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ABSTRACT 

In recent years, calibrated energy modeling of residential and commercial buildings has gained importance 

in a retrofit-dominated market. Accurate weather data plays an important role in this calibration process 

and projected energy savings. It would be ideal to measure weather data at the building location to capture 

relevant microclimate variation but this is generally considered cost-prohibitive. There are data sources 

publicly available with high temporal sampling rates but at relatively poor geospatial sampling locations. 

To overcome this limitation, there are a growing number of service providers that claim to provide real 

time and historical weather data for 20-35 km
2
 grid across the globe. Unfortunately, there is limited 

documentation from 3rd-party sources attesting to the accuracy of this data. This paper compares provided 

weather characteristics with data collected from a weather station inaccessible to the service providers. 

Monthly average dry bulb temperature; relative humidity; direct, diffuse and horizontal solar radiation; and 

wind speed are statistically compared. Moreover, we ascertain the relative contributions of each weather 

variable and its impact on building loads. Annual simulations are calculated for three different building 

types, including a closely monitored and automated energy efficient research building. The comparison 

shows that the difference for an individual variable can be as high as 90%. In addition, annual building 

energy consumption can vary by ±7% while monthly building loads can vary by ±40% as a function of the 

provided location’s weather data. 
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1. INTRODUCTION 

Building energy simulation is increasingly necessary for accurately quantifying potential energy savings 

measures in compliance with building code trade-offs and new legislation. For example, California has 

passed AB 758 and AB1103 that require energy modeling whenever commercial properties change hands. 

This dramatically increases the need for certified auditors skilled in the use of energy assessment tools that 

can identify cost-effective energy efficiency improvements, prioritize those improvements, and provide a 

credible estimate of payback period or cost-effectiveness for each one. Enhanced automation of current 

calibration methodologies is needed to reduce the manual costs necessary for fulfilling such requirements. 

Accurate weather data for the microclimate surrounding a given building during the time that data was 

collected is necessary for accurate calibration. 

There are three main classes of weather data with traditional use cases for each: “typical” weather data 

(representative of some location over an arbitrary period of time) often used for design and performance 

conditions over the life of a building, “actual” weather data (at a specific location for a specific period of 

time) used for simulation calibration to energy bills, and “future” weather data used for adaptive control of 

a building. There are a multitude of representative weather data sets for each class, among the most popular 

of which include: the Typical Meteorological Year (TMY2[1], TMY3[2]), International Weather for 

Energy Calculation (IWEC) [3] data sets, the world’s largest active archive of weather data at the National 

Oceanic and Atmospheric Administration’s (NOAA) National Climatic Data Center (NCDC) including the 

currently 12,000-location International Surface Hourly (ISH) dataset for actual weather measurements, and 

sources provided by NOAA’s National Weather Service[4] for future weather data. However, the best 

dataset for an individual will depend on the purpose, location, and simulation engine being used. The 

interested reader can find many weather datasets for use with EnergyPlus at [5]. In this paper, analysis is 

performed solely for actual weather data in order to facilitate increased automation of simulation 

calibration and allow for a more direct comparison between measured data and vendor-provided data. 
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2. APPROACH 

2.1 Previous Work 

The Building Energy Software Tools Directory [6] currently lists more than 400 software tools for 

evaluating energy efficiency, renewable energy, and sustainability in buildings with approximately 120 

tools just for whole building energy simulations. These tools are becoming increasingly sophisticated and 

include the capability of representing the building and its systems in great detail, in order to realistically 

capture the relevant properties of the building system. However, the uncertainties of various input 

parameters for a model generally increase with the breadth and depth of possible inputs, leading to 

unrealistic simulation results. Weather data is one of the important sets of input parameters required to 

adequately simulate the thermal behavior of buildings and can have a significant impact on the output of 

these simulation tools. Weather data can influence the building performance in several ways; for example, 

dry bulb temperature and solar radiation influence the heating and cooling loads while relative humidly 

impacts the latent load of the building and sizing of HVAC equipment. There are also strong correlations 

between weather variables; with an increase in Global Solar Irradiance (GSI), DBT would generally 

increase, while the RH tends to decrease [7]. That study suggests that simply comparing one parameter 

between two sets of weather data sets may not give a complete picture of the influence this variation may 

have in overall energy consumption. 

Huang and Crawley showed the variation inherent in actual weather data and how it influenced the 

simulation results [2]. They used six typical weather data sets for this 1997 study and performed the 

simulations for a typical office building using DOE2.1E hourly simulation program [8] for five different 

US locations. They concluded that the average variation in annual energy consumption due to weather 

variation is ±5%. Lama et al. [10] analyzed the measured long-term hourly weather data for five Chinese 

cities with different climates with the intent that researchers and designers could use the distribution plots 

of weather data and consumption profiles for their building design and analysis. Seo et al.[11] studied the 

impact of typical weather year selection approaches on energy analysis for a 3-story office building using 

the DOE-2 simulation program. The results of this study showed a maximum 5% difference between the 
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simulation results obtained using any typical weather data sets (TMY, IWEC, and TMY2) and those 

obtained by averaging the results for 30 years for 10 US climates. 

Recently, several researchers have investigated the impact of climate change on energy consumption of 

buildings. Many studies have begun to incorporate future models of weather based on climate change to 

develop typical weather data that, it is anticipated, more accurately represents the weather to be seen in the 

lifespan of new buildings via the impacts of climate change [12][13][14]. A.L.S. Chan [1] developed a set 

of typical weather files based on climate change and analyzed their impact on a typical office building and 

a residential flat using EnergyPlus. His study indicated that there would be a substantial increase in the 

energy consumption of air-conditioning systems in those two types of buildings in Hong Kong, ranging 

from 2.6% to 14.3% for office buildings and from 3.7% to 24% for a residential flat. H. Radhi [16] 

investigated the issue of localized climate variability between the pre-1991 climate of Bahrain and the post-

1991 climate, believed to be induced by oil fires and urban heat island effects from heavy reclamation 

efforts, and evaluated its impact on the performance of weather data used in building simulation. He used 

these two sets of weather data in the context of a low-rise and high-rise commercial building to compare 

the predicted and measured energy consumption. The study concluded that the traditional pre-1991 weather 

files tended to underestimate the electricity consumption by 14.5% and misrepresented the cooling load by 

5.9–8.9% whereas, the more recent weather data underestimated actual consumption by 1.4%. 

The aforementioned studies quantify the impact weather data has on the thermal performance of a building. 

However, no studies could be found comparing the impact of different weather files from many current 

data sources and web-services, several of which have come online only recently. While the building 

simulation community traditionally utilizes “typical” weather data, the objective of this work is to compare 

“actual” weather data with the measured “ground truth” data set. Moreover, a difference of weather data for 

a specific variable does not necessarily translate into a meaningful impact on building performance, so we 

also compare the impact of the various weather data in the context of annual building energy simulations. 
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2.2 Study design 

The aim of this paper is to investigate the impact of available weather data of present and past actual 

conditions on the thermal performance of buildings. The data will be presented in terms of heating and 

cooling loads so that the results are not overshadowed by the efficiency and performance of HVAC 

systems. The minimum weather data parameters necessary for whole building simulations accuracy are: dry 

bulb temparture; wet bulb temprature and/or relative humidity, global, direct normal and diffuse solar 

radiation (only two variables are required to represent solar radiaton); wind speed and wind direction (for 

natural ventilation and infiltration). Some providers claim to have full set of data for all the locations 

around the world with a geospatial resolution of a 20-35 km
2
 grid. 

Sources of historical weather data were identified and providers were contacted to procure these data sets. 

Fourteen weather data providers were identified and provided either full or partial sets of weather data 

necessary for whole building energy simulations; however, only two providers were chosen for this study. 

Other providers either did not feel comfortable with participating in the study or did not have a complete 

set of data available for the study location (Oak Ridge, TN, USA (Latitude-5°57'N, Longitude-84°17'W, 

elevation-334m) for the 2010 calendar year. The providers’ data will be denoted as Set 1 and Set 2 and on-

site measured data as Meas, for a total of three datasets. 

A brief description of weather station at study locations is as follows: 

Weather station located in Oak Ridge was used to collect weather data for the comparisons. Table 1 shows 

the sensors used at the weather station and their accuracy. Solar irradiation data was taken from the weather 

station located at ORNL campus, which is maintained by the National Renewable Energy Laboratory’s 

(NREL) Measurement and Instrumentation Data Center (MIDC). While global horizontal and diffuse 

horizontal irradiations were measured, the direct normal irradiation was calculated from global and diffuse 

measurements. 

For quality assurance, the measured field data was compared to predictions of the ASHRAE clear sky 

model [17]. Figure 1 compares the field measured vs. ASHRAE clear sky model predicted global 

horizontal radiation and direct normal radiation on a clear sky day. The measured total direct normal was 

1.3% higher and global horizontal was 6.1% lower compared to the model predicted values for the day. 
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Once the data was aquired; a two step approach was taken in this study. First,  the major weather 

parameters (dry bulb temparture, wet bulb temprature, relative humidity, global/direct/diffuse solar 

radiation and wind speed/direction) were compared for all 3 data sets using statistical metrics and 

techniques including standrard deviation, coefficient of determination (r
2
) and Kolmogorov-Smirnov (K-S) 

tests. Second, three buildings - one commercial and two residential buildings,  were selected to compare the 

impact of the weather data sets on heating and cooling loads of the buildings. The simulations were carried 

out using EnergyPlus version 6.0 [18] simulation software. 

 

3. RESULTS 

3.1 Weather Data Comparison 

Major weather variables are compared statistically at hourly, monthly and annual temporal resolutions. 

Statistical analyses include calculation of several common metrics found in the literature such as the mean, 

median, standard deviation, Mean Bias Error (MBE), Mean Absolute Percentage of Error (MAPE) 

[19][20], Root Mean Standard Error (RMSE), and Coefficient of Variance RMSE (CV-RMSE) [21] [22]  

from the hourly data. These variables were calculated as follows: 
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where: 

measi = measured value at hour i (for i from 1 to N hours) 

N = number of observations points (N=8760 for a year of hourly data) 

seti = value at hour i (for Set 1 or Set 2) 

measmean = mean of measured value 

 

3.1.1. Monthly  Data Comparison 

Statistical distributions were computed for each major parameter. Figure 2 uses a box-and-whisker plot to 

convey the statistical distribution of monthly data for each variable in all datasets. For the sake of clarity, 

wind direction and speed data are displayed using a wind rose diagram (Figure 3). Figure 2 indicates that 

Set 2 consistently gives higher values for solar irradiation during the entire year and higher ambient 
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temperatures while values for summer months. Set 1 is relatively close to measured data for all variables 

except wind speed. As seen in Figure 3, the wind speed and direction show significant variation among all 

three data sets. This large variation in data shows that the raw data source and processing techniques can 

produce significantly different weather parameters. The differences in monthly average dry bulb, direct 

normal incidence and wind speed can be as high as 8°
 
C, 91 W/m

2
 and 2 m/s respectively. Peak differences 

are even more dramatic in the daily or hourly data. Differences in daily  average dry bulb, direct normal 

incidence and wind speed can be as high as 11°
 
C, 282 W/m

2
 and 5 m/s respectively while the hourly value 

differ by as much as 17°
 
C, 865 W/m

2
 and 8 m/s respectively. 

Figure 4 shows the frequency distribution and significant differences of the major weather parameters 

among the three sets of hourly data. However, all parameters do not have an equal impact on building 

simulations; dry bulb temperature variation at higher temperature bin levels will impact the cooling energy 

demand and consumption more so than global horizontal irradiance at the low bin levels. Several statistical 

variables were also calculated to better capture the dynamic trends within the weather parameters. The 

general criterion outlined by Draper and Smith [23] was used for selecting the appropriate regression model 

to maximize the goodness of fit. Correlation trends were also calculated to display how closely Set 1 and 

Set 2 agree with the measured (Meas) data. Figure 5 shows the scatter plot for annual comparison which 

indicates that Set 1 compares fairly well with measured data with an R
2
=0.988 whereas Set 2 matched 

relatively poorly with an R
2
=0.889.  

Table 2 summarizes the statistics calculated for each of the major weather variables. CV-RMSE is often 

used in calibration studies and shows the error for dry bulb temperature for Set 1 and Set 2 is 9% and 38% 

respectively. A two parameter K-S test was also performed for the comparison purposes. In most cases the 

results did not show any concrete reportable difference between Set 1, Set 2 and measured data for all the 

variables. 

Another method for weather data set comparison includes the utilization of heating and cooling degree 

days, which are indicative of the impact weather data has on thermal energy performance of buildings. In 

the absence of any actual measured weather data, TMY3 data for the current location is often used. For this 

study, we use the TMY3 file for McGhee Tyson Airport, Knoxville, located 40 km from the Meas weather 
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site. This additional data set will be referred to as TMY and does not necessarily represent weather data 

from 2010. Figure 6 shows monthly heating and cooling degree days on 18°C base for all four sets. Figure 

6 shows that Set 2 consistently indicates lower heating degree days and higher cooling degree days than the 

other weather data. Depending on the location and building type, this difference may cancel out the impact 

of heating and cooling energy in annual energy consumption.  

3.2 Whole Building Energy Analysis 

In order to ascertain the impact of weather data on the annual heating and cooling loads, three 

representative buildings were selected for comparative simulations: a medium office (Bldg 1), a highly 

efficient residential home (Bldg 2) and a Home Energy Rating System Building Energy Simulation Test 

(HERS BESTEST) Case L100A  building (Bldg 3) [24]. EnergyPlus [18] was selected to model the thermal 

performance of buildings based on the capabilities and comprehensive reviews [25] and it has been 

validated against experimental measurements and comparative testing using BESTEST[26]. 

The first example building is a United States Department of Energy’s medium office reference building 

[27] for ASHRAE climate zone 4. It has 3 floors, conditioned floor area of 4982 m
2
, built up flat roof with 

the insulation entirely above the deck (U value = 0.35 W/m
2
K), and steel frame walls with insulated walls 

deck (U value = 0.7 W/m
2
K) in accordance with ASHRAE 90.1-2004)[28]. Both lighting and internal loads 

were assumed to be 10.76 W/m
2
 each and the infiltration rate of 0.000302 m

3
/s-m

2
 flow per exterior surface 

area was considered. The building is divided into one core and four perimeter zones on each floor and each 

zone is served by VAV systems with reheat. Ground heat transfer is modeled separately with EnergyPlus’ 

auxiliary Slab program, which produces average ground temperatures for inclusion in the main simulation 

input file.  

The second example building is a three-level highly energy efficient research house. This house is one of 

the four energy efficient ZEBRAlliance houses (http://zebralliance.com) built using some of the most 

advanced building technology, products, and techniques available at the time of construction. In this 

unoccupied research house, human impact on energy use is simulated to match the national average 

according to Building America benchmarks with showers, lights, ovens, washers and other energy-

consuming equipment turned on and off exactly according to schedule. This house uses a structurally 

http://zebralliance.com)/
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insulated panel (SIP) envelope with a thermal resistance of 3.7 m
2
K-/W, with very low air leakage 

(measured ACH50 = 0.74) and RSI-3.7 wall insulation, and thus has very low heat gain and loss through the 

building envelope. The details of this house’s envelope and other characteristics are described in [29]. This 

house was selected for this study since it was very heavily instrumented for validation studies. 

The third example building is the HERS BESTEST Case L100A [24] building model, shown in Figure 7. 

This building is a 17.3 m x 8.2 m single-story, south-facing ranch house with one conditioned zone, an 

unconditioned attic, and a vented crawl space. The slope of the roof is 4:12, and the roof asphalt shingles 

had a 10% solar reflectance and 90% thermal emittance. The ceiling insulation R-values were used per 

ASHRAE standard 90.2-2007 [30]. The interior heating and cooling set point temperatures were 20°C and 

25.5°C, respectively. Supply and return air ducts were located in the unconditioned attic. The buildings had 

ducts with R-1.4 (K.m
2
/W) insulation over the 0.6 mm thick sheet metal and 4 ± 0.2% air leakage. All the 

three buildings were simulated using EnergyPlus for all the four weather data sets assuming they were 

occupied 24 hours/day and 7 days/week. Figure 7 shows the EnergyPlus models created for all the 

buildings. 

Heating loads, cooling loads and annual energy consumption were calculated. EnergyPlus simulated annual 

energy consumption results for the three building types vary by up to ±7% depending on the weather data 

set used. Figure 8 presents the monthly heating and cooling loads (GJ) per building as a function of weather 

data, rather than whole building energy consumption, in order to avoid the effect of HVAC performance on 

energy consumption. As expected, use of Set 2 results in consistently lower heating loads and higher 

cooling loads. Even though the difference in overall energy consumption is only 7%, the heating and 

cooling loads differ by ±40%. Figure 8 shows monthly heating and cooling loads using all 4 sets of weather 

files. 

To further investigate the impact of individual weather parameters, we replace part of the measured data 

(ORI) with data from Set 2 as it shows the maximum variation from the measured data set. To eliminate 

compounding effect, one variable was changed at a time.The parameters varied  include dry bulb 

tempertaure, relative humidity (RH), direct normal solar irradiation (DNI), Diffuse horizontal solar 

irradiation (DHI) and wind speed (WS) as shown in Figure 9. This figure quantifies the impact of specific 
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weather parameters on the variability of energy consumption as a function of building type. For example, 

when the dry bulb temperatures of the measured data were replaced by the dry bulb temperatures of Set 

2(all other data of Meas remained unchanged), annual energy consumption was reduced by 10.7%. It is 

interesting to note the impact of dry bulb temperature in Figure 9. The higher dry bulb temperature 

increases energy consumption in the commercial building (Bldg 1) due in part to high internal loads leading 

to higher cooling energy consumption. However, the energy consumption is decreased in both the 

residential buildings which have higher heating energy consumption. It should also be pointed out that 

while wind speed varied dramatically between the measured data and Set 2, the impact on annual energy 

consumption averaged 1.8% increase across all building types. This is due in part to the use of natural 

ventilation in the house attic being modeled via the detailed Air Flow Network model of EnergyPlus. It 

should be noted that that not all weather data parameters stored in the weather file are used in parts of the 

simulation process. In particular, global horizontal irradiance and wind direction are not used at all during 

the simulations.  

4. CONCLUSIONS 

Calibrated energy modeling of residential and commercial buildings has gained importance in a retrofit-

dominated market and accurate weather data plays an important role in a more automated calibration 

process and credible projected energy savings. Accurate weather data for the microclimate surrounding a 

given building during the time that data was collected is necessary for accurate calibration. This paper 

compares third-party weather data with data collected from a weather station inaccessible to the service 

providers and estimates the impact of discrepancy in various weather parameters as well as heating/cooling 

loads. 

Monthly average dry bulb temperature; relative humidity; direct, diffuse and horizontal solar irradiation; 

and wind speed were compared using three actual weather data sets from different sources for calendar year 

2010. The study found that the peak difference in individual hourly variables can be as high as 90% and 

annual building energy consumption can vary by ±7% while monthly building loads can vary by ±40% for 

different weather data sets.  
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Three buildings were used to quantify the weighting of each major weather parameter’s importance on the 

building’s thermal performance. It can be concluded that the principle of caveat emptor applies. While this 

study’s minimal scope of 3 datasets for 1 location is insufficient to make an accurate assessment of the state 

of the industry, significant variance and its impact on energy models has been shown. Researchers and 

energy modelers are encouraged to carefully examine “actual” weather data, particularly when used for 

calibration.  
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Figures and Tables 

Table 1. Sensor used at the weather station and their accuracy 

Measured parameter Sensor used Accuracy 

Temperature Vaisala HMP50 ± 0.3°C at 0°C 

Relative Humidity Vaisala HMP50 
± 3%, 0 to 90% range; 

± 5%, 90 to 98% range 

Global Horizontal Radiation LI-COR LI200 ± 5% maximum; ± 3% typical 

Diffuse Horizontal 
LI-COR LI200 (when RSR band rotates 

every 30-seconds and blocks the sun) 
± 5% maximum; ± 3% typical 

Horizontal Infrared Radiation 

Intensity from Sky 

Eppley precision infrared radiometer 

(PIR) 

Temperature Dependence: ± 1%, 

Linearity: ± 1% 

Wind Speed Campbell Scientific 03001 ± 0.5 m/s 

Wind Direction Campbell Scientific 03001 ± 5° 

Liquid Precipitation Depth Texas Electronics TE525 

± 1%, up to 1 in./hr 

+ 0, - 3%, 1 to 2 in./hr 

+ 0, -5%, 2 to 3 in./hr 

Barometric Pressure Vaisala CS106 ± 1.5 mb @ - 40 to + 60°C 
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Table 2. Statistical summary of three weather datasets for each major parameter. 

 

 

Figure 1. Comparison between measured and ASHRAE Clear Sky Model Predicted Solar Radiation 
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Figure 2. Box-and-whisker plots of hourly dry bulb, relative humidity, global horizontal irradiation, 

direct normal irradiation, and diffuse horizontal irradiation for each month for each of the 3 datasets 

(Meas, Set 1, and Set 2 respectively). Lines show the maximum and minimum value, where vertical 

bars meet is the average monthly data value, bars show the 25
th

-50
th

 percentile and 50
th

-75
th

 

percentile of hourly data for that month. Global horizontal, direct normal, and diffuse horizontal 

charts remove low values in order to show effective percentiles for irradiance. 

 

 

 

  
 Figure 3. Wind direction and wind speed (a) Meas, (b) Set 1, and (c) Set 2 
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 Figure 4. Frequency distribution of values within specific weather variables 
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Figure 5: comparison of annual hourly data set  
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Figure 6 : Heating and cooling degree days 
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Figure 7 : EnergyPlus model of buildings (a) Bldg 1, (b) Bldg 2 and (c) Bldg 3 
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(b) 

 

 

(c)  

Figure 8 Monthly heating and cooling loads for each building varies as a function of weather data. 
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Figure 9: Annual energy consumption is provided for the simulation baselines using measured 

weather data as well as Set 2. Then individual parameters from Set 2 are used to replace the 

measured weather data for variables including: dry bulb temperature (DB), relative humidity (RH), 

direct normal irradiance (DNI), direct horizontal irradiance (DHI), and wind speed (WS). 

 


