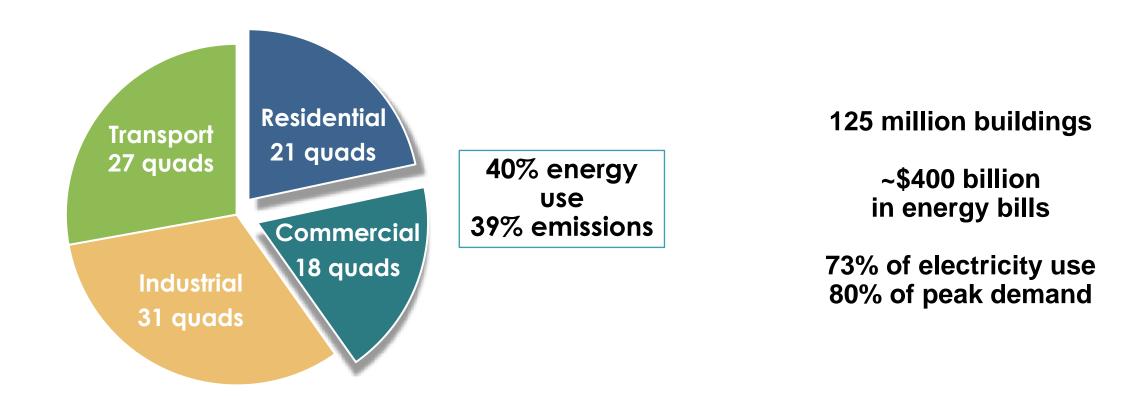


Automatic Building Energy Modeling (AutoBEM) and its Model America dataset – background, capabilities, and discussion with WIP stakeholders

For: Derek Schroeder and DOE's Weatherization and Intergovernmental Programs (WIP)

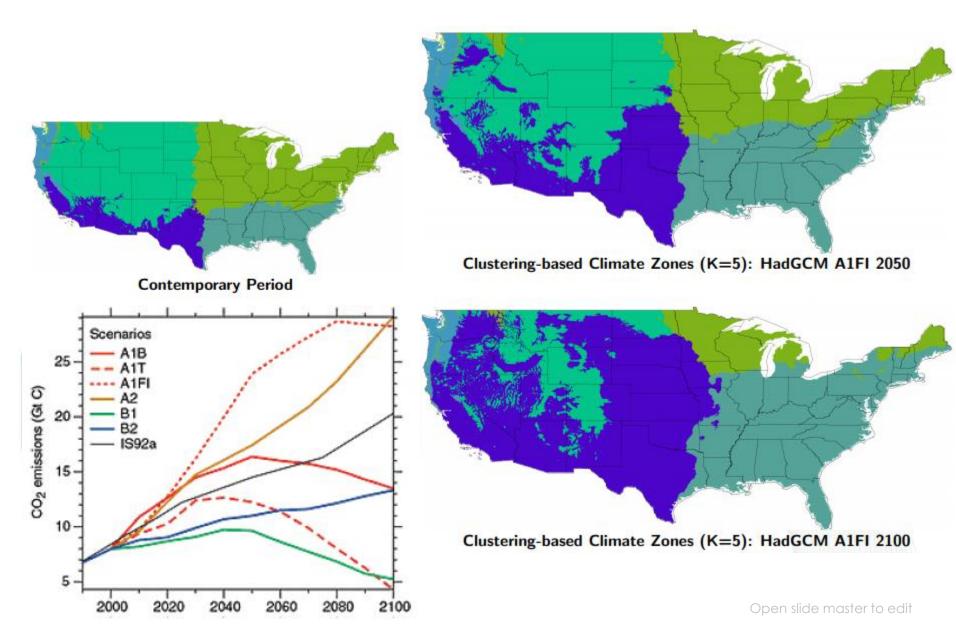

Presented by: Joshua New, Ph.D., C.E.M., PMP, CMVP, CSM, IREE (Senior R&D Staff) Brett Bass, Ph.D. (R&D Associate Staff Member) Oak Ridge National Laboratory

Date: 7/28/22

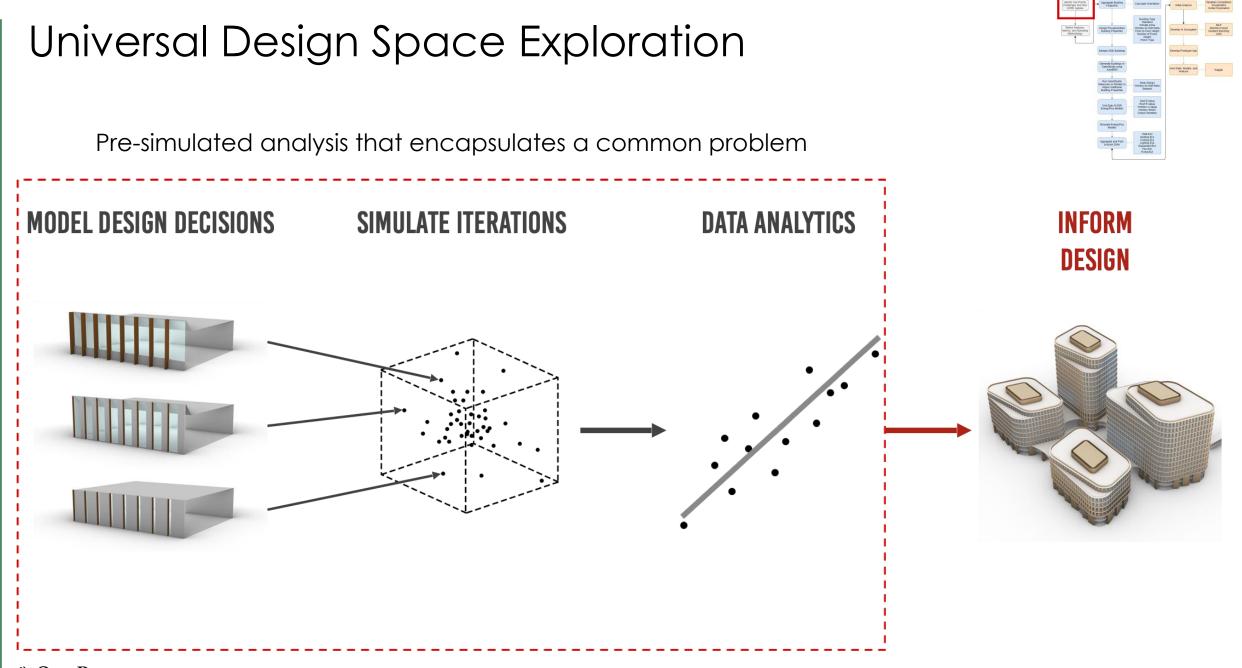
ORNL is managed by UT-Battelle LLC for the US Department of Energy

U.S. Energy and Buildings Overview

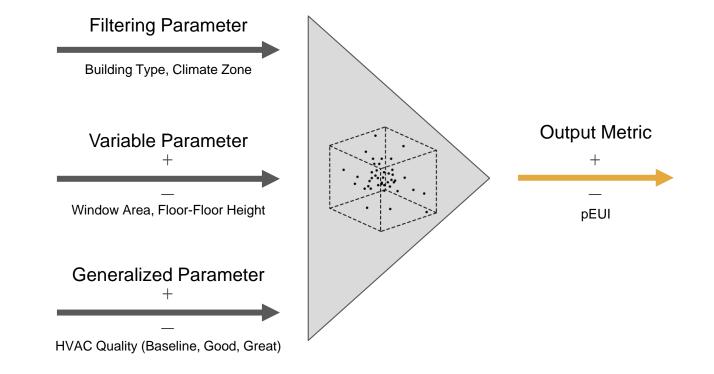
Goal of DOE's Building Technologies Office: 30% EUI reduction by 2030 compared to 2010 baseline Building Energy Modeling building descriptions + weather = estimated building energy consumption, demand, emissions, equity, ...

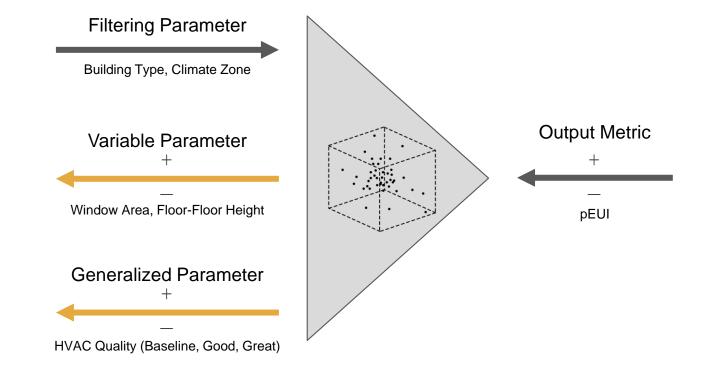

U.S. Market Sizes and Opportunities

- Utility Programs (\$8B EE, \$3B DRMS)
 - Pricing/tariff structures, future-proof business models, Energy as a Service (EaaS), empowering the customer; cost-effective carbon reductions
- Energy Service Companies (ESCOs, \$7B)
- Investment opportunities (\$71-133B)
 - New business models automated financing
- Business relevance
 - What if we put \$4 billion into the county where you live? Could we make building changes, guarantee energy performance, and make \$10 billion profit in 17 years?
- So what?
 - Quantify energy (kWh), demand (kW), emissions (CO_{2-eq}), and cost (\$) savings. What improvements to which buildings give most bang-for-the-buck of taxpayer resources?



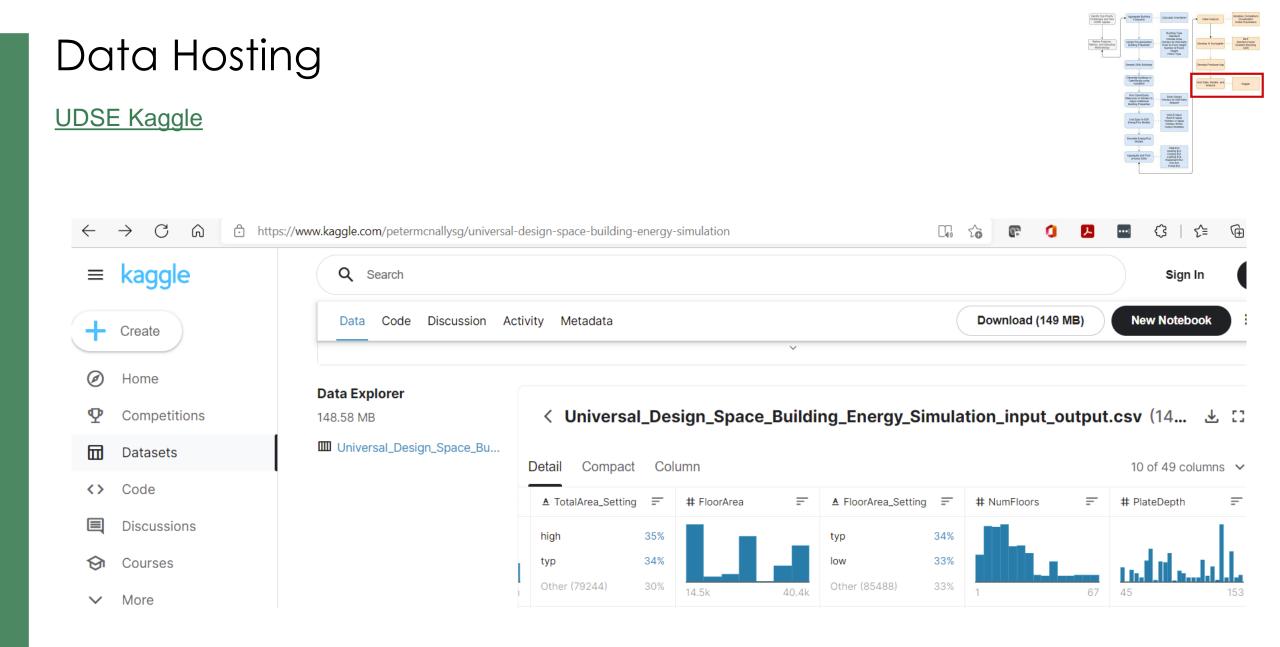
Climate Change Impacts


- 15% comm.
 bldg codes (90.1)
- 61% of res. Bldg codes (90.2)
- CCSI involvement
- IPCC scenarios to future Typical Meteorological Year (fTMY) files



UDSE: Assign Inputs => Explore Outputs

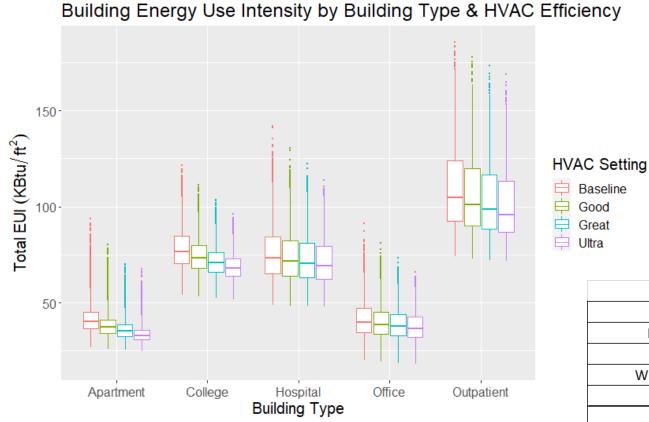
UDSE: Assign Outputs => Explore Input Ranges



Parametric Sampling

Sampling parameter	Inputs	Sampling parameter	Inputs
	Higher education		Low
	Lab - high intensity	Plate depth	Typical
Drogram tripa	Office	1	High
Program type	Hospital		Low
	Healthcare - outpatient	Floor-to-floor height	Typical
	Residential (Apartments)	Ŭ	High
	1A		Bad
	1B	Solar design	Typical
	2A	C	Good
	2B	Average window-to-wall	0.25
	3A	Ŭ	0.4
	3B	ratio	0.7
	3C		Baseline
	4A	Envelope quality	High
Climate zone	4B		Ultra
	4C	Construction type	Common
	5A	Construction type	Less Common
	5B		Baseline
	5C	Lighting power density	Better
	6A		Best
	6B		Baseline
	7A		Good
	7B	HVAC system	Great
	Low		Ultra
Total square footage	Typical	Set reinte	Baseline
	High	Set points	Expanded
	Low		
Target floor area	Typical]	
0	High		

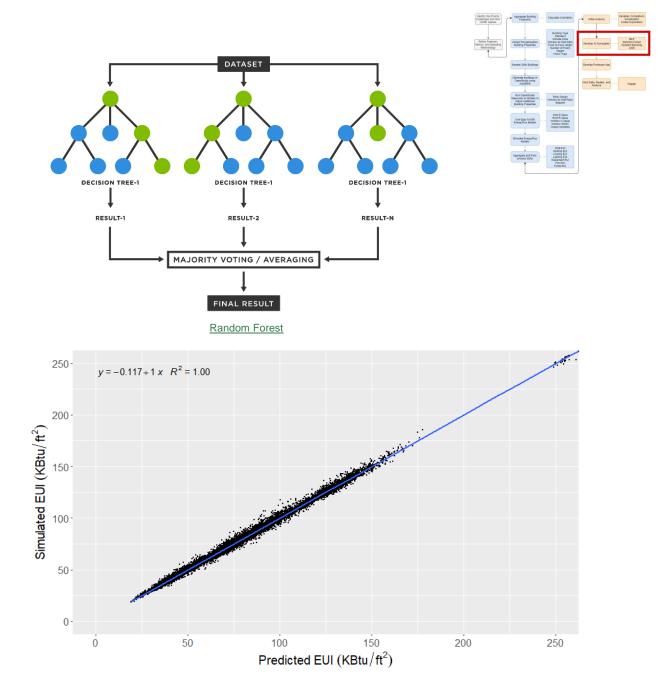
Sixar Design Window to Mart Selpoint



Data Exploration

CAK RIDGE National Laboratory

10



Outpatient 2A Outpatient 3A Outpatient 4A Outpatient 1A -0.42 Height -0.50 -0.57 -0.55 NumberFloors -0.56 -0.57 -0.45 -0.50 -0.67 TotalArea -0.77 -0.79 -0.78 WindowWallRatio -0.02 0.00 -0.06 0.11 FloorHeight 0.06 0.00 -0.04 0.19 0.08 PlateDepth 0.05 0.14 -0.13 PlateLength -0.13 -0.22 -0.09 -0.16 SkinArea -0.39 -0.47 -0.52 -0.51 SkinFloorRatio 0.28 0.25 0.17 0.26 -0.36 GlassArea -0.43 -0.50 -0.46 EnvelopeFloorAreaRatio 0.19 0.30 0.27 0.28 EnvelopeQuality 0.04 -0.04 0.01 0.13 -0.17 LightingPowerDensity -0.18 -0.47 -0.37 SetpointSetting -0.14 -0.14 -0.12 -0.18 **HVACSetting** 0.27 0.15 0.36 0.19

territoria de la construir de

Artificial Intelligence

- Al can be used as surrogate for EnergyPlus simulations
 - Don't need every point of design space
- Use input variables (building type, area, height, etc.) to predict building energy usage
- Several algorithms evaluated
 - Linear Regression
 - Neural Network
 - Random Forest

Prototype App: Real-time Analytics

5-year vision

Digital Twin of every U.S. Building by 2020 Methodology: Scalable compute, data, simulation, and empirical validation

1. Quantitatively rank most important

building inputs

	Small	Outpatien	Large Office	Medium Office	Hospital	Warehous	Small Hotel	Large
	Office							hotel
Inputs	458	3483	1072	760	1955	333	1823	887
	01.1	0.0.11	0.11.0.1	6 H 6 I				
	Strip	Retail	Quick Service	Full Service	Mid Rise	High Rise	Secondary	Primary
Inputs	800	438	281	286	1464	4617	1621	1051

Sensitivity Analysis

2. Time on world's #1 fastest highperformance machines

3. Identify and compare data sources for important inputs

	for important inputo
	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A
Comments	

Comparison Matrix

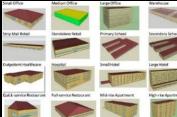
4. Establish partnerships and APIs for scalable data retrieval

5. Algorithms to extract

Window-to-wall ratio

Computer Vision

building properties



HPC Tools for Modeling and Simulation Capturing building energy consumption

Demonstrate and stimulate opportunities toward a sustainable built environment

6. Create OpenStudio & EnergyPlus models

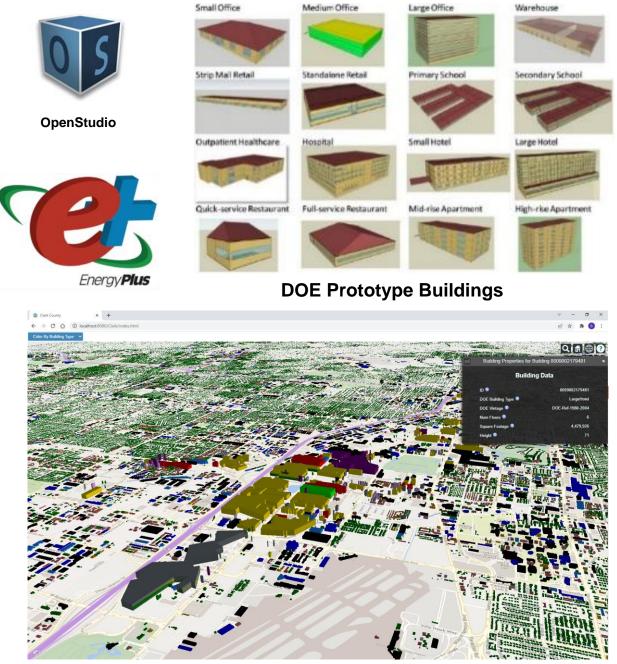
DOE Prototype Buildings

7. Make models freely available online

Download BEM for your building(s) Use cases:

- Simulation-informed analysis
- Utility program formulation (utility)
- Business model evaluation (ESCO)
- City-scale emissions (cities)
- Sales/marketing leads (local jobs)
- New building design (AEC firms)
- Resilience (government, insurance)
- Automated financing (PACE, banks)

Acknowledgements


- EPB/ORNL partnership
- U.S. Department of Energy
 - EERE/Building Technologies Office
 - Office of Electricity
 - National Nuclear Security Administration
- Oak Ridge National Laboratory

AutoBEM

- AutoBEM takes set of building properties as inputs
 - Building Footprint
 - Building Height
 - Building Type
 - Building Age
- AutoBEM develops building energy models using OpenStudio and simulates Models using EnergyPlus
- Internal characteristics and other building properties (occupancy, equipment, insulation, etc.) determined non-intrusively by building type and year built

Clark County (Las Vegas) Modeling Example

Automatic Detection and Building Energy Model Creation (AutoBEM)

Data Sources

- Imagery (satellite, aerial)
- Street-level imagery
- Cartographic layers
 - Elevation, GIS
- Tax assessors
- Ranking of descriptors
 EE and Demand impacts
 (281–4,617 per building type)

Class	Object	Field	Default	Minimum	Maximum	Distribution	Type	Group	Constrain
Sizing:Parameters		Heating Sizing Factor	1.33	0.931	1.729	uniform	float		
Sizing:Parameters		Cooling Sizing Factor	1.33	0.931	1.729	uniform	float		
Lights	Core bottom Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core_mid_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Core top Lights	Watts per Zone Floor Area	10.76	7.532	13,988	uniform	float	G0001	
		Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
Lights	Perimeter_top_ZN_4_Lights	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0001	
ElectricEquipment	Core bottom PlugMisc Equip	Watts per Zone Floor Area	10.76	7.532	13.988	uniform	float	G0002	
		Watts per Zone Floor Area	10.76	7.532	13,988	uniform	float	G0002	
ElectricEquipment	Core bottom Elevators Equip	Design Level	32109.89011	22476.92	41742.86	uniform	float		
Exterior:Lights	Exterior Facade Lighting	Design Level	14804	10362.8	19245.2	uniform	float		
ZoneInfiltration:DesignFlowRate	FirstFloor_Plenum_Inflitration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
		Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	
ZoneInfiltration:DesignFlowRate	TopFloor Plenum Infiltration	Flow per Exterior Surface Area	0.000302	0.000211	0.000393	uniform	float	G0003	

	Short Title
Summary	Satellite imagery, including panchromatic and multispectral images
Data type	Image
Company	
Website	
Temporal resolution	Cities - 3-11 times per week
Spatial resolution	0.3 m
Measure accuracy	
Cost	\$11 per sq. km
Format	GeoTiff
Mapping to building input variables	Building footprints
Mapping to area properties	Vegetated areas, road surface, buildings, parking lots
Mapping to material properties	Road pavement materials (e.g., concrete, asphalt), parking lots (e.g., gravel, soil)
Coverage of US	Over 10 million km ² of coverage of the contiguous US
Orientation	Aerial
Existing internal software	N/A
Existing expertise	Remote sensing data analysis tool
Restrictions	N/A

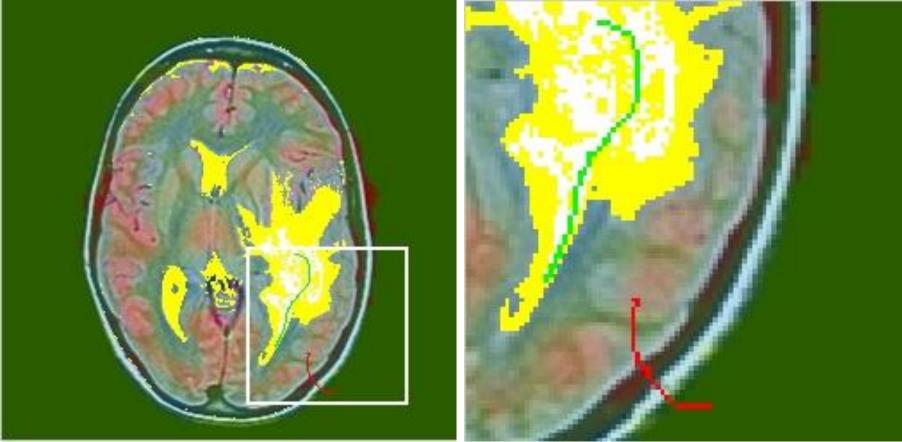
Facade

Occupancy

PB (535 mi

Building footprints

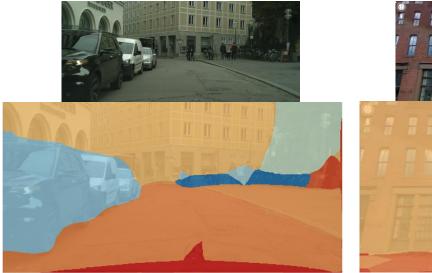
Software Tools


- Occupancy (every 90m)
- Aerial best footprints
- Street height, type, WWR
- LiDAR geometry
- GIS database API
- Building type
- Model generator
- Fastest buildings simulator
- Web-based visual analytics

Result: Simulated buildings for any area of interest that match 15-minute electrical data more accurately than most manually created models

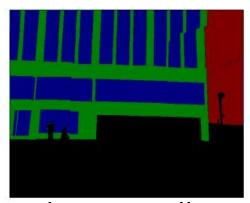
Retinal Fusion and Human/Computer Training originated from MIT's Lincoln Lab

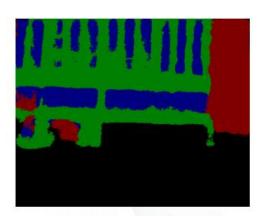
Full Results


Detailed Results

Computer Vision – street-level imagery

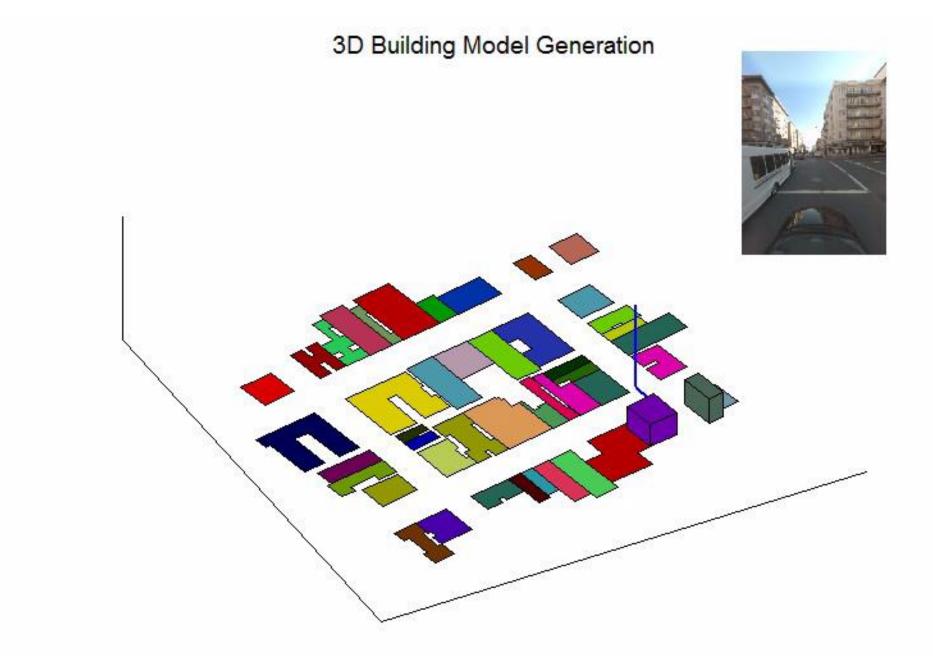
Façade Type





Windows (blue) Façade (green) Street/open (black) Other building (red)

Input image



18

Window-to-wall ratio

Model output

Open slide master to edit

Overview of Building Technologies (simulated in every building)

#	Description	Category	Value	Source
1	Insulate Roof	Envelope	R-16.12 to R-28.57	IECC-2012
2	Reduce Space Infiltration	Envelope	Reduce 25% from vintage	EnergyStar whole- house
3	Adjust Thermostat Setpoint (4F)	HVAC	4°F 2 hrs prior to peak	EPB
4	Smart Thermostat (8F)	HVAC	8°F 4 hrs prior to peak	EPB
5	Change Electric HVAC COP	HVAC	COP to 3.55 (heating) 3.2 (cooling)	IECC-2012
6	Change Lighting Power Density	Lighting	LPD 0.85 W/ft ²	IECC-2012
7	Change to Gas Water Heater	Water	Efficiency 80% (assumes electric)	IECC-2012
8	Change to Gas HVAC	HVAC	Efficiency 80% (assumes electric)	IECC-2012

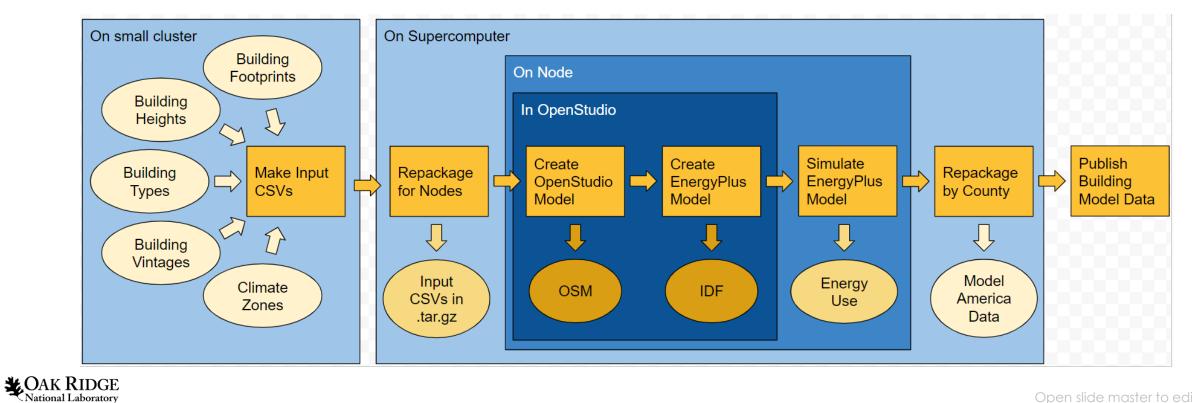
AutoBEM Chattanooga

- 15-Minute electricity use was shared for more than 178,000 building electrical meters in Chattanooga, TN area.
- AutoBEM empirical validation was done by comparing these meters measured electricity use to AutoBEM simulation results
- Several analyses were conducted on these models
 - Energy saving technologies
 - Demand saving technologies
 - Climate scenarios
 - Microgrids
- Models can be augmented with real building properties from building owner to significantly improve model performance

DEMO

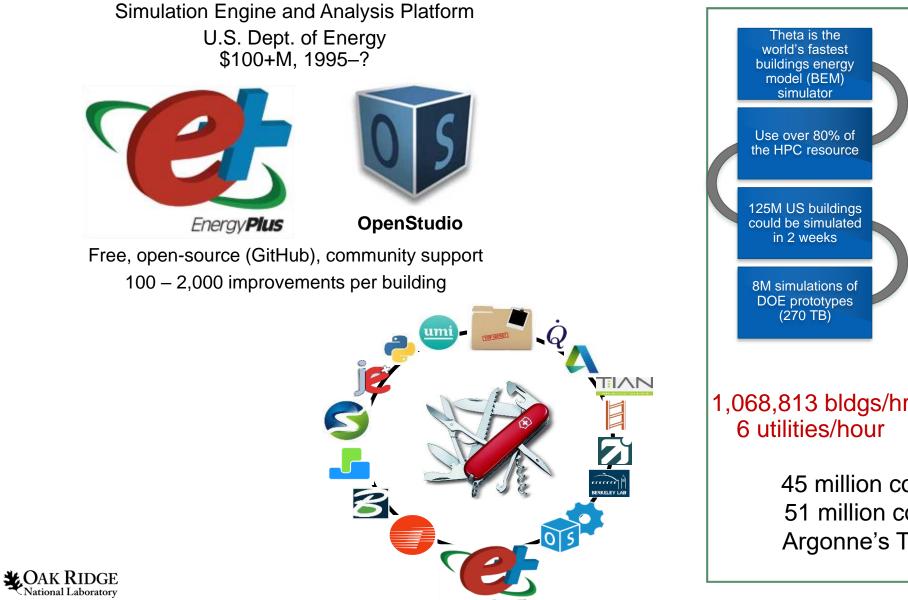
Chattanooga (TN) Modeling Example Visualization

Model America


- Building data for more than 125 million buildings •
 - Microsoft building footprints _
 - JAXA convolutionally interpolated height data
 - GAIA urban sprawl data _

22

Building type heuristics, PNNL DOE prototype construction weights



45 million core-hours (2021) and 51 million core-hours (2022) on Argonne's Theta supercomputer

Building simulation at scale

23

	CPU Cores	Wall-clock Time (mm:ss)		EnergyPlus Simulations
	16	18:14	5 GB	64
	32	18:19	11 GB	128
	64	18:34	22 GB	256
	128	18:22	44 GB	512
	256	20:30	88 GB	1,024
	16,384	26:11	5.6 TB	65,536
	32,768	31:29	11.5 TB	131,072
	65,536	44:52	23 TB	262,144
	131,072	68:08	45 TB	524,288
	Theta	a super	comp	outer
s/hr	CPU Cores	Wall-clock Time (mm:ss)		EnergyPlus Simulations
	57,344	20:44	440 GB	229,376
Jr	114,688	28:20	880 GB	458,752

Titan supercomputer

45 million core-hours (2021) and 51 million core-hours (2022) on Argonne's Theta supercomputer

Scalable Computing

- 1,068,813 buildings/hour generated, simulated, results stored
- Building energy modelers \$150/hr
- Model levels and cost at Architectural, Engineering, Const. (AEC) firm

Model Quality	Typical Time	Cost
Basic	2 days	\$2,400
Functional	1 week	\$6,000
Detailed	2 weeks	\$12,000

• AutoBEM on HPC - \$6.4 billion and 20,554 person-years worth of work... completed in 1 hour on supercomputers

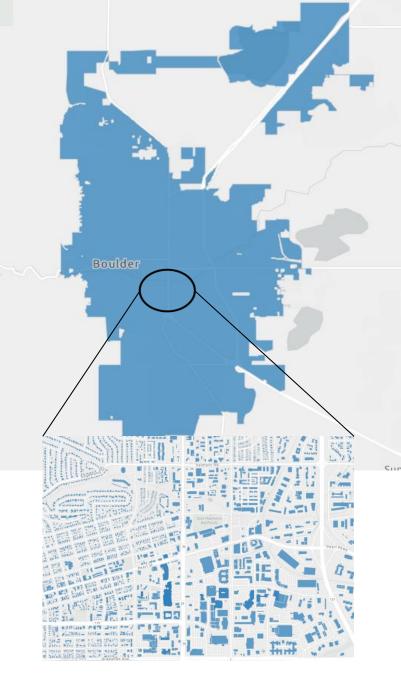
Nation-scale...

- Automatic Building Energy Modeling (AutoBEM) software
 - Related publications: <u>bit.ly/AutoBEM</u>
- Model America data free model of every U.S. building (bit.ly/ModelAmerica)
 - OpenStudio (v3.1.0) and EnergyPlus (v9.4)
 - State_county.zip (requires free Globus Connect Personal); location-specific requires NDA
 - New, Joshua R., Adams, Mark, Bass, Brett, Berres, Anne, and Clinton, Nicholas (2021). "Model America data and models of every U.S. building." ORNL Constellation, <u>https://doi.ccs.ornl.gov/ui/doi/339</u>, April 14, 2021.
- 125,714,640 buildings, 124,276,332 simulated,122,930,327 (97.8%) shared
- Dynamic archetypes of models and floor area multipliers for any geographical region
- In last 1.5 years (since 1/1/21): 22 NDAs (1 free dataset), 5 funded CRADAs, 9 CRADAs proposed, leveraged in many other proposals

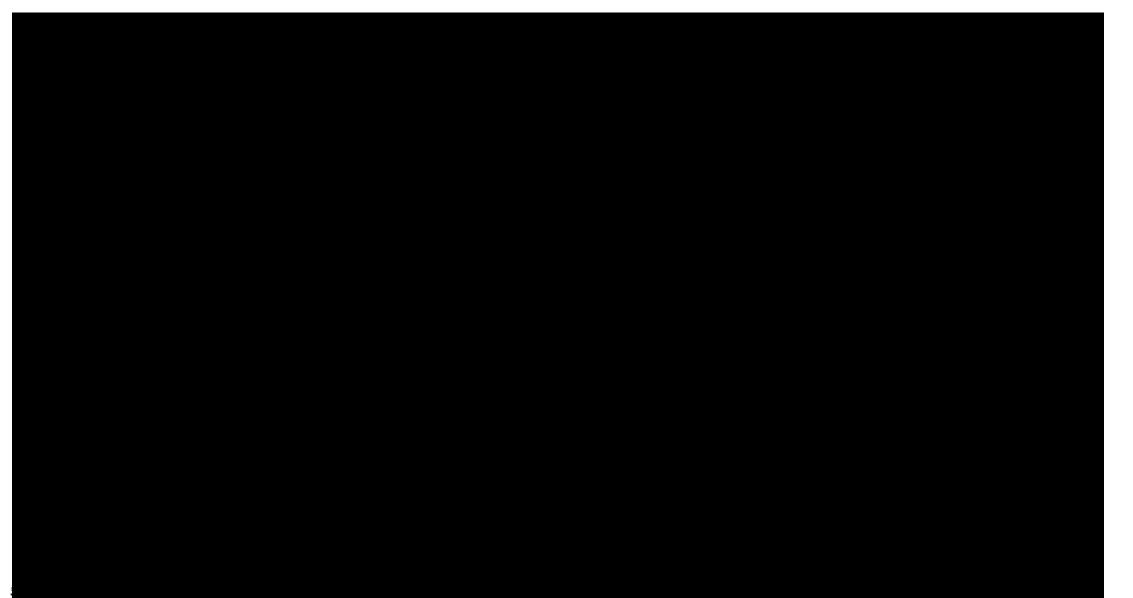
Dynamic Archetypes

- Model with median EUI selected for each building type/vintage combination
- Dynamically construct floor space multiplier (all buildings / median-EUI bldg.)
- 29,230 Boulder, CO buildings represented by 60 models

	AutoBEM Original	Dynamic Archetypes
Total Electricity (TWh)	1.29	1.36
Total Natural Gas (TWh)	1.77	1.92
Total Energy (TWh)	3.06	3.27


https://github.com/ORNL-BTRIC/AutoBEM-DynamicArchetypes

 589,586 Clark County (Las Vegas) bldgs. via 129 archetypes


SACAK RIDGE

National Laboratory

- New, Joshua R., Bass, Brett, Adams, Mark, and Berres, Anne (2021). "Model America Clark County (Vegas) extract from ORNL's AutoBEM (Version 1.1) [Data set]." Zenodo, doi.org/10.5281/zenodo.4552901, Feb. 16, 2021. [Data]
- New, Joshua R., Bass, Brett, Adams, Mark, and Berres, Anne (2021). "Clark County (Vegas) Archetypes from ORNL's AutoBEM [Data set]." Zenodo, doi.org/10.5281/zenodo.4552901, Mar. 21, 2021. [Data]

AutoBEM inside – GSHP tool (analytics for any US bldg.)

Open discussion

- Measures share AutoBEM's measures for NEAT/MHEA analysis
- Simulation 1M sims/hr for comparative analysis NEAT versions; energy (kWh), demand (kW), emissions (CO_{2-eq}), and savings (\$)
- ModelAmerica web-based map API, select building via address, AutoBEM-generated model, modify form inputs
 - Carbon EnergyPlus with EPA's EGRID or NREL's Cambium to report carbon emissions related to building energy use. Utility-scale report for Carbon Dioxide (CO_2), Sulfur Dioxide (SO_2), Nitrogen Oxides (NO_x), Nitrous oxide (N_2O), and Methane (CH_4).
- Dashboard live and on-demand analytics, deployment stats for potential vs. actual impact in any geographical area
- Climate change IPCC weather data fTMY for climate impacts and non-energy benefits

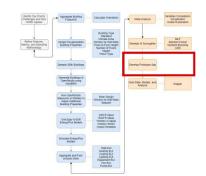
Discussion

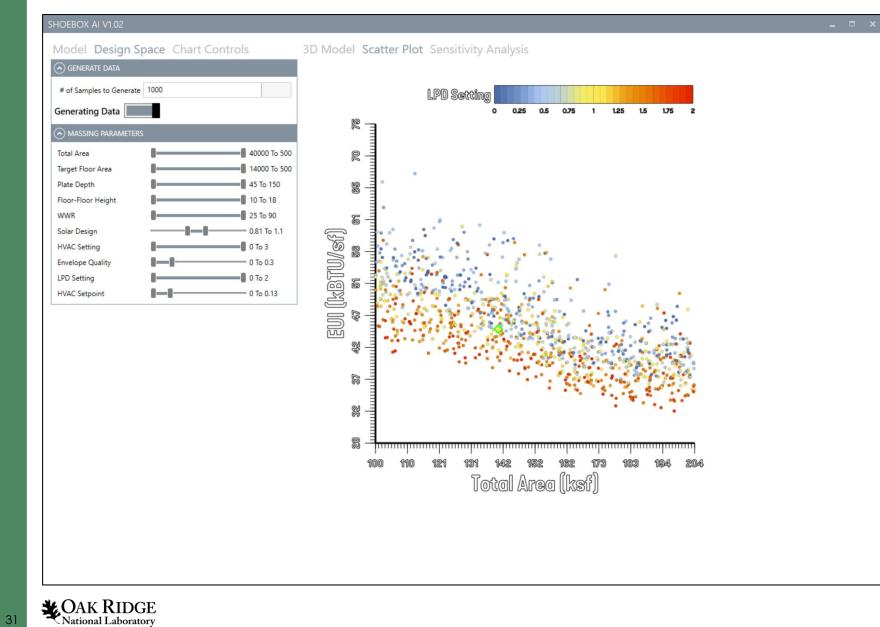
HPC Tools for Modeling and Simulation Capturing building energy consumption

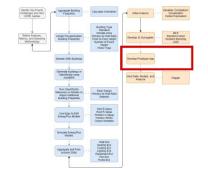
Joshua New, Ph.D., CEM, PMP, CMVP, CSM, IREE Senior R&D Staff Building Technologies Research and Integration Center (BTRIC)

Oak Ridge National Laboratory

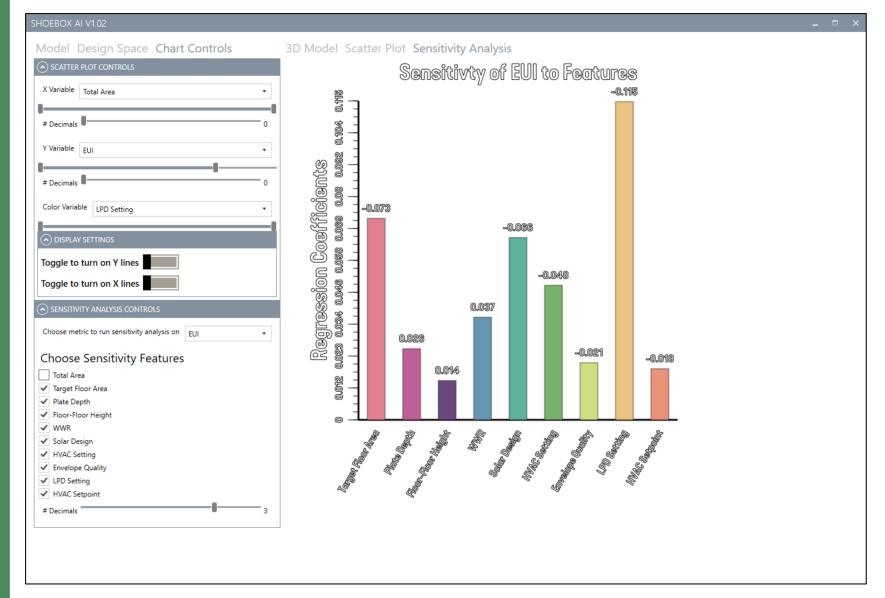
newjr@ornl.gov




Prototype App: Single Design


CAK RIDGE

Shoebox ai v1.02		-	□ ×
Model Design Space Chart Controls	3D Model Scatter Plot Sensitivity Analysis		
	EUI : 72.52 kBTU/sf		
Climate Zone 4B 🔹			
Building Type Large Office •			
Total Area 70000			
Target Floor Area 14000			
Plate Depth 90			
Floor-Floor Height 10			
○ FACADE PARAMETERS			
WWR 40			
Solar Design Typical 🔹			
Envelope Quality Baseline 👻			
HVAC Setting Baseline •	W S		
HVAC Setpoint Baseline •			
LPD Setting Baseline (100%)			
EUI : 72.52 kBTU/sf Cooling : 0.43 kBTU/sf Heating : 42.93 kBTU/sf Equipment : 30.94 kBTU/sf Fans : 0.58 kBTU/sf Pumps : 0 kBTU/sf HeatRejection : 0 kBTU/sf HeatRecovery : 0.75 kBTU/sf			




Prototype App: Design Space Exploration

Prototype App: Real-time Analytics

Future uses for AutoBEM's Model America

The promise of a more safe, secure, and sustainable country in which to live and work...

