

A Data-Driven Approach to Nation-Scale Building Energy Modeling

Andy Berres¹, Brett Bass², Mark Adams³, Eric Garrison⁴, Joshua New⁵

¹ Computational Sciences and Engineering Division, Oak Ridge National Laboratory (ORNL)

² Electrification and Energy Infrastructure Division, ORNL

³ Nuclear Nonproliferation Division, ORNL

⁴ Department of Electrical Engineering and Computer Science, University of Tennessee at Knoxville

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Building Energy Modeling (BEM)

Buildings consume 40% of primary energy in the United States, and produce 39% of greenhouse gas emissions.

Building energy modeling can answer questions such as:

- What is current energy use in the U.S. per building?
- Which building improvements will have the biggest impact?
 - Smart water heater
 - New HVAC system (heating, ventilation, and air conditioning)
 - New windows

Automated Building Energy Modeling (AutoBEM)

Have: 125 million building footprints [1] Goals of this work:

- 1. Generate building models
 - OpenStudio
 - EnergyPlus
- 2. Simulate building models
- 3. Publish models

Ran on THETA Supercomputer at Argonne

[1] Microsoft building footprints, December 2020. https://www.microsoft.com/en-us/maps/building-footprints

Image credit: Argonne National Laboratory

Required Building Information

- Footprint
- Height
- Number of Floors
- Area
- Window-to-wall ratio
- Building Type
- Building Vintage

Data Preparation

• Direct Building Data

- 2D Footprint
- Height
- Year built
- Derived Building Data
 - Number of floors
 - Vintage
 - Area
 - Building type
 - Climate zone

	Floor Area		Aspect	No. of	Floor-to- Floor Height		Floor-to- Ceiling Height		Glazing
Building Type	ft ²	m²	Ratio	Floors	ft	m	ft	m	Fraction
Small Office	5,500	511	1.5	1	10	3.05	10	3.05	0.21
Medium Office	53,628	4,982	1.5	3	13	3.96	9	2.74	0.33
arge Office	498,588	46,320	1.5	12*	13	3.96	9	2.74	0.38
Primary School	73,960	6,871	E-Shape	1	13	3.96	13	3.96	0.35
Secondary School	210,887	19,592	E-Shape	2	13	3.96	13	3.96	0.33
Stand-Alone Retail	24,962	2,294	1.3	1	20	6.10	20	6.10	0.07
Strip Mall	22,500	2,090	4.0	1	17	5.18	17	5.18	0.11
Supermarket	45,000	4,181	1.5	1	20	6.10	20	6.10	0.11
Quick Service Restaurant	2,500	232	1.0	1	10	3.05	10	3.05	0.14
Full Service Restaurant	5,500	511	1.0	1	10	3.05	10	3.05	0.17
Small Hotel	43,200	4,013	3.0	4	11** 9	3.35** 2.74	11** 9	3.35** 2.74	0.11
Large Hotel	122,120	11,345	3.8** 5.1	6	13** 10	3.96** 3.05	13** 10	3.96** 3.05	0.27
Hospital	241,351	22,422	1.3	5*	14	4.27	14	4.27	0.15
Outpatient Healthcare	40,946	3,804	1.4	3	10	3.05	10	3.05	0.19
Warehouse	52,045	4,835	2.2	1	28	8.53	28	8.53	0.006
Midrise Apartment	33,740	3,135	2.7	4	10	3.05	10	3.05	0.15

Table 13 Reference Building Form Assignments

* Plus basement (not included in the table number)

** First floor

Deru, M, Field, K, Studer, D, Benne, K, Griffith, B, Torcellini, P, Liu, B, Halverson, M, Winiarski, D, Rosenberg, M, Yazdanian, M, Huang, J, and Crawley, D. 2011. "U.S. Department of Energy Commercial Reference Building Models of the National Building Stock". United States. <u>https://doi.org/10.2172/1009264</u>. <u>https://www.osti.gov/servlets/purl/1009264</u>.

Missing Data

Figure 3. About half of all commercial buildings were constructed before 1980

Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey

- Missing height data imputed with median of nearest 20 buildings
- Missing year-built data classified with Commercial Buildings Energy Consumption Survey (CBECS) distribution of building age

Bui	lding	Туре
	<u> </u>	· / · · ·

- Physical properties used to classify each building into bins
- Buildings further classified within bin using PNNL 2003-2006 distributions on commercial construction area
- Residential building percentages factored into weights using surveyed floorspace data per climate zone

Physical Bin Parameters	Prototype Buildings			
<40ft Height <6,000ft ² (2D) Area	Full Service Restaurant Quick Service Restaurant Small Office Residential			
<40ft Height >6,000ft ² (2D) Area <15,000ft ² (2D) Area	Retail Standalone Retail Stripmall Outpatient			
<40ft Height $>$ 15,000ft 2 (2D) Area	Primary School Secondary School Warehouse			
>40ft Height <80ft Height $<$ 18,000ft 2 (2D) Area	Medium Office Small Hotel Midrise Apartment			
>40ft Height <80ft Height >18,000ft ² (2D) Area	Hospital Large Hotel			
>80ft Height	Highrise Apartment Large Office			

U.S. Census Regions

Region	Region Name	States	Total Buildings
1	New England	Connecticut, Maine, Massachusetts, New Hampshire, Rhode	5,435,392
		Island, Vermont	
2	Middle Atlantic	New Jersey, New York, Pennsylvania	12,637,184
3	East North Central	Illinois, Indiana, Michigan, Ohio, Wisconsin	22,528,155
4	West North Central	Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota,	12,463,109
		South Dakota	
5	South Atlantic	Delaware, District of Columbia, Florida, Georgia, Maryland,	23,558,752
		North Carolina, South Carolina, Virginia, West Virginia	
6	East South Central	Alabama, Kentucky, Mississippi, Tennessee	9,977,403
7	West South Central	Arkansas, Louisiana, Oklahoma, Texas	15,480,692
8	Mountain	Arizona, Colorado, Idaho, Montana, Nevada, New Mexico,	7,551,785
		Utah, Wyoming	
9	Pacific	Alaska, Hawaii, Oregon, Washington	5,149,591
10	California	California	10,933,546

Overall Workflow

9

Checkpointing/Resubmission Strategy

Results: Successful Buildings per Round

#	Buildings	Initial	Rerun1	Rerun2	Rerun3
1	5,435,392	4,362,202	518,576	291,327	207,103
2	12,637,184	9,019,214	1,358,741	1,821,282	
3	22,528,155	22,467,370			
4	12,463,109	10,748,054	791,385	820,444	
5	23,558,752	23,207,301			
6	9,977,403	4,517,672	1,442,752	3,046,398	97,638
7	15,480,692	15,452,216			
8	7,551,785	7,531,113			
9	5,149,591	5,051,863			
10	10,933,546	10,781,507			
R			742,174		
\sum	125,716,992	113,138,512	4,853,628	5,979,451	305,741
%		89.99%	3.86%	4.76%	0.16%

11

Results by Submission Round

Results by Region

CAK RIDGE

13

Open slide master to edit

Preprocessing Results

14

Initial Rerun1 Rerun2 Rerun3

Open slide master to edit

Submitted Job Sizes

Job Completion

Jobs submitted during each round

Buildings completed during each round

16

Summary

- Generated and simulated ~124.4 million building energy models on THETA supercomputer at Argonne National Lab
 - 10 days of walltime on Theta
 - 752k node hours or 48 million core hours
 - 64-core server: almost 86 years
 - Average 8-core desktop 687 years
- Generated ~90TB of building related data
- Made 122.9 million models publicly available \rightarrow <u>bit.ly/AutoBEM</u>

Future Work

- Detailed analysis of results
 - What is current energy use in the U.S. per building?
 - Which variables and other factors contribute to extremely long model generation and simulation times?
- Improvements on input data
 - Better height information
- We now have the baseline data for building energy use. Now, focusing on evaluating building improvement options
 - Which building improvements will have the biggest impact?
 - Smart water heater
 - New HVAC system (heating, ventilation, and air conditioning)
 - New windows

This work was funded in part by field work proposal CEBT105 under US **Department of Energy Building Technology Office** Activity Number BT0305000, the **Office of Electricity** Activity Number TE1103000.

The authors would furthermore like to thank the **Argonne Leadership Computing Facility (ALCF)** for over 50 million core hours they have generously provided on Theta as part of multiple allocations so far (ALCC and Director's Discretion), and for their excellent support.

Finally, the authors would like to thank **Amir Roth** and **Madeline Salzman** for their support and review of this project, and **Jibonananda Sanyal** for AutoSIM contributions for scalable simulation.

Thank you!

• Questions?

