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ABSTRACT
Building Energy Modeling (BEM) is an approach to model
the energy usage in buildings for design and retrofit pur-
poses. EnergyPlus is the flagship Department of Energy
software that performs BEM for different types of buildings.
The input to EnergyPlus can often extend in the order of a
few thousand parameters which have to be calibrated manu-
ally by an expert for realistic energy modeling. This makes
it challenging and expensive thereby making building en-
ergy modeling unfeasible for smaller projects. In this paper,
we describe the “Autotune” research which employs machine
learning algorithms to generate agents for the different kinds
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of standard reference buildings in the U.S. building stock.
The parametric space and the variety of building locations
and types make this a challenging computational problem
necessitating the use of supercomputers. Millions of En-
ergyPlus simulations are run on supercomputers which are
subsequently used to train machine learning algorithms to
generate agents. These agents, once created, can then run
in a fraction of the time thereby allowing cost-effective cal-
ibration of building models.

Categories and Subject Descriptors
I.2 [Distributed Artificial Intelligence]: Intelligent agents;
C.5.1 [Large and Medium (“Mainframe”) Comput-
ers]: Super (very large) computers

General Terms
Design, Experimentation, Performance, Standardization

Keywords
Building Energy Modeling, Supercomputer, Parametric En-
semble, Machine Learning, Calibration, Big Data

1. INTRODUCTION
In the year 2010, buildings consumed 41% of the primary en-
ergy (up from 39% in 2006 [16]) constituting a larger share
than either transportation (28%) or industry (31%) [17].
This is approximately $400 billion and up from $220 billion
in 2006. Buildings consumed 74% of all electricity and 34%
of all natural gas produced in the United States thereby
contributing 40% of the carbon dioxide emmissions in the
United States [17]. The Department of Energy’s (DOE)
Building Technologies Office (BTO) has a significant stake
in improving the energy footprint and efficiency of the build-
ings sector for economic, social, and environmental benefits.

The accurate modeling of buildings can serve as an impor-
tant tool in understanding the energy footprint for designing
new buildings as well as retrofitting existing buildings for en-
ergy savings. The large number of existing buildings that
do not employ energy efficient technologies present a low-
hanging fruit that could significantly and cost- effectively
contribute to energy savings across the entire country by



the application of retrofit packages. Primary to this objec-
tive is the realistic modeling of the buildings that accurately
reflect potential energy savings for different scenarios [2, 3,
4, 13].

Each building is unique and the model representation of the
building tends to be a one-off activity. The accurate mod-
eling of all building properties is laborious and requires ex-
pertise. In the “business-as-usual” model, experts manually
adjust different input parameters until satisfactory results
are obtained. The time required for this can sometimes be
in the order of a few months. Clearly, the cost of such an ac-
tivity makes building energy modeling unfeasible for smaller
buildings.

While buildings may be one-off, they still must comply to
building code. DOE has standard reference models of build-
ings that are used nationwide and are representative of the
U.S. building stock [12]. These building models are used for
normative analysis to determine how policy changes would
affect energy consumption in the US, determine tax trade-
offs, design building codes, trade-off incentives, and eval-
uation of the effect of climate change on buildings. To a
large extent, this addresses the challenge of accurately mod-
eling and scaling the building types across American Society
of Heating, Refrigerating, and Air-Conditioning Engineers
(ASHRAE) climate zones [2, 3, 13] and projecting how spe-
cific policies or retrofit packages would maximize return-on-
investment with subsidies through federal, state, local, and
utility tax incentives, rebates, and loan programs.

This paper describes the “Autotune” methodology [14, 15]
being developed at the Oak Ridge National Laboratory which
automatically calibrates a building energy model using sup-
plied utility data for building retrofit purposes. This is
achieved by using trained machine agents which are gener-
ated from large parametric simulations run on supercomput-
ing systems using machine learning algorithms. Millions of
parametric simulations are run for residential and commer-
cial building types across various climate zones for training
these machine agents.

The development of an autotuning capability [15] (figure
1) to intelligently adapt building models or templates to
building performance data would significantly facilitate mar-
ket adoption of energy modeling software, aid in accurate
use cases such as the effective retrofit strategies for exist-
ing buildings, and promote BTP’s goals of increased market
penetration for energy modeling capabilities.

2. AUTOTUNE METHODOLOGY
EnergyPlus (E+) is DOE whole building energy simulation
tool. It currently consists of approximately 600,000 lines
of Fortran code and has multiple algorithms for simulating
thermal heat flow of a building, occupancy schedules, equip-
ment performance curves, water heating, lighting, weather
interaction, etc. Given a building description, including such
things as the thermal conductance and specific heat of ev-
ery material in every wall assembly, E+ can generate out-
puts such as whole-building energy electrical consumption or
temperature at a given location. E+ can contain over 3,000
input parameters for a regular residential building which
must be tuned to reflect the building properties. Besides

Figure 1: The business-as-usual approach for model
calibration requires significant time from skilled ex-
perts, rendering simulation-based decisions infeasi-
ble for most building efficiency projects. Autotune
uses intelligent algorithms to remove cost by auto-
matically calibrating an energy model to utility bill
data.

tuning, another challenge is obtaining quality data or rep-
resentative reference values for the different material prop-
erties. Various experiments [5] have established that there
are significant mismatches between the supplier’s product
specifications and those provided by the ASHRAE hand-
book. There are often deviations in material properties of
the product against those on its label and as specified by the
supplier. These and various construction factors cause the
finished building to deviate from the original model of the
building. Retrofit packages are useful for existing buildings
since such efforts provide a significant return on investment
for existing buildings.

To be able to reasonably model the above scenarios, a build-
ing energy model must be adjusted to match measured data.
This matching is typically performed manually by a building
modeling expert and is a non-repeatable, time-consuming,
expensive, and laborious process. A very large number of
building models start out with the DOE reference build-
ings (which are most representative of the U.S. building
stock) and go through the manual adjustment of geometry,
HVAC properties, insulation, fenestration, infiltration prop-
erties, etc. The high cost of building energy model genera-
tion and calibration makes it unfeasible to apply to smaller
projects thereby creating a gap in the energy assessment
for a large majority of smaller buildings. “Autotune” [15]
provides a methodology to cost effectively perform building
energy model calibration providing practitioners in the field
with an option to apply BEM to smaller buildings.

The goal of the “Autotune” project is to save the time and
effort spent by energy modelers in adjusting simulation in-
put parameters to match the measured data by providing
an ‘easy’ button (figure 1). An initial model of the build-
ing is provided to Autotune along with a set of measured
sensor data. Autotune then spins off the trained machine
learning agents and returns a tuned model of the building.
Early experiments [?] showed that even with a subset of



manually-tuned parameters, Autotune was 60% as accurate
in an overnight tuning process as 2 man-months from ex-
perts over two calendar years.

The individual trained machine agents are generated by
performing machine learning on large parametric simula-
tions for the different classes of standard DOE buildings [12]
across different climate zones. At the core of the Autotune
methodology is a set of multi-objective machine learning
algorithms that characterize the effect of individual vari-
able perturbations on EnergyPlus simulations and adapts
the given model to match its output to the supplied sensor
data (figure 2). Once machine learning agents are tuned and
available, the computational cost of tuning a typical user’s
building model is reduced to matter of a few hours using
widely available desktop computational resources.

The system is currently being demonstrated to match a sub-
set of 250 sensors of 15-minute resolution data in a heavily
instrumented residential building in addition to DOE’s stan-
dard reference building models [12] for a medium sized office,
a warehouse, and a stand-alone retail building. Further, the
simulations comprise of three vintages (old, new, and re-
cent) of the DOE commercial reference buildings across 16
different cities representing the different ASHRAE climate
zones and sub-zones.

2.1 Parametric Space
EnergyPlus requires about ∼3,000 input parameters. The
computational requirements for performing parametric anal-
ysis on ∼3,000 EnergyPlus inputs would require 1x10138

lifetimes of the known universe on the world’s fastest su-
percomputer. Several numerical algorithms and intelligent
experimental design are used which allow convergence to
a solution without brute-forcing every combination of in-
puts. Even with intelligent optimization, simulation runtime
forces consideration of advanced techniques with parame-
teric sampling, high performance computing, and machine
learning to make calibration of software models computa-
tionally feasible.

2.2 Parametric Input Sampling
Building technology experts who routinely perform calibra-
tion of BEMs analyzed the various inputs and picked 156
most important parameters in their experience for a heav-
ily instrumented residential building. The modelers further
ranked these into three importance categories and defined
realistic bounds and incremental step size values for the pa-
rameters. Furthermore, various meta-parameters were de-
termined which allow several individual parameters to be
varied as a function of a single input parameter.

Even with ∼156 input parameters and three levels of incre-
mental values for each of the simulations, we are looking
at 10 million simulations for one building which translates
to about 2 million compute hours for just the simulations
alone, let alone time required for management of the data,
machine learning, and subsequent analysis. Effective, scal-
able methods to sample the input space is crucial.

Besides grouping of the sample space by importance, we
have also used low-order Markov ordered simulations to de-
termine variables with a monotonic effect on sensor data

that can reliably be interpolated to estimate impact of a
given input. The source of variance of individual variables
is being used to guide sampling rates of the more sensi-
tive inputs. Finally, experts in multi-parameter optimiza-
tion will be investigating computational steering algorithms
to determine the optimal sampling strategy for the remain-
ing space beyond the brute-force sampling of higher order
Markov chains of Monte Carlo simulations.

In summary, a total of 8 million simulations are planned
of which about 5 million are for multiple residential homes,
and about 1 million each for medium-offices, warehouses,
and stand-alone retail buildings.

2.3 High Performance Computing
Time on several supercomputing systems was competitively
awarded and used to demonstrate the scalability of our al-
gorithms and code for the massively parallel leadership-class
computing systems. Systems include the 1024-core shared
memory Nautilus, 2048-core Frost, and the 299,008-core Ti-
tan which runs at 20 petaflops. The Nautilus machine has
4 TB of global shared memory visible to every processor
on the system while the other machines have a distributed
memory model. It is worthwhile to mention that bulk of
the machine learning and tuning efforts have been done on
Nautilus, which is an XSEDE resource.

While in theory this is an embarrassingly parallel problem
(parametric ensemble) and should be easy to parallelize,
various complicating factors make this difficult to scale in
practice. First, EnergyPlus was developed as a desktop ap-
plication and was not supercomputer ready. In a typical
execution trace for a single simulation, a sub-directory and
a large number of files (12+ files amounting to 100+MB)
are created. Second, constant moving and soft-linking of the
files are done as the simulation workflow executes. Third,
an annual simulation for warehouses with 15-minute output
of 82 channels is 35MB in size and currently needs to be
stored on disk for later analysis. For other types of build-
ings, the output data is much larger in number of variables
and consequently, file size. In other words, the entire process
is particularly I/O intensive, which complicates the scalabil-
ity of parallel execution on supercomputers. We attempt to
mitigate these issues in many ways.

The particularly I/O intensive nature of the software en-
gine delivered very poor scaling performance which were
expectedly traced to the bandwidth and Lustre file-system
saturation. In order to alleviate the filesystem bottleneck,
we made use of the memory-based virtual file-system which
gave us multiple orders of magnitude improvement. In ad-
dition, we block-partitioned and streamlined our input and
output mechanisms as outlined below:

Step 1: EnergyPlus has a large number of supporting exe-
cutable programs and associated files. A typical E+ simu-
lation is essentially a workflow where multiple executables
are invoked with each producing temporary files ingested
by subsequent programs. We minimized the engine’s folder
structure to include only the binaries required for our sim-
ulations, heavily optimized the execution scripts to reduce
I/O, and compressed the minimized file structure for quick
loading into the virtual filesytem. In adition, we compiled a



Figure 2: Comparison of two models in an ensemble (top) and the corresponding sensitivity analysis of
changes in simulation output (middle) is compared to sensor data from a real building (bottom) in order to
allow optimized calibration of input parameters so simulation output matches measured data.

statically linked version of the main simulation engine [1].

Step 2: To reduce I/O, we performed a pre-processing step
in which we grouped the inputs into blocks of 64 simula-
tions each and packed them into compressed tarballs. This
reduces the number of files fetched by a factor of 64 and
reduces the size by ∼60%.

Step 3: For Nautilus, individual jobs can be placed on in-
dividual processors using the ‘dplace’ command. A heavily
modified job submission script allows us to request a spe-
cific number of cores and provide a count of the number of
batches to run. For example, a request for 256 cores with 90
batches would start out by picking out 256/64 = 4 blocks
of compressed input files and the simulation engine, and
then parallelly extract them to the virtual file-system. Each
core then executes a simulation (using an explicit ‘dplace’
command which runs a job on a core). After completion,
the data is moved to the physical file-system and the next
batch of 4 compressed files is loaded. This is repeated 90
times. Table 1 illustrates the scaling performance on Nau-
tilus. The increased shared memory access penalty in the
case of jobs larger than 128 cores can be attributed to the
memory abstraction layer and the heavily modified job sub-
mission script which itself added a significant overhead for
the individual dispatching of jobs to their target cores.

Step 4: For Frost and Titan, the virtual file system (tmpfs)
is shared-memory visible within a node. Additionally, these
are Cray systems and do not use ‘dplace’ for direct place-
ment of individual jobs on a processor. We wrote a message
passing interface (MPI) program that makes each node load
the engine and a block of 64 runs into its shared-memory.
Since each node has 16 processors and there are 64 files in a
compressed block of inputs, the node makes four iterations
to run all 64 simulations.

Table 1: E+ run times for a residential building on
the Nautilus supercomputer, inclusive of disk write
time.

Procs Wall-clock
Time
(h:mm:ss)

E+ sims Avg. E+
Time
(mm:ss)

32 0:02:08 32 2:08
64 0:03:04 64 3:04
128 0:04:11 128 4:11
128 0:34:24 1024 4:18
256 1:25:17 2048 10:40
512 0:18:05 1024 9:02

Step 5: Once a block of simulations is complete, all the out-
put files are added to a tarball and moved to disk reducing
I/O significantly. This ranges from 1.5 to 5.3 GB in size de-
pending on the type of simulation. The virtual file system
is cleaned and prepared for the next block to run.

With Titan, we have observed weak scalability upto 131,072
cores and expect the trend to continue if we run even larger
batches. Tables 1 and 2 illustrate the scalability observed
on the Nautilus and Titan machines.

About 270TB of raw data, compressible to approximately
70TB (which is still very large), is expected to be gener-
ated from these simulations. This is the size of simulation
data prior to any operations performed as part of the anal-
ysis processes. There are certain logical partitions in the
data such as type of building simulation, its vintage, loca-
tion, and also the parameter sampling and grouping strat-
egy which helps us in breaking down the data management
space. While many database-related technologies have been
tested and explored, including MySQL, noSQL/key-value
pair, columnar, and time-series database formats, effectively
storing this data for quick retrieval and analysis remains a
challenge. We implement a hybrid solution with a part of the



Table 2: E+ run times scaling chart for a commercial
building on the Titan supercomputer, inclusive of
disk write time.

Procs Wall-clock Time (mm:ss) E+ sims Avg. E+
Time
(mm:ss)

16 18:14 64 04:34
32 18:19 128 04:35
64 18:34 256 04:39
128 18:22 512 04:36
256 20:30 1024 05:08
512 20:43 2048 05:11
1024 21:03 4096 05:16
2048 21:11 8192 05:18
4096 20:00 16384 05:00
8192 26:14 32768 06:34
16384 26:11 65536 06:33
65536 44:52 262144 11:13
131072 68:08 524288 17:02

summarized data entered in a database and readily accessi-
ble for querying and analysis while and the raw data being
fetched on demand. This data is currently provided with no
guarantees since the entire data queryable with an assured
turnaround time (a solution similar to a hadoop stack) for
queries is currently infeasible.

3. CALIBRATION APPROACHES
There are many different simulation calibration approaches
in the literature. All approaches can be grouped into manual
procedural calibration methodologies and semi-automated
statistical calibration procedures. The manual calibration
methodology generally involves constructing a manual audit
process for incorporating environmental information into the
engineer’s simulation parameter calibration process. The
statistical method involves engineers or domain experts se-
lecting the most important simulation parameters, model
outputs, environmental measurements for calibration, and
mappings between simulation outputs and environmental
measurements, which results in a semi-automated calibra-
tion process. The calibration methodology employed in Au-
totune uses feature selection to determine the most impor-
tant sensors with respect to the overall most important cali-
bration target. In addition, surrogate-modeling is employed
for the construction of large-scale surrogate models that can
facilitate calibration and reduce the calibration runtime to a
range manageable on commodity hardware for a casual user
base.

3.1 Surrogate and Inverse Modeling
Surrogate generation or meta-modeling typically uses a few
classical statistical techniques — Ordinary Least Squares
(OLS) linear regression, Multivariate Adaptive Regression
Splines (MARS), Kriging, and Radial Basis Functions (RBF).
In a general sense, any simulation engine can be conceived
of as a function that maps simulation inputs to simulation
ouputs. Surrogate models are a way to take a set of in-
put and output data from a simulation engine and learn
to predict output from the input by effectively approximat-
ing the simulation engine function. Inverse models, on the
other hand, can be used to predict simulation engine inputs
from the simulation engine outputs (or corresponding sensor
data) by effectively approximating the inverse of the simu-

lation engine function. We discuss both use cases in the
context of this project.

Fitting a surrogate model that uses the key inputs allows
researchers to calibrate simulations around these key inputs
much more quickly than by solving the physics equations en-
coded in the entire simulation engine. This speedup comes
with a tradeoff in modeling accuracy, so surrogate models
should only be used for quick initial exploration of model
options in the search space before transitioning to the full
simulation engine. The importance of surrogate modeling
for a given calibration task is proportional to the simula-
tion engine runtime, surrogate model runtime, and the ac-
curacy of the surrogate model for the current calibration
task. Given a surrogate model’s dependence on an adquate
training set, care should be taken in selection of the proper
inputs, (building) models, and simulation outputs. When
the examples used for training the surrogate model are not
representative of the current calibration task, the training
database and surrogate model are considered “brittle” with
a proportional inaccuracy to be expected from surrogate es-
timations. As discussed in 2.3, ∼300TB of simulation data
was created from ensemble runs to serve as training data.
The models used were a standard residential model as well as
DOE reference buildings for a medium sized office, a ware-
house, and a stand-alone retail building since they are the
most popular building types in the U.S. by either number
of buildings or total square footage. The simulation en-
gine used in this study is EnergyPlus, so we will refer to
the surrogate model thus derived as approximately Energy-
Plus (∼E+). Different surrogate modeling algorithms were
scaled to high performance computing systems[7] and were
tested on 156 building inputs with 80-90 outputs for a subset
of the simulation data. Lasso regression and feed forward
neural networks (FFNN) were able to attain an average per-
variable CV error of 1% with 4 seconds of runtime rather
than 3-7 minutes of whole-simulation runtime[8]. In prac-
tice, this is used to quickly prune the search space.

The goal of model calibration could be realized with a suf-
ficiently accurate inverse model. This is difficult to achieve
in practice for many reasons: there is often not a 1-to-1 cor-
respondence between available sensor data and simulation
output, a mathematical mapping from sensor data to out-
put variables can be difficult or intractable, sensor data is
imperfect (missing values, saturation, sensor drift), brittle-
ness due to available training data, and inaccuracy of current
inverse models to capture temporal variability. Few simula-
tion engines permit one to “run the simulation backwards”,
but inverse modeling allows creation of this inverse func-
tion. This is done by solving an inverse optimization prob-
lem using actual measured data, which is more efficient than
directly solving the inverse optimization problem with the
exact software simulation. Lasso regression with Alternat-
ing Direction Method of Multipliers (Lasso-ADMM) versus
Bayesian regression with a Markov Network called a Gaus-
sian Graphical Model (GGM) were able to reliably identify
each input parameter’s average value but with spread that
couldn’t be captured with the temporal dynamics of building
performance[9]. Since we are using EnergyPlus, we refer to
the inverse model so dervied as inverse EnergyPlus (!E+).
In practice, this inverse function allows creation of poten-
tially close building models to function as seed points for



the search algorithm to perform calibration.

3.2 Sensor-based Energy Modeling
Sensor-based energy modeling (sBEM) was a proposed data-
driven methodology to begin addressing BEM’s inaccuracy
of both model inputs and complex algorithmic encoding of
simulation functionality. With the traditional BEM ap-
proach involving an average of approximately 3,000 simu-
lation inputs and 600,000 lines of Fortran code, building
scientists and practitioners often lack sufficient information
to properly encode information required for the traditional
BEM process, such as: physical properties of all materials in
a building, detailed weather data at that location, gap be-
tween the as-designed and as-built building, actual use of the
building (e.g. occupant behavior), and scalable algorithmic
interactions for new products or assembly methods. sBEM
can be viewed as a hybrid between “forward” modeling and
“inverse” modeling approaches. This data-driven approach
assumes that the sensor data provides a viable model for the
entire building: the “forward” component. This means that
a building equipped with sensors creates sensor data which
defines the state of the building, including weather, build-
ing envelope, equipment, and operation schedules over time.
Through the application of machine learning algorithms, an
approximation of the engineering model is derived from sen-
sor data statistically: the “inverse” component. A machine
learning case study was employed using one of our heavily
instrumented field demonstrate buildings to determine the
best algorithms for predicting future whole building energy
consumption[6] from 144 sensors collecting data every 15
minutes as well as the best subset of sensors.

This sBEM approach is significiantly different from stan-
dard domain knowledge and engineering practice due to the
use of sensor data and machine learning techniques rather
than inputs (often based on averages) and manually-derived
algorithmic approximations of physics. Additional simu-
lation hybridization work is needed to bridge the gap be-
tween sBEM’s complex sensor-level terms such as “reduce
heat flows through the surface at the framing in terms of
units of British thermal units per hour per square-foot de-
grees Fahrenheit” to the simpler and actionable conceptual
approach of “add insulation for a higher R value”. In to-
day’s business environment, the traditional approach is nec-
essary for cost-effective design or retrofit to achieve energy
efficient buildings. Potential sBEM advantages include in-
creased specificity of calculations to the needs of a given set
of inputs and question, increased accuracy, significantly re-
duced runtime, and the potential that manual development
of simulation algorithms may no longer prove necessary.

4. MACHINE LEARNING AGENTS
Machine Learning Suite (MLSuite) is a collection of several
different machine learning algorithms and software imple-
mentations into a single HPC-enabled system [11] for min-
ing on large data and has general extensibility to search and
optimization problems across multiple domains.

From a software perspective, MLSuite is able to easily co-opt
the implementation of dozens of algorithms across different
software packages through the use of an eXtensible Markup
Language (XML) interface. MLSuite currently supports al-
gorithms from Matlab and related toolboxes, the statistical

programming language R, libSVM (an open source library
for support vector machines), and others. It also supports
single-line parametric definitions of algorithm-specific pa-
rameters, input orders, supervisory signals, etc. This allows
large-scale testing to identify the best algorithm instance
for a given problem, saves error-prone reimplementation of
existing algorithms, allows integration of industry-leading
software packages, and supports frequent updates for those
packages. The collection of assimilated machine learning al-
gorithms relevant to this scalability study are shown in Ta-
ble 3. MLSuite also allows arbitrary definitions of sequential
jobs and parallel tasks so that “ensemble learning” can be
instantiated; by allowing the output of a specific algorithm
to become the input of another, entire networks of machine
learning agents can be constructed. This is used in the Hi-
erarchical Mixture of Experts (HME) and Fuzzy C-Means
(FCM) examples where clusters of similar simulations are
identified and then individual machine learning agents are
trained only a specific cluster in order to generate a local
expert. This type of data space partitioning is beneficial for
scalable problem solving on big data.

From a hardware perspective, MLSuite has the capability to
operate on supercomputers or a network of individual com-
puters. A modifiable Python script is used to launch an ML-
Suite file via the HPC job submission system. If all required
resources are in place, the MLSuite job will continue to run
parametric ensembles of machine learning agent tasks until
completion and then provide a multi-metric summary at the
end which quantifies how well each instance performed. Al-
though MLSuite was extended to allow submission to multi-
ple supercomputers, it currently performs no load-balancing
for the defined set of tasks. MLSuite also supports a network
of individual computers where IP addresses can be listed and
authentication information provided to run agents on indi-
vidual computers. This has been invoked reliably on ∼40
Linux machines in a university computer lab using maximal
niceness settings.

MLSuite is used in several specific ways as part of the Au-
totune project [15]:

First is the exploration of a more data-driven, sensor-based
energy modeling (sBEM) [10] through machine learning pre-
diction of building performance as a function of observed
data using statistical methods rather than complex, physics-
based, engineering algorithms [6].

Second, usage is speeding up annual EnergyPlus simulations
by creating surrogate simulation engines that trade-off ac-
curacy for order of magnitude speedup [8].

Third, creating inverse simulation engines that use sensor
data (corresponding to simulation output) to predict an an-
ticipated set of simulation input parameters, which can act
as seed points for further exploration of the true inputs.

Fourth, it is being used as a sensor quality assurance mech-
anism. It both fills in missing values and detects outliers in
time-series data by intelligently predicting the anticipated
value as a function of temporal patterns for a specific data
channel in combination with spatial patterns of other data
channels (e.g. inferential sensing).



Table 3: Different types of learning systems in use
and their acronyms for reference in the scalability
tables.

Learner Type Acronym
Linear Regression REG
Feed Forward Neural Network FFNN
Hierarchical Mixture of Linear Regression Ex-
perts

HME-REG

Non-linear Support Vector Regression SVR
Hierarchical Mixture of Feed Forward Neural
Network Experts

HME-FFNN

Hierarchical Mixture of Least-Square Support
Vector Machine Experts

HME-LSSVM

Fuzzy C-Means clustering with local Feed For-
ward Neural Networks

FCM-FFNN

All learning systems combined (suite run) All

The cross-validated prediction accuracy and scalability of
machine learning can vary dramatically by algorithm, algo-
rithmic parameters, input features, data input order, super-
visory signal for the question under study, and other dimen-
sions. It is important to take these into account when lever-
aging HPC resources in order to increase effective use of the
hardware resources. For compute-bound machine learning
tasks, traditional HPC or networked computers were used,
whereas memory-bound machine learning tasks were run on
a shared-memory HPC architecture. Tables 4, 5, and 6 il-
lustrate the runtime and scalability of many algorithms in-
vestigated, primarily by use of the shared-memory Nautilus
supercomputer.

Table 4: MLSuite scalability of actual run times by
algorithm.

Learner Jobs 1 core
[hours]

4
cores
[hours]

90 cores
(1-core
per job)
[secs]

120
cores
(4-cores
per job)
[secs]

REG 10 0.008 0.001 0.273 0.226
FFNN 60 1.370 0.688 82.295 82.295
SVR 10 0.047 0.040 17.097 14.344
HME-REG 90 1.329 1.172 53.17 140.590
HME-FFNN 540 482.903 245.633 21200.617 30376.072
HME-
LSSVM

90 1.257 0.536 50.288 64.348

FCM-FFNN 420 395.850 197.908 1979.273 2770.711
All 1220 533.092 271.160 22924.789 33241.826

Table 5: MLSuite average run time by algorithm
using a 1 and 4 cores per job.

Learner Avg. Job Runtime (1
core) [secs]

Avg Job Runtime
(4 cores) [secs]

REG 0.273 0.226
FFNN 82.295 41.302
SVR 17.097 14.344
HME-REG 53.170 46.863
HME-FFNN 3533.436 1687.560
HME-LSSVM 50.288 21.449
FCM-FFNN 395.855 197.908
All 1637.485 810.776

The major limitations for big data mining is the compu-
tational and memory requirements of current algorithms.

Figure 3: A portion of the HPC-generated
parametric ensemble of building simulations
is made publicly available through several
Autotune software-as-a-service mechanisms at
http://rsc.ornl.gov/autotune.

Some algorithms traditionally require the entire dataset to
reside in memory so partitioning the problem or using out-
of-core techniques becomes important. One could also mod-
ify the algorithm itself for enhanced scalability. As an ex-
ample, we consider Least Squares Support Vector Machines
(LS-SVM) and Kernel Ridge Regression (KRR). Contribu-
tions have been made to the theory behind these algorithms
to allow these O(n3) algorithms to be approximated with an
l-fold cross-validation (CV) method with runtime O(n log n)
that requires only a very small tradeoff in accuracy for typ-
ical datasets[7]. This allows application of these algorithms
to much larger datasizes in a computationally tractable amount
of time as seen in 6.

Table 6: Scalability improvements by replacing
exact Leave-One-Out (eLOO) with approximate
(aLOO) for Least Squares Support Vector Machines
(LS-SVM) and Kernel Ridge Regression (KRR) in-
volving minimal trade-off in accuracy with example
sizes going from 8,192 to 1 million [solution time in
seconds].

# Examples 213 214 215 216 217 218 219 220

eLOO 4.43 35.25 281.11
aLOO-LSSVM 1.3 2.6 5.32 10.88 22.45 47.41 101.36 235.83
aLOO-KRR 0.54 1.06 2.14 4.3 8.55 17.28 35.39 68.22

5. PUBLIC FACING PORTAL
The parametric simulations run by supercomputers has been
uploaded to a centralized database to allow public access
to this data (figure 3). Several tools have been developed
for easily defining and running parametric E+ simulations,
compressing data, and sending to a centralized server. The
data storage and access software has been architected as a
distributed, heterogeneous, client-server framework. Figure



3 shows the various software components and methods for
accessing the data: a web-based input file reconstructor,
command-line access for MySQL queries, phpMyAdmin for
GUI-based interaction with a data subset, a webpage for up-
loading simulation data, and a software tool named ‘Eplus-
Genius’ that leverages the power of idle desktops to run En-
ergyPlus simulations and upload of the results to a database.
In addition to web-access to different tools, a means of pro-
viding a user with an easy way to develop a building model
using available templates for different kinds of buildings is
in progress. This, along with user provided sensor data will
help in making Autotune available as a web-service.

6. CONCLUSIONS
The successful completion of the Autotune effort will go a
long way in alleviating the tedious task of tuning a building
energy model to sensor data. The employment of machine
learning agents performs a multi-objective optimization of
the input parameters to provide a solution that best matches
the input sensor data. The refinement and dimension re-
duction of the input parameter space to 156 important ones
identified by the experts helps to reduce the computational
space. Further, various methods to scientifically sample the
input parameter space helps to reduce the computational
space.

The paper highlights the scientific contribution of automat-
ing BEM calibration and the technical challenges faced in
simulating a very large set of simulations using an engine
that has been developed for desktop applications, and in
the process, generating a large amount of data. We expect
that lessons learned and software developed will be useful
for researchers who intend to run large ensembles and per-
form data mining. We also hope that some of the insight
gained in analyzing, moving, and managing large data across
hardware platforms will provide beneficial insight and help
researchers in planning such endeavours. Lastly, we also
expect that the open availability of the parametric simula-
tion datasets for the standard DOE reference buildings will
directly benefit the building sciences community.
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