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Abstract 
 
Autonomous detection and correction of potentially missing or corrupt sensor data is a 

necessary concern in building technologies since data availability and correctness is 

necessary to develop accurate software models for instrumented experiments. 

Therefore, this paper aims to address this problem by using statistical processing 

methods including: (1) least squares; (2) maximum likelihood estimation; (3) 

segmentation averaging; and (4) threshold based techniques. Application of these 

validation schemes are applied to a subset of data collected from Oak Ridge National 

Laboratory’s (ORNL) ZEBRAlliance research project, which is comprised of four single-

family homes in Oak Ridge, TN outfitted with a total of 1,218 sensors. The focus of this 

paper is on three different types of sensor data: (1) temperature; (2) humidity; and (3) 

energy consumption. Simulations illustrate the threshold based statistical processing 

method performed best in predicting temperature, humidity, and energy data. 

 
Keywords: Sensor data validation; statistical processing methods; least squares; 

maximum likelihood estimation; segmentation averaging; threshold based; building 

technologies. 

1. Introduction 
 

Energy consumption in the U.S. is a critical area of concern where residential and 

commercial buildings consume approximately 40% of total primary energy (U.S. 

Department of Energy, 2008). Retrofitting inefficient existing buildings with new and 
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innovative technologies that help to curb energy consumption will ensure the reduction 

of energy consumption and enhance the ability to optimize use of our energy 

distribution infrastructure (Miller et al., 2011). Buildings also have the best potential for 

reducing green-house-gas (GHG) emissions since the building sector exceeds both the 

industrial and transportation sectors in the U.S. (“Intergovernmental Panel,” 2007). 

There is a need for integrated building strategies, according to the U.S. Green Building 

Council (USGBC), in order to achieve Net Zero Energy buildings (U.S. Green Building 

Council Research Committee, 2007). Therefore, the conservation of energy and 

mitigation of GHG emissions hinges on the continued research of energy efficient 

buildings and technologies. 

There is much research dealing with the improvement of energy efficiency in 

commercial buildings and residential homes (Christian, 2010), (Norton and 

Christensen, 2006), (Miller and Kosny, 2008), (Parker et al., 2011). These include 

several fundamental concerns relevant to sensors being used to collect a wide variety of 

variables (e.g., humidity ratio, solar flux, temperature, time, wind speed, etc.) in order to 

analyze and understand the capabilities of components, systems, and whole-buildings 

for enhanced energy efficiency. Based on the number of variables being collected and 

sampling rates, the amount of data being assembled has the potential of being large-

scale. An example of this is the ZEBRAlliance research project, which in 2008 built four 

residential homes to be used for integration of Oak Ridge National Laboratory’s 

(ORNL’s) energy-efficient technologies to gauge the integral success and affordability of 

the components and houses (ZEBRAlliance, 2008). The first and second homes consist 

of 279 sensors, the third home has 321 sensors, and the fourth home has 339 sensors, a 

majority of which are measuring temperature (thermistors, thermocouples, and combo 
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probes), relative humidity (RH and combo probes), and electrical usage (watt-meters). 

Most sensors have a 15-minute resolution with approximately 80 sensors having a 

resolution of 1-minute, although hourly, daily, and monthly reports are also 

consolidated. There are 9,352 data points in an hour, 224,448 in a day, 1,571,136 in a 

week, and 81,699,072 in a year. Many concerns arise with this amount of data points 

being collected in such a real-world experiment, specifically data corruption from sensor 

failure, sensor fouling, calibration error, and data logger failure. 

Sensor validation is vital for energy efficiency research and control in buildings. 

Even with the most sophisticated instruments and control systems, analysis and 

decisions based on faulty data could lead to inaccuracies when dealing with 

components, systems, and whole-buildings for improved energy efficiency. There are 

currently two approaches that are widely used for the validation of data: (1) analytical 

redundancy and (2) hardware redundancy (Ibarguengoytia et al., 2001). Analytical 

redundancy uses mathematical relationships between measurements to predict a 

sensor’s value. When the number of sensors and the complexity of the model increase, 

the analytical redundancy approach becomes inefficient. Another disadvantage of the 

analytical redundancy approach is that each derived relationship is very specific to the 

data; meaning a slight modification may require significant resources to stabilize. 

Hardware redundancy on the other hand is not always possible due to the need for 

increased sensors, data acquisition channels/systems, installation and maintenance 

labor, etc. Therefore, this research aims to use independent relationships (e.g., 

interpolation based on available data from a single sensor), instead of dependent 

relationships (e.g., prediction using data from other sensors), and statistical processing 
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methods. Calculating the predicted value of a sensor as a function of others and 

assuming or leveraging periodic patterns in the data is not covered in this research. 

The statistical processing methods that are investigated in this paper are: (1) least 

squares; (2) maximum likelihood estimation; (3) segmentation averaging; and (4) 

threshold based techniques for sensor data validation. These procedures are used for 

data prediction which is compared with original data to determine the accuracy of each 

method and is applied to ZEBRAlliance sensor data for temperature, humidity, and 

energy consumption. Results from this study show the data to be best predicted using 

the threshold based statistical processing method. 

The remainder of this research paper is organized as follows: Section 1 reviews 

previous research pertaining to sensor data validation; Section 2 explains the different 

statistical processing methods used in this paper; Section 3 defines the experimental 

setup; Section 4 examines generated results; and Section 5 concludes with final thoughts 

and future work. 

2. Background 
 

There has been a rich variety of research dealing with data validation for numerous 

applications (Ibarguengoytia et al., 2001), (Frolik et al, 2001), (Uluyol et al., 2006), 

(Postolache, 2005). In (Ibarguengoytia et al., 2001), two Bayesian networks were used 

for the detection of faults in a set of sensors; the first represents the dependencies 

among all sensors and the second isolates the faulty sensor. Self-validation, fusion, and 

reconstruction of sensor data was tackled in (Frolik et al, 2001) by exploring three key 

steps: (1) employ fuzzy logic rules for self-validation and self-confidence; (2) exploit 

near-linear relationships between sensors for reconstructing missing or low-confidence 

data; and (3) fuse this data into a single measurement along with a qualitative indicator 
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for its reliability. A start-up fault detection and diagnosis method was presented for gas 

turbine engines in (Uluyol et al., 2006), which consisted of three key techniques: (1) 

statistics; (2) signal processing; and (3) soft computing. Sensor profiles were generated 

from good and bad engine start-ups in which a feature vector was calculated and signal 

processing was used for feature selection. In the signal-processing step, principal 

component analysis (PCA) was applied to reduce the samples consisting of sensor 

profiles into a smaller set. The features obtained from this step were then classified 

using neural-network-based methods. In (Postolache, 2005), a Kohonen self-organizing 

map (K-SOM) was used to perform sensor data validation and reconstruction. Sensor 

failure and pollution event detections were also studied with the use of this methodology 

for a water quality sensor network application. 

There has been a wide range of work in regards to sensor data validation using not 

only statistical methods, but also filtering and machine learning techniques as well. 

However, all previously mentioned research deals with dependent relations among 

multiple sensors for validation. Dependencies in data prediction require greater 

computational resources and datasets. Independent data validation conserves these 

resources by requiring past data for a given sensor, lending itself to greater parallel 

throughput and scalability. Therefore, this paper uses statistical processing methods for 

independent data validation applied to building technologies. 

3. Statistical Processing Methods 
 

The following statistical methods from (Bo et al., 2009) detailed the use of statistical 

techniques to predict wireless field strength. The four methods discussed: (1) least 

squares; (2) maximum likelihood estimation; (3) segmentation averaging; and (4) 

threshold based, are modified to meet the needs of fault detection and sensor data 
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prediction. These four statistical processing techniques were chosen based on the 

favourable prediction results shown in (Bo et al., 2009). Artificial gaps are introduced 

by randomly removing portions of existing data for testing the accuracy of auto-

correcting algorithms. This is accomplished by splitting the original dataset into two 

subsets: training (70%) and testing (30%). Each sensor as an independent variable and 

predicts sensor values based upon a variable-sized window of observations. A prediction 

model is generated for each window of observations and auto-correction (e.g., 

interpolation or extrapolation) occurs if values are missing or corrupt (far away from the 

predicted value), though original data is always preserved for reference. 

For all statistical processing techniques in this research, an observation window of 

size o is used to predict the sensor’s data value for each time-step within the observation 

window. The observation window moves forward by o time-steps (no overlap) and 

prediction for each sample within the observation window is calculated. This process 

occurs for every possible window within a given set of time-series sensor data. Root-

mean-square error (RMSE), relative error, and absolute error, Equations 11, 12, and 13 

respectively, are calculated for each prediction to determine the performance. 

(a) Least Squares 
 

Calculating least square estimation is accomplished through calculating the squared 

residual between the inputs and the predicted values and summing. This is shown as: 

𝐿 = [𝑦 𝑠 − 𝑓(𝑠)]!!!!
!!!!!         (1) 

where n is the current time-step, s represents the time-step relative to the observation 

window, y(s) is actual sensor data, and f(s) signifies the predicted value. Polynomial 

fitting is used to predict data values based on a learned model of data in the observation 
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window. Polynomial fitting is achieved by finding (d+1) coefficients, p, of a dth degree 

polynomial. A generalized form of the polynomial is: 

𝑓 = 𝑝! + 𝑝!𝑥 +⋯+ 𝑝!!!𝑥!        (2) 

where x is the independent variable (i.e., time-step) and f is the dependent variable (i.e., 

prediction). The polynomial in its generalized matrix form is shown as: 
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The matrix notation for polynomial fit is: 

𝑓 = 𝐗𝑃           (4) 

The coefficients of the polynomial, P, can be solved by multiplying both sides of 

Equation (4) by the transpose XT: 

𝐗!𝑓 = 𝐗!𝐗𝑃          (5) 

Therefore, the coefficients of the polynomial, P, are: 

𝑃 = (𝐗!𝐗)!!𝐗!𝑓          (6) 

(b) Maximum Likelihood Estimation 
 

The maximum likelihood estimation is calculated using the Gaussian distribution 

(Harris and Stocker, 1998), (Hoel, 1984), which is assumed in this research for 

temperature, humidity, and energy data. For a Gaussian distribution: 
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where m is the expected value, σ is the standard deviation, y(s) represents actual sensor 

data, and s represents the time-step. Therefore, the maximum likelihood estimate is: 
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𝜎 = 𝐸 𝑦 = (!!!!)
!

!
         (8) 

(c) Segmentation Averaging 
 

In segmentation averaging, a window is set for the smoothing average. The window 

length (i.e., number of observations) is denoted as o and the sensor data is represented 

by y in the segmentation averaging process which can be express as: 

 𝑚!" =
!!!⋯!!!!!

! ! !!!⋯!!!!!
! !⋯! !!!!!!!⋯!!!

!

!!!!!
     (9) 

where n is the current time-step and N is the total number of samples. 

(d) Threshold Based 
 

The threshold based method uses a threshold value to determine whether or not the 

sensor data is too large or too small for averaging. In this research work, the threshold is 

defined as: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = µμ+ 𝑐𝜎         (10) 

where µ is the mean, σ is the standard deviation, and c is the standard deviation 

multiplier which controls the threshold value. Any sensor data value, y, within the 

threshold, is used to calculate a moving average, predMean, based on the o 

observations. The predMean value is then used as the prediction for all time-steps in the 

observation window. 

4. Experimental Dataset 
 

The experimental dataset for this research is taken from ORNL’s ZEBRAlliance 

project (ZEBRAlliance, 2008) temperature, humidity, and energy usage sensor data 

from house #2 during the 2010 calendar year. The temperature and humidity data is 

taken from the energy recovery ventilation (ERV) unit’s outside intake 
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(“Z09_T_ERV_IN_Avg” and “Z09_RH_ERVin_Avg” respectively). The energy usage 

data is taken from the home’s refrigerator (“A01_WH_fridge_Tot”). Data was collected 

through Campbell Scientific’s CR1000 measurement and control datalogger. The 

resolution of all three data types is 15 min giving a total number of samples for each 

sensor, N = 35,040. 

5. Experimental Setup 
 

Simulations using statistical processing methods include least squares, maximum 

likelihood estimation, segmentation averaging, and threshold based applied to 

temperature, humidity, and energy data. Procedures for each technique are discussed to 

understand how results are generated. Pseudo-code for each method is also given. 

The performance metrics used for statistical processing methods are root-mean-

square error (RMSE), relative error, and absolute error. RMSE is calculated by: 

𝑅𝑀𝑆𝐸 = !
!
𝑟!! + 𝑟!! +⋯+ 𝑟!!         (11) 

where rs2 represents a residual difference between the actual sensor value and the 

predicted value. The relative error is calculated by: 

𝑒!"# =
!!
!!

!
!           (12) 

where ys is actual sensor data at time-step s that corresponds to the residual, rs. The 

absolute error is calculated by: 

𝑒!"# =
!!

!!"#!!!"#

!
!          (13) 

where ymax and ymin are the maximum and minimum sensor data values respectively 

within the sensor dataset, Y. 

(a) Least Squares 
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The pseudo-code for least squares statistical processing method is shown in Figure 1. 

The inputs of this technique are the sensor dataset, Y, the degree for polynomial curve 

fitting, D (equal to o), and the observation window’s size, o, which are used to determine 

a model for the data within the window. The outputs are the calculated performance 

metrics, specifically RMSE, relative error, and absolute error. The sensor dataset, Y, is 

randomly split into a training set and test set. The training set is used to determine the 

model for each observation window. These models are then used with the test set to 

determine the prediction accuracy of least squares. 

The data samples in the observation window are used to calculate coefficients in 

Equation (6) for polynomial curve fitting. It is assumed that there is a natural oscillation 

throughout the observation window between the number of data points and coefficients 

of the polynomial. Degree, d = o, is used to calculate the coefficients, P, for polynomial 

curve fitting. The calculated curve based on P is used to calculate the predicted o values 

within the observation window using Equation (2). The residuals are then calculated for 

each observation window within the sensor dataset, Y. The results section and 

accompanying tables show the performance metrics for all observation windows within 

the dataset, Y, for the sensor data. 

(b) Maximum Likelihood Estimation 
 

The pseudo-code for maximum likelihood estimation is shown in Figure 2. The 

inputs of this technique are the sensor dataset, Y, and the window size, o. The sensor 

dataset, Y, is randomly split into a training set and test set. The training set is used to 

determine the model for each observation window. These models are then used with the 

test set to determine the prediction accuracy of maximum likelihood estimation. The 
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number of observations being studied, o, in the observation window is used to calculate 

the maximum likelihood estimate shown in Equation (8). The maximum likelihood 

estimate is calculated for all observation windows of size o for the sensor dataset, Y. The 

calculated maximum likelihood estimate is the predicted value for all o observations 

within the window which are used to calculate the residuals. The results tables show the 

performance metrics. 

(c) Segmentation Averaging 
 

The pseudo-code for segmentation averaging is shown in Figure 3. The inputs of this 

technique are the sensor dataset, Y, and the number of observations, o. As before, the 

data is split into training and testing sets. The number of observations being studied, o, 

in the observation window is used to calculate the segmentation average in Equation (9) 

for each sample in the observation window. The calculated segmentation average is used 

as the predicted value for all o observations within the window and used to calculate the 

residuals. The segmentation average is calculated for all observation windows of size o 

for the sensor dataset, Y. Results show the mean RMSE, relative error, and absolute 

error values for all of the observation windows within the dataset, Y, for temperature, 

humidity, and energy data. 

(d) Threshold Based 
 

The pseudo-code for threshold based statistical processing method is shown in 

Figure 4. The inputs of this technique are the sensor dataset, Y, the number of 

observations, o, statistical information dealing with the Y dataset such as the historical 

mean (histMean) and historical standard deviation (histStd), and the number of 

standard deviations used to calculate the threshold (c). The outputs are the calculated 
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performance metrics which are reported in the results section. The sensor dataset, Y, is 

randomly split into a training set and test set. The training set is used to determine the 

model for each observation window. These models are then used with the test set to 

determine the prediction accuracy of threshold based averaging. The input values within 

the observation window of size o are compared with a specified threshold. The threshold 

is calculated using Equation (10). The threshold is calculated for all observation 

windows of size o for the sensor dataset, Y. This study takes into consideration C = {1, 2, 

3} which signifies investigating data within one, two, and three standard deviations (σ) 

away from the mean (µ). If the observation is less than or equal to the threshold value, 

the value is used in an average, which is used as the predicted value for all o 

observations within the window and to calculate the residuals.  

6. Results 
 

The results based on least squares, maximum likelihood estimation, segmentation 

averaging, and threshold-based statistical processing methods are presented for 

temperature, humidity, and energy usage sensors. Generated performance metrics are 

mean RMSE, relative error, and absolute error. The objective is to determine the 

number of observations, o, and statistical method that generates, in order of priority, the 

lowest RMSE, relative error, and absolute error. 

(a) Least Squares 
 

The least square results for all window sizes, o=6 (1 ½ hours), 12 (3 hours), 24 (6 

hours), 48 (1/2 day), and 96 (1 day) are shown in Table 1. Results from the training sets 

shows the lowest absolute error from o=6 for all sensor types. The trend from training 
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illustrates error increasing as o increases. The size that gave the smallest absolute error 

for test cases is o=24 for humidity and energy and o=12 for temperature data. 

(b) Maximum Likelihood Estimation 
 

The maximum likelihood estimation results for all window sizes, o=6 (1 ½ hours), 12 

(3 hours), 24 (6 hours), 48 (1/2 day), and 96 (1 day) are shown in Table 2. Results from 

the training sets shows the lowest absolute error from o=6 for temperature, humidity, 

and energy data. The trend from training illustrates error increasing as o increases. The 

size that gave the smallest absolute error for test cases is o=12 for temperature and 

humidity and o=96 for energy data. An interesting observation on testing for energy 

data is error increases as o decreases. 

(c) Segmentation Averaging 
 

The segmentation averaging results for all window sizes, o=6 (1 ½ hours), 12 (3 

hours), 24 (6 hours), 48 (1/2 day), and 96 (1 day) are shown in Table 3. Results from the 

training sets shows the lowest absolute error from o=6 for humidity and energy and 

o=12 for temperature data. The size that gave the smallest absolute error for test cases is 

o=48 for temperature and o=6 for humidity and energy data. 

(d) Threshold Based 
 

The threshold based results are shown in Table 4 through 6 for c = 1, 2, and 3 

respectively. Observation window sizes, o=6 (1 ½ hours), 12 (3 hours), 24 (6 hours), 48 

(1/2 day), and 96 (1 day) are investigated. Results from the training sets shows the 

lowest absolute error from o=6 for temperature, humidity, and energy data when c=1, 2, 

and 3. The trend from training illustrates error increasing as o increases. The size that 

gave the smallest absolute error for test cases is o=6 for temperature, humidity, and 
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energy when c=1 and 3. When c=2 for the test cases, the absolute error is minimal when 

o=6 for temperature and humidity and o=12 for energy data. 

7. Conclusion 
 

Autonomous data correction for building data is studied using statistical processing 

methods, namely least squares, maximum likelihood estimation, segmentation 

averaging, and threshold based. This is accomplished by using observation windows 

which define a subset of samples, size o, that are used to generate a model. Validation 

and correction occurs for each successive observation window within the sensor dataset. 

Tables 7 through 9 summarize the best performing cases for temperature, humidity, and 

energy data respectively. The threshold based technique performed best with 

temperature (c=2), humidity (c=2), and energy data (c=1).  

While it is anticipated that the temperature, relative humidity, and energy used in 

this study would follow similar patterns in other buildings, it should be noted that the 

sensor data used in this study came from one building and that additional study would 

be needed to confirm the degree to which these results generalize across the building 

stock. 

Future work in autonomous data correction for building data is studying other types 

of methods besides statistical such as filtering and machine learning techniques. Other 

data types will also be investigated such as heat flux, airflow, and liquid flow. The study 

of dependent data prediction which uses other sensor data will also be considered. 

Comparison of automated methodologies to corrupted or missing sensor data corrected 

by domain experts is planned to validate the utility of these approaches. 
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Illustrations 
 

 
Figure 1. Algorithm of least squares experimental setup. 
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Fig. 2. Algorithm of MLE experimental setup.  
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Fig. 3. Algorithm of segmentation averaging experimental setup. 
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Fig. 4. Algorithm of threshold based experimental setup. 
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Tables 
 
Table 1. Data Prediction Accuracy as a Function of Window Size Using Least Squares 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.1695 0.0209 0.016 2.153 0.036 0.024 6.639 2.202 0.051 
12 1.699 0.031 0.021 3.196 0.055 0.032 9.341 3.173 0.065 
24 2.272 0.041 0.027 4.352 0.070 0.042 10.157 3.508 0.071 
48 3.755 0.070 0.043 6.530 0.107 0.062 10.609 3.623 0.073 
96 55.385 0.941 0.741 56.946 0.947 0.623 15.784 1.172 0.095 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 4.652 0.093 0.066 8.045 0.152 0.093 21.547 7.483 0.171 

12 3.438 0.064 0.042 5.225 0.095 0.057 100.199 9.940 0.471 
24 5.812 0.086 0.053 6.096 0.095 0.054 24.657 8.900 0.123 
48 4.205 0.077 0.051 91.489 0.697 0.323 11.468 3.948 0.080 
96 56.136 0.953 0.745 56.877 0.952 0.626 16.173 1.185 0.098 

 
Table 2. Data Prediction Accuracy as a Function of Window Size Using Maximum 
Likelihood Estimation 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.824 0.034 0.023 4.229 0.072 0.043 9.953 3.523 0.072 
12 2.183 0.039 0.026 4.334 0.073 0.043 10.193 3.605 0.072 
24 2.839 0.048 0.033 5.683 0.092 0.054 10.48 3.726 0.074 
48 3.899 0.063 0.045 7.748 0.126 0.074 10.627 3.732 0.074 
96 4.862 0.079 0.056 9.733 0.161 0.093 10.691 3.764 0.074 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 2.398 0.047 0.031 4.553 0.083 0.049 11.104 4.234 0.084 

12 2.494 0.046 0.031 4.707 0.082 0.048 11.188 4.117 0.081 
24 3.012 0.052 0.036 6.029 0.101 0.059 10.815 3.859 0.077 
48 3.927 0.063 0.045 8.014 0.131 0.076 10.796 3.965 0.076 
96 4.893 0.079 0.056 9.951 0.168 0.096 10.924 3.919 0.076 
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Table 3. Data Prediction Accuracy as a Function of Window Size Using Segmentation 
Averaging 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 10.166 0.163 0.134 7.949 0.193 0.080 9.944 3.657 0.071 
12 10.015 0.161 0.131 15.140 0.251 0.161 10.548 3.679 0.075 
24 10.121 0.160 0.130 15.423 0.251 0.161 10.655 3.694 0.075 
48 10.350 0.160 0.130 15.744 0.250 0.161 10.808 3.711 0.075 
96 10.561 0.159 0.130 16.115 0.250 0.161 10.900 3.753 0.075 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 10.011 0.162 0.134 8.087 0.212 0.086 9.927 3.405 0.074 

12 9.881 0.160 0.131 14.911 0.251 0.162 10.407 3.716 0.076 
24 10.129 0.161 0.131 15.196 0.250 0.162 10.559 3.704 0.075 
48 10.253 0.158 0.129 15.727 0.249 0.159 10.515 3.733 0.075 
96 10.473 0.158 0.129 16.012 0.249 0.160 10.575 3.690 0.075 

 
Table 4. Data Prediction Accuracy as a Function of Window Size Using Threshold Based 
(c = 1) 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 2.017 0.039 0.025 4.081 0.072 0.042 11.099 2.400 0.073 
12 2.325 0.042 0.028 4.919 0.082 0.048 11.257 2.540 0.075 
24 3.021 0.051 0.035 6.451 0.102 0.062 11.371 2.591 0.075 
48 4.134 0.063 0.046 8.883 0.136 0.085 11.420 2.618 0.075 
96 5.137 0.080 0.058 10.852 0.169 0.105 11.329 2.658 0.075 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 1.944 0.039 0.026 3.931 0.073 0.042 10.186 2.413 0.073 

12 2.264 0.042 0.028 4.684 0.081 0.048 10.632 2.620 0.074 
24 3.008 0.052 0.036 6.308 0.102 0.062 10.941 2.603 0.074 
48 4.134 0.065 0.047 8.703 0.135 0.085 11.218 2.596 0.075 
96 5.074 0.079 0.057 10.759 0.171 0.104 11.724 2.538 0.077 
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Table 5. Data Prediction Accuracy as a Function of Window Size Using Threshold Based 
(c = 2) 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.995 0.038 0.025 3.746 0.067 0.038 10.194 3.671 0.074 
12 2.266 0.041 0.028 4.421 0.075 0.044 10.461 3.742 0.074 
24 2.889 0.050 0.034 5.788 0.095 0.055 10.546 3.695 0.074 
48 3.887 0.062 0.044 7.818 0.127 0.074 10.635 3.734 0.075 
96 4.852 0.079 0.056 9.760 0.162 0.093 10.723 3.762 0.075 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 1.918 0.038 0.025 3.618 0.067 0.039 9.707 3.594 0.073 

12 2.211 0.041 0.028 4.288 0.075 0.044 9.986 3.553 0.073 
24 2.822 0.049 0.034 5.585 0.093 0.055 10.549 3.756 0.075 
48 3.907 0.063 0.045 7.494 0.128 0.074 10.660 3.724 0.075 
96 4.874 0.079 0.056 9.820 0.166 0.095 10.772 3.698 0.075 

 
Table 6. Results of Data Prediction using TB (c = 3) 

TRAIN 

 Temperature Humidity Energy 
o RMSE RE AE RMSE RE AE RMSE RE AE 

6 1.994 0.038 0.025 3.746 0.066 0.038 10.139 3.706 0.073 
12 2.253 0.041 0.028 4.433 0.075 0.044 10.367 3.724 0.074 
24 2.884 0.049 0.034 5.783 0.094 0.055 10.536 3.696 0.074 
48 3.908 0.063 0.045 7.827 0.127 0.074 10.668 3.796 0.075 
96 4.849 0.079 0.056 9.763 0.163 0.099 10.753 3.740 0.075 

TEST 
 Temperature Humidity Energy 

o RMSE RE AE RMSE RE AE RMSE RE AE 
6 1.934 0.038 0.025 3.642 0.067 0.039 9.827 3.699 0.074 

12 2.247 0.042 0.028 4.288 0.075 0.044 10.152 3.711 0.074 
24 2.814 0.049 0.034 5.599 0.094 0.055 10.424 3.814 0.075 
48 3.849 0.062 0.044 7.732 0.127 0.075 10.604 3.626 0.075 
96 4.867 0.079 0.056 9.821 0.164 0.095 10.671 3.803 0.075 
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Table 7. Results of Best Performers for Temperature Data 
 Temperature 

TRAIN TEST 
o RMSE RE AE o RMSE RE AE 

LS 6 1.1695 0.0209 0.016 12 3.438 0.064 0.042 
MLE 6 1.824 0.034 0.023 12 2.494 0.046 0.031 

SA 12 10.015 0.161 0.131 48 10.253 0.158 0.129 
TB (c = 1) 6 2.017 0.039 0.025 6 1.944 0.039 0.026 
TB (c = 2) 6 1.995 0.038 0.025 6 1.918 0.038 0.025 
TB (c = 3) 6 1.994 0.038 0.025 6 1.934 0.038 0.025 

 
Table 8. Results of Best Performers for Humidity Data 
 Humidity 

TRAIN TEST 
o RMSE RE AE o RMSE RE AE 

LS 6 2.153 0.036 0.024 24 6.096 0.095 0.054 
MLE 6 4.229 0.072 0.043 12 4.707 0.082 0.048 

SA 6 7.949 0.193 0.080 6 8.087 0.212 0.086 
TB (c = 1) 6 4.081 0.072 0.042 6 3.931 0.073 0.042 
TB (c = 2) 6 3.746 0.067 0.038 6 3.618 0.067 0.039 
TB (c = 3) 6 3.746 0.066 0.038 6 3.642 0.067 0.039 

 
Table 9. Results of Best Performers for Energy Data 
 Energy 

TRAIN TEST 
o RMSE RE AE o RMSE RE AE 

LS 6 6.639 2.202 0.051 24 24.657 8.900 0.123 
MLE 6 9.953 3.523 0.072 96 10.924 3.919 0.076 

SA 6 9.944 3.657 0.071 6 9.927 3.405 0.074 
TB (c = 1) 6 11.099 2.400 0.073 6 10.186 2.413 0.073 
TB (c = 2) 6 10.194 3.671 0.074 12 9.986 3.553 0.073 
TB (c = 3) 6 10.139 3.706 0.073 6 9.827 3.699 0.074 

 


