

TABLE 301.3(2) INTERNATIONAL CLIMATE ZONE DEFINITION

ZONE	THERMAL CRITERIA
NUMBER	IP Units
1	9000 < CDD50°F
2	6300 < CDD50°F ≤ 9000
3A and 3B	4500 < CDD50°F ≤ 6300 AND HDD65°F ≤ 5400
4A and 4B	CDD50°F ≤ 4500 AND HDD65°F ≤ 5400
3C	HDD65°F ≤ 3600
4C	3600 < HDD65°F ≤ 5400
5	5400 < HDD65°F ≤ 7200
6	7200 < HDD65°F ≤ 9000
7	9000 < HDD65°F ≤ 12600
8	12600 < HDD65°F

Int'l Energy Conservation Code (IECC)

10,800 < CDD 50°F

adopts for 2018 code

Cooling Degree Days: $CDD = \sum (\langle T_i \rangle - T_{base})^+$ $T_{base} = 10^{\circ}C (50^{\circ}F)$

Climate Change Impacts

CAK RIDGE

Introduction to Building Energy Modeling

\$100+M, 1995-?

EnergyPlus

OpenStudio

Free, open-source (GitHub), free support community (unmethours.com) for Q&A forum, propose/upvote feature requests 100-2,000 building improvements

Optimal Return on Investment (for building energy savings)

Individual Energy Conservation Measures (ECMs) (5-20% savings) vs. Holistic optimization (30-50% savings)

ORNL at the forefront in Computing: #1 Jaguar, Titan, Summit, Frontier?

Theta is the world's fastest buildings energy model (BEM) simulator	
>500k building simulations in <1 hour	
130M US buildings could be simulated in 2 weeks	
8M simulations of DOE prototypes (270 TB)	

ALCC Award 19M core-hours June 2, 2020

OLCF's Titan

CPU Cores	Wall-clock Time (mm:ss)	Data Size	EnergyPlus Simulations
16	18:14	5 GB	64
32	18:19	11 GB	128
64	18:34	22 GB	256
128	18:22	44 GB	512
256	20:30	88 GB	1,024
16,384	26:11	5.6 TB	65,536
32,768	31:29	11.5 TB	131,072
65,536	44:52	23 TB	262,144
131,072	68:08	45 TB	524,288

ALCF's Theta

CPU Cores	Wall-clock Time (mm:ss)	Data Size	EnergyPlus Simulations
57,344	20:44	440 GB	229,376
114,688	28:20	880 GB	458,752

MLSuite: HPC-enabled suite of Artificial Intel.

- Linear Regression
- Feedforward Neural Network
- Support Vector Machine Regression
- Non-Linear Regression
- K-Means with Local Models

- Self-Organizing Map with Local Models
- Regression Tree (using Information Gain)
- Time Modeling with Local Models
- Recurrent Neural Networks

CAK RIDGE National Laboratory Acknowledgments:

Dr. Lynne Parker (Deputy Chief Technology Officer of the US, White House Office of Science and Technology Policy; previously Deputy Director of White House's Al Initiative);

Dr. Richard Edwards (doctoral student, now Amazon's ad analytics)

Overview

- Context: ORNL's program, sponsor missions, why buildings?
- Buildings subprogram "Software Tools and Models" project overview
- Virtual EPB project

Technology Adoption Rates Accelerate

Wireless Broadband IoT Age Is Upon Us

Papal Conclave 2005

Wireless Broadband IoT Age Is Upon Us

Papal Conclave 2013

Technical overview

Digital Twin of every U.S. building

Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important building inputs

	Small Office	Outpa t	itien	Large Office		Medium Office	Hospita	l Wa	ehous e	Small I		Large hotel	
nputs	458	348	13	1072		760	1955		33	182	3		887
	Strip Mall	Reta	ail	Quick Servic Restaurant	e t	Full Service Restaurant	Mid Ris Apt	e Hig	n Rise Apt	Secon Scho	dary ol	P S	rimar ichoo
855	15 by Paramaters		bjøct		Field		Default	Minimum	Maximum	Distribution	Type	Group	Constr
ting Para ting Para	meters				Heatn	g Sizing Factor g Sizing Factor	1.3	3 0.93	1.72	Juniform	float float		
pHs .		C	ore_be	tom Lights	Watts	per Zone Floor Area	10.7	8 7.53	13.988	uniform	Ficet	Q0001	
2169		0	ore mi	E_Lights	Watta	per Zone Floor Area	10.7	6 7.633	13.988	Luniform	Toat	G0001	
phs		c	lore_top	Lights	Watte	per Zone Floor Area	10.7	5 7.53	13.984	Juniform	ficat	G0001	
		5		Station and State	Vista	per Zone Floor Area	10.7	8 7.53	13.988	Suniform	ficet	GOODT	
215		P	erimete	r_top_ZN_4_Lights	Watts	per Zone Floor Area	10.7	7.55	13.98	Muniform	ficat	G0001	
REPEEqu	pment	- 0	ore_be	tom_PhigMat_Equip	VV8035	per Zone Ploor Area	10.7	9 7.53	13.964	M Watorian	Tool		
					Watts-	per Zone Hoor Area	10.7	0 7.53.	13.868	sumonn	Ticat	00002	
REACEON	generat		ore_po	tow_Fienalous_Ednib	Uesg	S LOVOI	35108.8901		41/42.8	Susaca	TICOL		
senor Lig			otternor P	-acade Ligning	Deed	I LOVOI	1480	4 100823	19249.2	CONTROLING.	104		
neinfiltrat	Ion:DesignFl	ONRate F	irstFloo	Plenum_inflitration	Flows	er Exterior Surface Area	0.00038	20.00021	0.000393	Junitorm	Ticat	G0003	
					Flows	er Exterior Surface Area	0.00030	20.00021	0.000393	unitorm	fort	(00003	

Sensitivity Analysis

2. Time on world's #1 fastest high-performance machines

3. Identify and compare data sources for important inputs

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Commente	

Comparison Matrix

4. Establish partnerships and APIs for scalable data retrieval

5. Algorithms to extract building properties

Computer Vision

6. Create OpenStudio & EnergyPlus models

DOE Prototype Buildings Demonstrate and stimulate GEB opportunities toward a sustainable built environment

street address

Use cases:

- Simulationinformed analysis
- Sales/market leads
- Utility program
 formulation
- Rate structures
- Resilience
- Automated financing
- Business model
 evaluation

Acknowledgements

- EPB/ORNL partnership
- U.S. Department of Energy
 - EERE/Building Technologies Office
 - Office of Electricity
 - National Nuclear Security Administration
- Oak Ridge National Laboratory

Virtual EPB – in a nutshell

"A digital twin of every building"

- Capability: quantify energy, demand, emissions, and \$ (wholesale and retail) savings potential for EPB's top-priority building technologies
 - Geospatial: Building-specific, aggregated to any area of interest
 - Temporal: 15-min, monthly, annual
- Final Deliverable: Simulation-informed data and valuation for each building in EPB's service area for 5 prioritized use cases covering 9 monetization scenarios
 - Database of savings for business intelligence integration
 - Web-based visualization and reports of saving potential

CAK RIDGE National Laboratory

21

TOTAL DOE INVESTMENT - \$1.14M (40% OE, 60% BTO)

Overview – uses and building technologies

Operational Use of BEM Simulations

Use Cases

- Peak rate structure
- Demand-side mgmt
- Emissions
- Energy efficiency
- Customer education

Measures

- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11–35 million/year in potential savings identified via simulation-informed data and valuation for *energy, demand, emissions, and cost impact* to EPB and each customer for each building under five use cases covering nine monetization scenarios

CAK RIDGE

Use Case - Scenarios

 Building-specific estimates of energy, demand, and cost savings totaling **\$11-\$35 million per year** based on 9 scenarios prioritized by EPB.

1. Peak Rate Structure

- 1. Scenario #1a, Peak contributions for each building
- 2. Scenario #1b, Cost difference, in terms of dollars per year, for all building

2. Demand Side Management

- 1. Scenario #2a, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings.
- 2. Scenario #2b, Location-specific deferral of infrastructure cost savinas potential

3. Emissions

1. Scenario #3a, Emissions footprints for each building

4. Energy Efficiency

- 1. Scenario #4a, Optimal retrofit list of independent ECMs
- 2. Scenario #4b, Optimal retrofit package of dependent ECMs

5. Customer Education

- 1. Scenario #5a, Percentile ranking of each building's EUI by building type and vintage
- 2. Scenario #5b, Monthly peak demand savings, annual energy savings, and dollar savings based on rate structure for all buildings compared to AMY weather file scenario.

Energy Conservation Measure: Change Lighting Power Density

Reduce lighting power density assuming all lighting fixtures are LED.

LPD: 0.85 W/sf (IECC-2012).

Energy Conservation Measure: Insulate Roof, Seal space

Improve airtightness of the building envelope (i.e. reduce the gaps at the doors and windows).

Reduce by 25% (EnergyStar whole-house).

Adding insulation layer to the existing roof structures following the latest ASHRAE 90.1 Appendix G guidelines.

R-value: 16.12 (avg) to 28.57 (IECC-2012).

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.dea5.net%2Ftips-on-how-to-choose-the-best-local-insulationspecialist%2F&psig=AOvVaw0jfTQxBkhHEpxCrh7FOIcU&ust=1591106479177000&source=images&cd=vfe&ved=0CAIQjRxqFwo TCIjoptbj4OkCFQAAAAAAAAAABB5

Energy Conservation Measure: Adjust Thermostat Setpoint (4-8°F)

Buildings as thermal batteries

Pre-conditioning the space by 4°F two hours before, or 8°F four hours before when peak demand hour occurs.

Measure: Change to Gas Water Heater or HVAC

CAK RIDGE

27

BAK

https://i.pinimg.com/originals/27/e4/48/27e44826faf30db3ca455e7de2fa27a9.gif

ECM Overview

#	Description	Category	Value	Source
1	Insulate Roof	Envelope	R-16.12 to R-28.57	IECC-2012
2	Reduce Space Infiltration	Envelope	Reduce 25% from vintage	EnergyStar whole- house
3	Adjust Thermostat Setpoint (4F)	HVAC	4°F 2 hrs prior to peak	EPB
4	Smart Thermostat (8F)	HVAC	8°F 4 hrs prior to peak	EPB
5	Change Electric HVAC COP	HVAC	COP to 3.55 (heating) 3.2 (cooling)	IECC-2012
6	Change Lighting Power Density	Lighting	LPD 0.85 W/ft ²	IECC-2012
7	Change to Gas Water Heater	Water	Efficiency 80% (assumes electric)	IECC-2012
8	Change to Gas HVAC	HVAC	Efficiency 80% (assumes electric)	IECC-2012

Automatic Detection and Building Energy Model Creation (AutoBEM)

Data Sources

- Imagery (satellite, aerial)
- Street-level imagery
- Cartographic layers
 - Elevation, GIS
- Tax assessors
- Ranking of descriptors
 EE and Demand impacts
 (281–4,617 per building type)

Class	Object	Field	Default	Minimum	Maximum	Distribution	Type	Group	Constraint
Sizing:Parameters		Heating Sizing Factor	1.33	0.931	1.729	uniform	float		
Sizing:Parameters		Cooling Sizing Factor	1.33	0.931	1.729	uniform	float		
Lights	Core_bottom_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_mid_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_top_Lights	Watts per Zone Floor Area	10.76	7.532	13,988	uniform	float	G0001	1
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Perimeter_top_ZN_4_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
ElectricEquipment	Core bottom PlugMisc Equip	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
ElectricEquipment	Core_bottom_Elevators_Equip	Design Level	32109.89011	22476.92	41742.86	uniform	float		
Exterior:Lights	Exterior Facade Lighting	Design Level	14804	10362.8	19245.2	uniform	float		
ZoneInfiltration:DesignFlowRate	FirstFloor_Plenum_Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
		Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
ZoneInfiltration:DesignFlowRate	TopFloor Plenum Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A

Facade

Particular and the second seco

Building footprints

Occupancy

Software Tools

- Occupancy (every 90m)
- Aerial best footprints
- Street height, type, WWR
- LiDAR geometry
- GIS database API
- Building type
- Model generator
- Fastest buildings simulator
- Web-based visual analytics

Result: Simulated buildings for any area of interest that match 15-minute electrical data more accurately than most manually created models

What matters and how much?

- Sensitivity analysis for all building types
 - 80% of commercial buildings 16 climate zones, 16 building types, averaging 5.75 vintages
 - 281-4,617 building descriptors (e.g. thermostat, insulation level) were modified
 - Fractional Factorial (FrF2) resolution IV statistical design of experiments
- Summarize 768 lists of impactful variables
 - 254,544 annual simulations were completed on the nation's fastest supercomputer (Titan)
 - 216 Excel spreadsheets were created listing the energy and demand impacts of each building property
- Quantify Most Important Building Parameters
 - Top 10 annual <u>energy (kWh)</u> and <u>demand/peak-shaving (kW)</u> variables for each of the 16 building
 - Publication in-review with supplemental Excel spreadsheets for each bldg. type, location, and vintage for 47-470 variables each.

Data Sources

• Database and image sources for urban model generation

- Satellite and airborne imagery
- Cartographic data
- Ground level images
- Elevation data
- Building information databases
- 3D building model databases

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input	Building footprints
variables	
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Platform capabilities – imagery and population updates, challenges

Building Footprints

LiDAR acquisition date can lead to discrepancies

HVAC Detection

Aerial HVAC classification requires higherresolution imagery (~10cm/pixel)

LandScan Population in Utility's Area

Processing Street-Level Imagery (Jiangye Yuan)

3D Building Model Generation

Prototype Buildings

CAK RIDGE National Laboratory

Oak Ridge National Laboratory

The University of Tennessee (2 days)

Results: Digital Twin of a Utility (every building)

EPB: 178,368 building energy models Validated against 15-minute electricity (colored by modeled EUI)

http://bit.ly/virtual

2310970000 ID: 2310970000 DOE Building Type: MediumOffice DOE Vintage: 2012 Num Floors: 4 Square Footage: 1,593,808 Annual Energy Usage: 11,084,478 kWh Annual Aggregated Demand: 20,308 kW EUI: 7 kWh/ft^2 CO2 emissions: 10,998,806 lbs Estimated wholesale vs retail cost: \$564,480

Savings

and the a second to see the

Annual Energy Demand Savings Savings 1: Env: Insulate Roof 276,964 kWh 825 kW 2.5% 4.1% 2: Env: Reduce Space 35.082 kWh 297 kW filtration 0.3% 1.5% 3: HVAC: Adjust Thermostat Setpoint (4F) 6,147 kW -6,949 kWh -0.1% 30.3% STIFT.

CAK RIDGE

37

Capabilities – flexible digital twin

178,368 building models have been created and matched to EPB's PremiseID

Limitations: limited building types, not calibrated, will improve quarterly QA/QC: will show how close our simulations are to 15-min data

3+ million EnergyPlus building energy models using AutoBEM technology, Titan, cloud, and local servers to produce and analyze 15+ TB of simulation data.

- 1. Generate baseline building 1.5-3h Amazon, 30h internal
- 2. Run ECM measures OS Measure (30 mins AWS, 2h internal), Custom (1m AWS, 5m intl.)
- 3. Copy data to Titon 1 min (1.2GB tar.gz)
- 4. Submit to Titan 0-2 hours in queue
- 5. Simulation time 30-45 mins (5mins/sim = 1.4 years to simulate EPB on 1 core)
- 6. Data transfer 40 mins (160GB of tar.gz)
- 7. Uncompress 10-15 mins
- 8. Reformat data 20-30 mins (pickle)
- 9. Analysis 5-10 mins (64-node AWS instance with solid state drives)

Time for creation, annual simulation, and analyzing "all" EPB buildings 6.5 hours (6.1h –36.5h) ; 3.7 ECMs for every building simulated in 28.3 mins!

Empirical Validation

• Hamilton, Rhea, Marion county tax assessor data

• Created map to DOE building types, building properties

STANDARD LAND USE CODES

CODES			Size		Story		Land Use		Heat Tune	
subdivision 100 RESIDENTIAL	division 110 Household Units	category 111 One Family Household Unit 112 Two Family Household Unit (Du	Adjusted Area	%	Height	%	code	%	Description	%
		113Multi-Family (4-9 unit Apartm114Two Family Units (Duplex Owne	1,000-1,499	32.6	1	74.5	RESID	82.3	CENTRL HEAT&	75.4
		115 Triplex 116 Condominium,	1,500-1,999	22.1	2	17.4	COMM	7.9	<empty></empty>	12.6
	120 Group Quarters	117 Apartment: 10 units or more Rooming and boarding houses, fratern	2,000-2,499	12.2	1.5	7.1	MFG	4.7	GRAVITY	7.4
	province de la companya en la constante en la c	lodgings. Nursing homes, college dor homes, religious quarters, orphanage	5,000+	9.8	3	0.6	IN	2.4	NO HVAC	3.4
	130 (Reserved for future use)		500-999	8.3	>7	0.6	AG	1	FORCED HOT A	0.9
	140 Mobile Homes	141 Mobile Homes (Single Trailer) 142 Mobile Home Park	2,500-2,999	6.6	2.5	0.1	EX	0.8	GHA	0.1
	150 Transient Lodging	143 Mobile Home Park (Privately Owned)	3,000-3,499	3.8	4	0.1	DU	0.4	CENTRAL A/C	0.1
200 MANUFACTURING	210 Food Manufacturing	noters, courist courts, rouges, note	3 500 3 000	21	5	0.0	FID	0.2	PEV CVCLE UN	0.0
	220 Textile Mill Products Manufacturing		3,500-5,999	2.1	5	0.0	EID	0.2	KEV CICLE UN	0.0
	230 Apparel Manufacturing		4,000-4,499	1.3	6	0.0	RLS	0.1	CENT HEAT &	0.0
	240 Lumber and Wood Products Manufacturing		1 500 1 000	0.0	7	0.0	DCMT	0.1	NONE	0.0
	250 Furniture and Fixtures Manufacturing		4,300-4,999	0.8	/	0.0	DUNI	0.1	NONE	0.0
	270 Printing, Publishing and Allied Industries		Roof Structure	~	Roof Cover	~			Prime/Second	~
	280 Chemicals and Allied Products		Description	%	Description	%	Decade	%	W-II Description	%
	290 Petroleum Refining Manufacturing		Description		Description				wan Description	
	290 Petroleum Tank Farms		HIP/GABLE	86.0	SHINGLE ASPH	81.9	2000	137	<fmpty></fmpty>	419
	290 Paving and Roofing Materials		III/OADEE	00.0	SHINGEL ASI II	01.7	2000	15.7		41.7
	291 Paving Equipment		WOOD RAFTERS	2.8	SHEET METAL	3.5	1960	13.6	WOOD FR W SH	15.5
300 MANUFACTURING	310 Ancillary to Manufacturing 311 office Building Ancillary to Manufacturing		BAR IOISTS	24	BUILTUP	31	1070	13.5	VINVI	13.5
	312 Warehouse Building Ancillary to		DAR JOISTS	2.4	BUILI-UI	5.4	1970	15.5	VIIVIL	15.5
	313 Service or Parking Building Ancillary to		OPEN STEEL S	2.1	METAL	2.9	1990	11.6	BRICK	13.1
	314 Retail or wholesale ancillary to		STEEL TRUSS	1.8	<fmptv></fmptv>	17	1050	114	WOOD FR ASBT	27
	320 Stone, Concrete and Glass Products	Flatglass, glass containers, cement,	STEEL IKUSS	1.0		1./	1950	11.4	WOOD I'K ASB1	2.1
	330 Iron, Steel and Metal Manufacturing	Blast Furnaces, steel works rolling	<empty></empty>	1.7	ASPHALT SHIN	1.7	1980	10.8	CONC BLK PLA	1.6
	340 Fabricated Metal Products Manufacturing	Guns and accessories, general indust	NONE	0.0	CODDUC ATED M	1.2	1040	76		1.4
	Instruments, Photographic and Ontical Goods,	instruments and lensest onbthalmic q	NONE	0.8	CORRUGATED M	1.5	1940	/.0	ALUMINUM	1.4
	Watch and Clocks Manufacturing	operated devices, dental equipment.	WOOD TRUSS	0.6	NONE	0.9	2010	6.9	HARDIE BOARD	1.4
	390 Miscellaneous Manufacturing.	391 Jewelry, silverware and plated war	FLAT/SHED	0.5	ROLL COMP	0.6	1930	4.8	BRICK VENEER	1.2
	n na ga ga sanag manananan dan kabupatén ku	392 musical instruments and parts 393 Toys, amusement, sorting and athle	GAMBREL	0.3	BUILT UP T &	0.4	1920	3.8	CORRUGATED M	1.2

Accuracy compared to real 15-minute data for each building

- Empirical Validation
 - 15-minute wholebuilding electrical for 178,368 bldgs
 - More accurate than BEM created by a human¹

ORNL posts

ummar

ORNL

Creates & maintains

virtual buildings

• ¹/₂ error of the average manuallycreated BEM when compared to measured data

Measures

- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11–35 million/year in potential savings identified via simulation-informed data and valuation for energy, demand, emissions, and cost impact to EPB and each customer for each building under five use cases covering nine monetization scenarios

Operational Use of BEM Simulations

¹Garrison, Eric, New, Joshua R., and Adams, Mark (2019). "Accuracy of a Crude Approach to Urban Multi-Scale Building Energy Models Compared to 15-min Electricity Use." Best PhD Student Paper award. In Proceedings of the ASHRAE Winter Conference, Atlanta, GA, Jan. 12-16, 2019. [PDF] [PPT]

Load Factor summary

CAK RIDGE National Laboratory

41

AutoBEM data in action

Annual Energy Savings

improvement iype (group)

AutoBEM data in action

Annual Energy Savings Monthly Demand Savings Annual Energy Savings_D Monthly Demand Savings

Monthly Demand Savings

																								Ser	vice	e Add	dres	5																						
Improvement Type (group)		House 1									F	10	US	e	2							Ho	JU	JSE	Э (3			Business 1											Business 2										
Smart thermostat 4 degree change	10 M 0 -10	-23	0.0	1.5	1.4	1.1	0.7	6.0	-0.6	-0.2	-2.2	-12	1.2	-0.2	0.9	0.7	0.4	1.0	-0.4	0.5	-2.3	1.0	-0.8	1.8	51	1.3	0.7	1.0	1.6	0.0	-3.1	4.4	-0.8	0.0	2.1	2.0	11	1.6	-0.6	-0.6	8.1	4.6	4.5	5.0	0.0	11	0.5	0.8	1.0	-0.7
Smart Thermostat 8 degree Change	10 0 -10	-0.9	0.5	1.5	1.8	2.2	=	1.4	10.2	0.2	11	2.0-	2.1	1.0	113	1.6	0.7	1	101	1.0-	-0.5	1.0	-0.2	1.8	0.0	2.6	1.2	1.6	1.6	0.4	-0.8	0.2	0.0	10.7	2.9	2.8	1.8	2.0	0.6	1.0	9.9	6.9	-0.6	2.1	0.4	1.5	0.9	1.3	1.2	TO
Smart Water Heater	10 M 0 -10	-2.3	-1.0	0.0	0.0	0.0	0.0	0.0	1.1	-0.3	0.0	0.1	1.1	0.0	1.0	0.0	1.0	0.1	4.1	1.2	0.0	0.0	1.1	0.0	0.0	0.0	-1.0	0.0	0.0	1.4	-2.1	0.0	11	0.0	0.0	0.0	1.0	1.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Jan Demand sarings (kW)	Mar Demand savings (kW)	Apr Demand sarings (kW) May Demand savings (kW)	Jud Demand sarings (kW)	Jun Demand savings (kW)	Aug Demand savings (kW)	Sep Demand sarings (kW)	Nov Demand sarings (kW)	Dec Demand savings (kW)	Jan Demand sarings (kW)	Mar Demand savings (KW)	Apr Demand savings (kW)	May Demand sarings (kW)	Jul Demand savings (kW)	Jun Demand savings (kW)	Aug Demand savings (KW)	Sep Demand savings (KW)	Nov Demand savings (kW)	Dec Demand savings (kW)	Jan Demand savings (kW)	Feb Demand savings (kW)	Mar Demand savings (kW)	Apr Demand sarings (kW) May Demand savings (kW)	Jud Demand savings (kW)	Jun Demand savings (kW)	Aug Demand savings (kW)	Sep Demand savings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Jan Demand savings (kW)	Feb Demand savings (kW)	Mar Demand savings (kW)	May Demand sarings (kW)	Jul Demand sarings (kW)	Jun Demand savings (kW)	Aug Demand sarings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Dec Demand sarings (kW)	Jan Demand savings (kW)	Feb Demand sarings (kW)	Mar Demand sarings (kW)	May Demand savings (KW)	hid Demand savings (KW)	Jun Demand savings (kW)	Aug Demand savings (kW)	Sep Demand savings (kW)	Oct Demand savings (kW)	Nov Demand sayings (kW) Dec Demand sayings (kW)

CAK RIDGE

AutoBEM data in action – EPB Dashboards

Potential Demand Reduction from Buildings in a Simulated Utility

4°F pre-conditioning shows an average **13%** peak demand reduction across 178,368 residential and commercial buildings.

8°F breakdown of quartiles by **building type** for each calendar month with medium offices and strip malls as high, but timesensitive, value deployments.

Analysis: Demand Reduction Breakdowns

8°F breakdown of quartiles by **vintage** (age) for each calendar month shows slight increases with newer vintages.

Results (by building type)

46

Tech Commercialization Fund with Google

- Environmental Insights Explorer
 - <u>https://insights.sustainability.goo</u>

ENVIRONMENTAL INSIGHTS EXPLORER

Impact begins with insights. Explore data to make informed decisions and inspire action.

47

Discussion

HPC Tools for Modeling and Simulation Capturing building energy consumption

Joshua New, Ph.D., CEM, PMP, CMVP, CSM Subprogram manager for Software Tools & Models Building Technologies Research and Integration Center (BTRIC) Oak Ridge National Laboratory

newjr@ornl.gov

Results (by vintage)

Clustering of (real) 15-min electrical data

Load Factor summary

- Utility load factorLoadFactor = Total(kWh) / (kWpeak * numHours)
 - Close to 0, more opportunity for energy storage

	Vintage	Num Bldgs	% of all Bldgs	Avg. Load Factor
Residential	2006	16217	9.1%	0.170
	2009	6357	3.6%	0.177
	2012	149247	84.0%	0.163
Commercial	Pre-1980	670	0.4%	0.405
	1980-2004	1064	0.6%	0.296
	90.1-2004	1478	0.8%	0.255
	90.1-2007	268	0.2%	0.338
	90.1-2010	1224	0.7%	0.208
	90.1-2013	1808	1.0%	0.256

Building Type	Num Bldgs	% of all Bldgs	Avg. Load Factor
IECC Residential	171821	96.35%	0.164
Warehouse	799	0.45%	0.166
MidriseApartment	851	0.48%	0.261
SmallHotel	1557	0.87%	0.261
HighriseApartment	2068	1.16%	0.263
LargeHotel	408	0.23%	0.365
QuickServiceRest.	318	0.18%	0.380
Hospital	319	0.18%	0.399
Outpatient	59	0.03%	0.501

