

Chattanooga - The Smart City - How a National Laboratory and a City heralded a digital transformation: The Electric Grid and Buildings

William (Bill) Copeland Director, Business Intelligence Electric Power Board of Chattanooga, TN (EPB)

Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM, IREE Senior R&D Staff Oak Ridge National Laboratory

Presented for: Global Smart Cities Council Plenary Session

Recorded: October 8, 2020

ORNL is managed by UT-Battelle LLC for the US Department of Energy

ENERGY and INTERNET Networks

Control and Manage Load Factor Is The Key

AUTOBEM = MANAGE LOAD FACTOR

Utility of the Future at the Customer Premise

Energy and Buildings Overview

Buildings consume 73% of the nation's electricity 80% of energy during peak hours

Goal of the DOE Building Technologies Office: 30% energy reduction per sq. ft. by 2030 compared to 2010 baseline

Office of Electricity vision: Harness innovation for a stronger, more resilient and reliable North American energy system while maintaining energy independence. Building Energy Modeling – building descriptions + weather = estimated building energy consumption

Grid-interactive Efficient Buildings (GEB) Vision: integration and continuous optimization of DERs for the benefit of building owners, occupants, and the grid.

Acknowledgements

- EPB/ORNL partnership
- U.S. Department of Energy
 - EERE/Building Technologies Office
 - Office of Electricity
 - National Nuclear Security Administration
- Oak Ridge National Laboratory

Technical overview

Digital Twin of every U.S. building

Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important building inputs

	Small Office	Outp	atien t	Large Office		Medium Office	Hospita	l Wa	ehous e	Small		Large hotel	
nputs	458	34	83	1072		760	1955		33	18	23		887
	Strip Mall	Ret	tail	Quick Servic Restaurant	e t	Full Service Restaurant	Mid Ris Apt	Hig	n Rise Apt	Seco Sch	ndary ool	Р 9	'rimar School
855		-	Object		Field	and a second second	Default	Minimum	Maximum	Distributio	n Type	Group	Constra
ting Para	maters				Heatn	g Sizing Factor	1.3	0.931	1.72	unitorm .	float		
cing Para	meters				Coolin	g Sizing Factor	1.3	0.931	1.729	Huniform	ficat		
phis			Core_bo	tom Lights	Watts	per Zone Floor Area	10.7	7.53	13.988	Suniform	Ficet	G0001	
2166			Core mi	E Lights	Watta	per Zone Floor Area	10.7	7.532	13.988	Runiform.	Tioat	G0001	
phis .			Core top	Lights	Watte	per Zone Floor Area	10.7	7.55	13.984	lunitorm	ficat	G0001	
					Watts:	per Zone Floor Area	10.7	7.5%	13.988	lunitorm	ficet	G0001	
dia .			Perimete	r top ZN 4 Liphts	Watta.	per Zone Floor Area	10.7	7.55	13.984	landorn	ficat	G0001	
etricliqu	Inemail	1	Core be	tom PlugMist Equip	Visite	per Zone Floor Area	10.7	7.55	13.964	Lunitorm	ficat	G0002	
					Watts	per Zone Floor Area	10.7	7.53	13.988	Bunitorm	ficet	G0002	
ectric Equi	Ipment		Core bo	tom Elevators Equip	Cesior	Lovel	32109.8901	22476.83	41742.8	Sun/form	ficat		
nerior Lig	109		Exterior P	Facade Lighting	Desig	n Cavel	1480	10362.8	19245.2	Cunitorm.	ficat		
neinfitration DesignFlowRate			FirstFloo	_Plenum_infitration	Flowp	er Exterior Surface Area	0.00038	20.00021	0.000393	unitorm	Ticat	G0003	
					Flow p	er Exterior Surface Area	0.00030	12000001	0.00039:	mohnut	ficet	G0003	

Sensitivity Analysis

2. Time on world's #1 fastest high-performance machines

3. Identify and compare data sources for important inputs

	20 m l
	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, soad surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Comparison Matrix

4. Establish partnerships and APIs for scalable data retrieval

5. Algorithms to extract building properties

Computer Vision

6. Create OpenStudio & EnergyPlus models

DOE Prototype Buildings

Demonstrate and stimulate GEB opportunities toward a sustainable built environment

street address

Use cases:

- Simulationinformed analysis
- Sales/market leads
- Utility program formulation
- Rate structures
- Resilience
- Automated financing
- **Business model** evaluation

Overview – uses and building technologies

Operational Use of BEM Simulations

Use Cases

- Peak rate structure
- Demand-side mgmt
- Emissions
- Energy efficiency
- Customer education

Measures

- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11–35 million/year in potential savings identified via simulation-informed data and valuation for *energy, demand, emissions, and cost impact* to EPB and each customer for each building under five use cases covering nine monetization scenarios

CAK RIDGE

Energy Conservation Measure: Insulate Roof, Seal space

Improve airtightness of the building envelope (i.e. reduce the gaps at the doors and windows).

Reduce by 25% (EnergyStar whole-house).

Adding insulation layer to the existing roof structures following the latest ASHRAE 90.1 Appendix G guidelines.

R-value: 16.12 (avg) to 28.57 (IECC-2012).

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.dea5.net%2Ftips-on-how-to-choose-the-best-local-insulationspecialist%2F&psig=AOvVaw0jfTQxBkhHEpxCrh7FOIcU&ust=1591106479177000&source=images&cd=vfe&ved=0CAIQjRxqFwo TCljoptbj4OkCFQAAAAAdAAAABB5

https://www.idi-insulation.com/wp-content/uploads/2018/08/Creating-a-Seal.png

Energy Conservation Measure: Adjust Thermostat Setpoint (4-8°F)

Buildings as thermal batteries

Pre-conditioning the space by 4°F two hours before, or 8°F four hours before the peak demand hour.

Overview of Building Technologies (simulated in every building)

#	Description	Category	Value	Source
1	Insulate Roof	Envelope	R-16.12 to R-28.57	IECC-2012
2	Reduce Space Infiltration	Envelope	Reduce 25% from vintage	EnergyStar whole- house
3	Adjust Thermostat Setpoint (4F)	HVAC	4°F 2 hrs prior to peak	EPB
4	Smart Thermostat (8F)	HVAC	8°F 4 hrs prior to peak	EPB
5	Change Electric HVAC COP	HVAC	COP to 3.55 (heating) 3.2 (cooling)	IECC-2012
6	Change Lighting Power Density	Lighting	LPD 0.85 W/ft ²	IECC-2012
7	Change to Gas Water Heater	Water	Efficiency 80% (assumes electric)	IECC-2012
8	Change to Gas HVAC	HVAC	Efficiency 80% (assumes electric)	IECC-2012

Automatic Detection and Building Energy Model Creation (AutoBEM)

Data Sources

- Imagery (satellite, aerial)
- Street-level imagery
- Cartographic layers
 - Elevation, GIS
- Tax assessors
- Ranking of descriptors
 EE and Demand impacts
 (281–4,617 per building type)

Class	Object	Field	Default	Minimum	Maximum	Distribution	Type	Group	Constraint
Sizing:Parameters		Heating Sizing Factor	1.33	0.931	1.729	uniform	float		
Sizing:Parameters		Cooling Sizing Factor	1.33	0.931	1.729	uniform	float		
Lights	Core bottom Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_mid_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_top_Lights	Watts per Zone Floor Area	10.76	7.532	13,988	uniform	float	G0001	1
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Perimeter_top_ZN_4_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
ElectricEquipment	Core bottom PlugMisc Equip	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
ElectricEquipment	Core_bottom_Elevators_Equip	Design Level	32109.89011	22476.92	41742.86	uniform	float		
Exterior:Lights	Exterior Facade Lighting	Design Level	14804	10362.8	19245.2	uniform	float		
ZoneInfiltration:DesignFlowRate	FirstFloor_Plenum_Inflitration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	3
		Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	3
ZoneInfiltration:DesignFlowRate	TopFloor Plenum Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	3

	Short fille
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A

Facade

Occupancy

Building footprints

Software Tools

- Occupancy (every 90m)
- Aerial best footprints
- Street height, type, WWR
- LiDAR geometry
- GIS database API
- Building type
- Model generator
- Fastest buildings simulator
- Web-based visual analytics

Result: Simulated buildings for any area of interest that match 15-minute electrical data more accurately than most manually created models

Prototype Buildings – surveys for internal details

CAK RIDGE National Laboratory

ORNL at the forefront in Computing: #1 Jaguar, Titan, Summit

Capabilities – flexible digital twin for buildings

178,368 building models have been created and matched to EPB's PremiseID

3+ million EnergyPlus building energy models using AutoBEM technology, Titan, cloud, and local servers to produce and analyze 15+ TB of simulation data.

- 1. Generate baseline building 1.5-3h Amazon, 30h internal
- 2. Run ECM measures OS Measure (30 mins AWS, 2h internal), Custom (1m AWS, 5m intl.)
- 3. Copy data to Titon 1 min (1.2GB tar.gz)
- 4. Submit to Titan 0-2 hours in queue
- 5. Simulation time 30-45 mins (5mins/sim = 1.4 years to simulate EPB on 1 core)
- 6. Data transfer 40 mins (160GB of tar.gz)
- 7. Uncompress 10-15 mins
- 8. Reformat data 20-30 mins (pickle)
- 9. Analysis 5-10 mins (64-node AWS instance with solid state drives)

Time for creation, annual simulation, and analyzing "all" EPB buildings 6.5 hours (6.1h –36.5h) ; 3.7 ECMs for every building simulated in 28.3 mins!

Potential Demand Reduction via Smart Thermostats in a Simulated Utility

4°F pre-conditioning shows an average **13%** peak demand reduction across 178,368 residential and commercial buildings.

8°F breakdown of quartiles by **building type** for each calendar month with medium offices and strip malls as high, but timesensitive, value deployments.

Analysis: Demand Reduction Breakdowns

8°F breakdown of quartiles by **vintage** (age) for each calendar month shows slight increases with newer vintages.

Accuracy compared to real 15-minute data for each building

business decision

Emissions

ORNL posts

ORNL

Creates & maintains

virtual buildings

- Empirical Validation
 - 15-minute wholebuilding electric use for 178,368 buildings
 - More accurate than uncalibrated BEM created by a human¹
 - $\frac{1}{2}$ error of the average manuallycreated BEM when compared to measured data

Use Cases Peak rate structure Demand-side mgmt • Energy efficiency Customer education **EPB** retrieves utoBEN data for output dashboards EPB requests AutoBEM data Analyzes data to drive

Operational Use of BEM Simulations

Measures

- Lighting, HVAC COP, infiltration, insulation
- Smart thermostats
- Water heaters
- PV/solar
- EV charging
- Future weather
- Dual-fuel HVAC
- Microgrids

Result: \$11-35 million/year in potential savings identified via simulation-informed data and valuation for energy, demand, emissions, and cost impact to EPB and each customer for each building under five use cases covering nine monetization scenarios

¹Garrison, Eric, New, Joshua R., and Adams, Mark (2019). "Accuracy of a Crude Approach to Urban Multi-Scale Building Energy Models Compared to 15-min Electricity Use." Best PhD Student Paper award. In Proceedings of the ASHRAE Winter Conference, Atlanta, GA, Jan. 12-16, 2019. [PDF] [PPT]

Results: Digital Twin of a Utility (every building)

at the second search to the second of the EPB: 178,368 building energy models http: hashaden and the 2310970000 Validated against 15-minute electricity (colored by modeled EUI) ID: 2310970000 DOE Building Type: MediumOffice DOE Vintage: 2012 Num Floors: 4 Square Footage: 1,593,808 Annual Energy Usage: 11,084,478 kWh Annual Aggregated Demand: 20,308 kW EUI: 7 kWh/ft^2 CO2 emissions: 10.998.806 lbs Estimated wholesale vs retail cost: \$564,480 Savings Annual Energy Demand Savings 1: Env: Insulate Roof 276,964 kWh 2.5% 2: Env: Reduce Space 35.082 kWh filtration 0.3% 3: HVAC: Adjust Thermostat Setpoint (4F) -6,949 kWh -0.1%

Savings

825 kW

4.1%

1.5%

6,147 kW

30.3%

297 kW

CAK RIDGE National Laboratory

bit.ly/virtual_epb

Load Factor summary

CAK RIDGE

AutoBEM data in action

Annual Energy Savings

improvement iype (group)

AutoBEM data in action – EPB Dashboards

AutoBEM data in action

Annual Energy Savings Monthly Demand Savings Annual Energy Savings_D Monthly Demand Savings

Monthly Demand Savings

Improvement Type (group)																								S	Servi	ice A	ddre	\$5																							
		House 1							House 2								House 3											E	3υ	sir	es	SS	1			Business 2															
Smart thermostat 4 degree change	10 0 -10	-2.3	-1.2	1.5	1.0-	1.4	10.7	6.0	1.2	0.6	-2.2	-1.2	-0.7	1.2	-0.2	2.0	0.4	0.7	11	-0.4	-0.5	-23	-0.8	1.8	1.0-	1.5	1.3	1.0	1.6	-0.5	-0.4	-3.1	-0.8	1.5	0.0	2.1	1.1	1.5	1.6	-0.6	-0.6	4.6	4.5	0.0	0.0	1.3	20	0.8	1.0	-0.7	10 1
Smart Thermostat 8 degree Change	10 0 -10	6.0-	0.1	1.5	0.2	1.8	1.1	1.4	1.2	0.2	2.0	-0.2	-0.3	1.2	1.0	16	0.7	1.0	I	1.0	1.0-	-0.5	-0.2	1.8	0.3	2.0	2.6	1.6	1.6	0.4	1.0	-0.8	0.0	2.2	10.7	2.9	1.8	2.3	2.0	0.6	5 5 T 0	6.9	-0.6	1.2	0.4	1.8	6.1	13	1.2	1.0	0.0
Smart Water Heater	10 0 -10	-2.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	-2.9	1.0	1.1.	0.0	0.0	1.0	1.2	1.0	11	1.2	0.0	1.1	0.0	0.0	0.0	0.0	0.0	0.0	-1.4	-1.2	-2.1	1.1	0.0	0.0	0.0	1.0	-1.2	-1.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		Jan Demand sarings (kW)	Feb Demand savings (kW) Mar Demand savings (kW)	Apr Demand savings (kW)	May Demand sarings (kW)	Jul Demand sarings (kW)	Aug Demand savings (kW)	Sep Demand savings (kW)	Oct Demand sarings (kW)	Nov Demand sarings (kW)	Jan Domand savings (kW)	Feb Demand savings (kW)	Mar Demand savings (kW)	Apr Demand savings (kW)	May Demand sarings (kW)	Jun Demand savings (kW)	Aug Demand savings (kW)	Sop Demand savings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Doc Demand savings (kW)	Jan Demand savings (kW) Feb Demand savings (kW)	Mar Demand savings (kW)	Apr Demand savings (kW)	May Demand savings (kW)	Jul Demand sarings (kW)	Jun Demand savings (kW) And Demand savings (kW)	Sep Demand savings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Dec Demand savings (kW)	Jan Demand savings (kW) Eab Demand savings (kW)	Mar Demand savings (kW)	Apr Demand savings (kW)	May Demand savings (kW)	Jun Demand sarings (kW)	Aug Demand sarings (kW)	Sop Demand sarings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Jan Demand sarings (kW)	Feb Demand savings (kW)	Mar Demand sarings (kW)	Apr Demand savings (kW)	May Demand sarings (kW)	Jul Demand savings (kW)	Jun Demand sarings (kW) And Demand sarings (kW)	Sep Demand savings (kW)	Oct Demand savings (kW)	Nov Demand savings (kW)	Par Domand tavings (kW)

Discussion

HPC Tools for Modeling and Simulation Capturing building energy consumption

Joshua New, Ph.D., CEM, PMP, CMVP, CSM Subprogram manager for Software Tools & Models Building Technologies Research and Integration Center (BTRIC) Oak Ridge National Laboratory

newjr@ornl.gov

