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Abstract: Since commercial and residential buildings account for nearly half of the United States energy
consumption, making them more energy-efficient is a vital part of the nations overall energy strategy. Sensors
play an important role in this research by collecting data needed to analyze building performance. Given this
reliance on sensors, ensuring that sensor data is valid is a crucial problem. The solution we are researching
is machine learning techniques. We have looked at two such techniques: artificial neural networks and fuzzy
clustering. Artificial neural networks have been able to predict data, and thus correct data, for three of the
five sensors we are investigating. Our implementation of fuzzy clustering as a validation tool was not as
successful. Our method was able to cluster data into “correct” and “errant” clusters reliably, but only when
the points in the “errant” cluster were three to seven standard deviations away from their correct value.

I. INTRODUCTION

Commercial and residential buildings are the largest
consumers of energy in the United States, accounting for
41% of the nation’s total energy consumption.1 Clearly,
improving building energy efficiency is one of the most
important energy challenges we face, and better sensor
technologies can help accomplish this goal. Sensors are
used in buildings to analyze variables affecting energy use
and efficiency. Given our reliance on sensors, ensuring
that sensor data are valid emerges as a crucial problem.

Previous research into this problem by the Energy
and Transportation Science Division at Oak Ridge Na-
tional Laboratory has looked at statistical and filtering
techniques.2 These both use a sensor’s past data to try
to predict its future data. What we would like is a solu-
tion that can incorporate data from other sensors into the
predictions. The solution we investigate here is a set of
three machine learning techniques. Machine learning is a
branch of artificial intelligence that studies software that
can learn. We examine two such techniques in this work:
(1) artificial neural networks and (2) fuzzy clustering.

In the remainder of this work, we first describe our
data acquisition process and explain each of the machine
learning techniques in detail. We then examine the re-
sults of the application of each technique, and finally we
discuss what conclusion can be drawn from the work.

II. METHODS

????

A. Data acquisition

The sensors we used for this research came from ZE-
BRAlliance houses. ZEBRAlliance is a collaboration by
Oak Ridge National Laboratory, Department of Energy,
Tennessee Valley Authority, and industry partners to de-
velop four of the most energy-efficient houses on the mar-

ket. The houses were unoccupied during the study, but
they were made to simulate national average energy ex-
penditure. Each of the houses was equipped with over
250 sensors.2

We chose to study the data from five of the sensors of
one house: (1) outside temperature, (2) outside humidity,
(3) refrigerator energy, (4) heat pump water flow, (5)
and heat pump liquid line pressure.These are called our
target sensors. We did some of our initial testing with
1-min resolution data, but switched to 15-min resolution
data to reduce the number of data points to consider.

B. Artificial neural networks

Artificial neural networks (ANNs) are programs meant
to mimic the structure and function of the human brain.
Both are made of layers of neurons. Real neurons, as
seen on the left-hand side of fig. 1 on the following page,
receive input from each neuron in the previous layer
through their dendrites. Depending on the state of the
inputs received, the neuron may then fire its own output
to the next layer through its axon.3 Similarly, the artifi-
cial neuron, seen in the right-hand side of fig. 1 on the
next page, receives input from the neurons in the previ-
ous layer, which it uses to calculate a weighted sum f , as
in equation (1).

f =

N∑
i=0

wixi (1)

The final value of the output yi is the value of an activa-
tion function, g, with f as an argument. This is typically
taken to be either a purely linear function or the logistic
function, as seen in equation (2).

g =
1

1 + e−f
(2)

The range of the logistic function is [0,1]. It is similar to
the unit step function, but with a “softer” transition from
0 to 1. It is meant to mimic the firing of a real neuron.
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The unit step function is a better approximation of this,
but the logistic function is used because it is easier to
work with computationally.4

FIG. 1: A diagram of a real neuron and an artificial
neuron.

ANNs are arranged into layers. A network typically
consists of three layers: input layer, hidden layer, and
output layer. First, the input layer feeds input to the
hidden layer. The input layer does no calculations; thus,
it is not actually composed of neurons. There is one node
for each output. Next, the hidden layer receives from
the input layer and outputs to the output layer. This is
where most of the calculations are done. The activation
function of neurons in the hidden layer is usually the
logistic function. The number of neurons in the hidden
layer is chosen by the user. Having more neurons yields
better accuracy, but increases computational complexity.
The hidden layer can contain multiple layers of neurons
within itself. Finally, the output layer does a final round
of calculations to produce the final output of the network.
The activation function of neurons in the output layer is
often taken to be linear. The output layer has one neuron
for each output.

We wanted to use ANNs to predict data with a re-
gression model. Our method was to use 85% of the data
points we had to train the network and fit the model.
The remaining 15% percent were used to test the model
made during training. We used the root-mean-square er-
ror between the network output and the actual sensor
data for those points as our metric.

C. Fuzzy clustering

Fuzzy clustering is a variant on classical set theory. In
classical set theory, whether an element x of the universe
of discourse X is a member of a given set A is given by
the characteristic function, χ, of A,

χA(x) =

{
1 iff x ∈ A

0 iff x 6∈ A
. (3)

In other words, an element either is a member of a set
or it is not. Fuzzy set theory, on the other hand, al-
lows for a continuum of membership values given by the
membership function

µA(x) : X → [0, 1]. (4)

When µ is zero, x is not an element of A. When it is one,
x is completely a member of A. For values between zero
and one, x can be said to be “sort of” an element of A.5

The difference between classical sets and fuzzy sets can
be seen in fig. 2. The upper half is a classical set A inside
a universe of discourse. The universe is crisply divided
into regions of A and NOTA. In the fuzzy region in the
lower half of the figure, however, there is a gradient of
membership in A seen by the fading out of black.

FIG. 2: Comparison of classical sets (upper half) and
fuzzy sets (lower half).

We wanted to use fuzzy clustering to validate the data
of target sensors. Our method was as follows. We used
clustering to isolate incorrect, or “errant” points in their
own cluster, leaving “correct” points in their own clus-
ter. To make errant points, we performed the following
operation to randomly-selected data points:

xe = x+Nσ (5)

where x is the original value of the data point, xe is the
new, errant value, σ is the standard deviation of the origi-
nal data set, and N is a scalar dubbed the errancy factor.
By choosing random points to be errant and increasing
N , we can see how far the data must be made errant
before the fuzzy clustering algorithm will group errant
points mostly (or entirely) into their own cluster.

To test how well this clustering happened, we counted
the total number of data points in each cluster, T , and
the number of errant points in each cluster, e. Ideally,
for the correct cluster we should have e/T = 0, and for
the errant cluster we should have e/T = 1. To determine
whether a given point was “in” a given cluster, we used
a threshold value, t. If for a given point x it is true that
µerrant(x) > t, then x is in the errant cluster. Similarly,
if µcorrect(x) > t, then x is in the correct cluster. Note
that as long as t is greater than 0.5, a point cannot be in
both clusters, since µerrant(x) + µcorrect(x) = 1.

We used the fuzzy c-means algorithm as described by
Bezdek et al.7
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III. RESULTS

A. Artificial neural networks

ANNs proved to be quite effective at predicting data
for three of the five sensors: temperature, humidity, and
pressure. As fig. 3 on the next page shows, for these three
sensors, the root-mean-square error (RMSE) between the
network output and the actual target data for 500 net-
works was mostly less than 8% of the respective sensor’s
mean value.

For the other two sensors, liquid flow and refrigera-
tor energy, this was not the case, as fig. 4 shows. For
the energy sensor, the RMSEs are mostly around 152%.
We suspect this poor result is due to the energy sen-
sor’s somewhat erratic distribution of values. For the
flow sensor, its RMSEs are nearly all very low. How-
ever, this sensor has many readings of 0 – dozens in a
row, in fact. With this sort of distribution, a constant 0
function would probably yield a low RMSE, but may not
necessarily reflect a good prediction.

FIG. 3: Histogram of root-mean-square error (RMSE)
of 500 networks each for temperature, humidity, and

pressure sensors. The RMSE values are expressed as a
percentage of their respective sensor’s mean value.

B. Fuzzy clustering

Our fuzzy clustering validation method proved not to
be useful. In fig. 5, we see the concentration of errant
points, e/T , as a function of the errancy factor for the
correct and errant clusters with differing values of t for
the temperature sensor. In this particular simulation,
20% of the total population was errant. As the figure
shows, the concentration for the errant cluster does not
get close to 1 until the errancy factor is about 4, meaning
the errant data is about four standard deviations above
its original value. When the concentration is not near 1,
there are still a lot of correct points in the errant cluster.
This means that this validation method is not effective
until a large chunk of data are off by several standard

FIG. 4: Histogram of root-mean-square error (RMSE)
of 500 networks each for liquid flow and energy sensors.
The RMSE values are expressed as a percentage of their

respective sensor’s mean value.

deviations. A validation method that only works when
data is wrong by that amount isn’t of much use. We ob-
tained similar results with the other sensors. When we
decreased the number of errant points, the data had to
be even more wrong before the errant points were clus-
tered by themselves – as high as seven standard devia-
tions when 5% of the population was errant.

FIG. 5: Concentration of errant points, e/T , for
correct and errant clusters
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IV. CONCLUSIONS

In this paper, we have shown that artificial neural net-
works can be good predictors of sensor data for some
sensors. We demonstrated a fuzzy clustering validation
method which was unsuccessful.
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