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Abstract

EnergyPlus is the U.S. Department of Energy’s flagship whole-building energy

simulation engine and provides extensive simulation capabilities. However, the

computational cost of these capabilities has resulted in annual building simula-

tions that typically requires 2–3 minutes of wall-clock time to complete. While

EnergyPlus’s overall speed is improving (EnergyPlus 7.0 is 25–40% faster than

EnergyPlus 6.0), the overall computational burden still remains and is the top

user complaint. In other engineering domains, researchers substitute surrogate

or approximate models for the computationally expensive simulations to im-

prove simulation and reduce calibration time. Previous work has successfully

demonstrated small-scale EnergyPlus surrogate models that use 10–16 input

variables to estimate a single output variable. This work leverages feed forward

neural networks and Lasso regression to construct robust large-scale EnergyPlus

surrogate models based on 3 benchmark datasets that have 7–156 inputs. These

models were able to predict 15-minute values for most of the 80–90 simulation

outputs deemed most important by domain experts within 5% (whole build-

ing energy within 0.07%) and calculate those results within 3 seconds, greatly

reducing the required simulation runtime for relatively close results. The tech-

niques shown here allow any software to be approximated by machine learning

in a way that allows one to quantify the trade-off of accuracy for execution time.
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1. Introduction

1.1. Background of research

It is estimated that there were 4.7 million commercial buildings and 114

million residential buildings in the U.S. in 2008, which consumed 39% of the

U.S. primary energy (72% of the electrical energy), more than the industrial

or transportation sectors [1]. Building energy efficiency constitutes the low-

hanging fruit for slight to moderate reductions in energy and corresponding

greenhouse gas emissions.

A central challenge in building energy efficiency is to realistically model the

energy-related physics of an individual building. This capability is necessary

to reliably project how specific policy decisions or retrofit packages would help

meet national energy targets or maximize return-on-investment. This challenge

is complicated by the fact that individual buildings, unlike cars or airplanes,

are manufactured in the field and vary greatly from what may be considered

a prototypical building. Since most whole-building simulation engines, such

as EnergyPlus, have thousands of very specific required inputs, most of these

engines suffer greatly from the user expertise, time, and associated costs required

to create an accurate virtual model of a real-world building. Moreover, this

manual process of tuning a model to measured data is neither repeatable nor

transferable.

EnergyPlus is currently DOE’s flagship whole-building energy simulation

engine developed with active involvement by many participating individuals and

organizations since 1995, and is posted open-source on GitHub [2]. EnergyPlus

consists of 1.2 million lines of code with the core consisting of 748,731 lines

of C++ code. It uses a more extensible, modular architecture than DOE-2,

the previous and still widely used simulation program, to perform the energy

analysis and thermal load analysis for a building. The computational costs of
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these capabilities has resulted in annual building simulations that, depending on

the complexity of the building information, often requires 5+minutes (10x-100x

slower than DOE-2 [3]) of wall-clock time to complete. Simulation runtime

of this program is practically important as it is used internationally to help

create new buildings that are energy efficient, define optimal retrofit of existing

buildings, helps define building codes, and is increasingly used by utilities in

energy efficiency and demand side management programs.

Reducing the runtime of EnergyPlus is the top priority of the development

team with EnergyPlus 7.0 being 25%-40% faster than EnergyPlus 6.0 [4]. But

even with a 40% reduction in runtime, manually tuning EnergyPlus building

models to align with utility data so that one creates a legally-useful software

model of a building is still a slow and tedious process. For example, an engineer

manually tuning a simulation is not likely to wait the 3-7 minutes required to run

an EnergyPlus simulation before proceeding to the next tuning step; likewise,

the Autotune methodology [5] runs 1024 simulations, which at only 3 minutes

per simulation would require over 2 days. One solution is to construct surrogates

to reduce the overall computational burden. Surrogates, which are generally

statistically generated models, are built to provide rapid approximations of the

original model, and require less computational resources [6].

In addition to the significant computational load issue, another main con-

cern is the accuracy of the simulation engines for realistically modeling a virtual

building such that matches a real-world building. A 2008 study [7] found 190

Home Energy Saver, REM/Rate, and SIMPLE residential simulation models

had 25.1%-96.6% error compared to actual monthly electrical energy usage.

Another 2012 study [8] found that 859 residential models across Home Energy

Saver, REM/Rate, and SIMPLE simulation engines had a mean absolute per-

cent difference of 24% from actual monthly electrical energy usage and 24%-37%

from actual natural gas use for a sample of 500 houses. It should be noted that

all of these studies use comparisons to monthly utility bill data; the challenge

of accurately matching hourly or 15-minute data for dozens of submetered data

channels is significantly more difficult.
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The challenge for simulation accuracy can be reduced to two primary issues:

1) a gap between the as-modeled and as-built structure, and 2) limitations of

the modeling engine’s capabilities. Gaps between as-modeled and as-built struc-

tures have many sources, but ultimately the fault lies in inaccurate input files

rather than simulation engine itself. For example, infiltration, the rate at which

air and the energy in it flows through the building envelope is not currently

able to be cheaply tested despite its importance for energy efficiency. Blower-

door tests can determine infiltration rate at a given pressure (usu. 50 Pascals)

but is a 1-time measurement that, in reality, experiences significant variances

as a function of temperature, wind speed, and wind direction. A second issue

is the schedule for building usage, which includes number of occupants, times

of occupancy, heating, ventilation and air-conditioning (HVAC) set-points, op-

erations schedule, and other factors. For many of these, cost-effective sensors

simply do not exist or are not typically deployed in a building. In many cases,

occupancy schedules and relatively static set-point temperatures are estimated

and then used later to “tune-up” a simulation to match whole-building data

without regard to the accuracy of the actual HVAC thermostat set-points.

1.2. Literature review

Statistical energy models have been widely used for energy prediction [9, 10],

and energy optimization [11, 12]. Building energy models calibration is critical

in bringing simulated energy use closer to the actual consumption [13]. Re-

searchers have shown an increasing interest in using various statistical tools for

building energy models calibration [14, 15, 16, 17, 18, 19, 20, 21, 22]. Though

many statistical energy models have been proposed for building energy analy-

sis, they can be divided into two categories: data-driven models when detailed

engineering energy models are available, and surrogate model-driven when only

computationally cheap models are provided. There have also been attempts to

combine data from both field measurement and computer simulations for cali-

bration of building energy simulation models [16]. In contrast to simple linear

regression, Gaussian process (GP) models [15] are used to capture the features
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of complex nonlinear and multivariable interactions of building energy behavior.

Correlation analysis and hierarchical clustering has been utilized [19] to deter-

mine and choose informative energy data. The Bayesian technique becomes

popular in this area since it is capable of parameter estimation even when there

are missing energy data which are considered as uninformative output data.

Bayesian technique based model can be used for multiple purposes, e.g. retrofit

analysis, model-based optimal controls and energy diagnostics [23]. Provided

a case without complete or a sufficiently large dataset, bootstrap is a powerful

statistical tool to assess the accuracy of an estimator by random sampling with

replacement from an original dataset [18].

Uncertainties and sensitivity analysis in building energy simulation has been

investigated [24, 25, 26, 27, 28, 29]. Uncertainty analysis (UA) takes into account

uncertainties due to inherent simplifications of any model and lack of informa-

tion with regard to input data. Understanding how uncertainties in energy use

predictions from simulation software is important to achieve more effective en-

ergy efficiency upgrade packages and operational strategies for buildings [30].

On the other hand, sensitivity analysis (SA) consists of modifying model in-

puts in order to explore the relationship between input parameter variations

and overall energy performance of the building [31]. The sensitivity analysis

can also identify the most influential parameters to determine which should

be tuned at high priority [32]. Both UA and SA should be integrated within

calibration methodologies since they play an important role in building model

accuracy [33]. To overcome the difficulties of getting information from SA using

detailed models, macroparameters that characterize the building are utilized to

define and propagate uncertainties of input parameters of building models [25].

Machine learning is a popular technology for improving the accuracy of build-

ing models from data obtained from simulations or experiments. To the best

of our knowledge, machine learning work within the domain of building energy

modeling generally focuses on predicting whole-building utility consumption as

a function of environmental measurements. The Building Energy Predictor

Shootout, hosted by ASHRAE, had participants predict hourly whole building
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electrical consumption for an unknown building using environmental data and

user defined domain knowledge. The competition included 150 competitors [34].

Three popular machine learning techniques are Bayesian Feed Forward Neu-

ral Networks (FFNNs), FFNNs ensembles and piecewise linear regression. These

techniques helped establish the direction for machine learning-based energy

modeling within the building science domain [35, 36]. The only deviations

from these classical techniques use Support Vector Regression [37] and Least

Squares Support Vector Machines [36], which were not mature techniques when

the competition was originally held.

Surrogate generation or meta-modeling often leverages a few classical sta-

tistical techniques - Ordinary Least Squares (OLS) linear regression [38, 39],

Multivariate Adaptive Regression Splines (MARS) [40], Kriging method [41],

and Radial Basis Functions (RBF) [9]. Each technique has its own strengths

and weaknesses [42]. There has been a comparison [43] of predictive performance

between two linear approaches (full linear and Lasso) and four non-parametric

methods (MARS multivariate adaptive regression spline, SVM support vector

machine, bagging MARS, and boosting) where SVM models achieve the best

performance for both gas and electricity, followed by bagging MARS. Lasso also

provides similar prediction accuracy to the full linear model. Overall calibra-

tion quality depends on the surrogate model’s estimation accuracy. Surrogate

model work in the buildings domain often involves relatively small scale (16

inputs and 1 output) EnergyPlus surrogates [14], in which case they are able

to produce accurate distribution estimates over parameter settings for build-

ings based on actual measured data. In addition, linear regression and MARS

have been used [14] to generate surrogate models and highlight the need to ex-

plore other surrogate model options. The work focuses on macro-scale building

stock parameter estimation, which reduces the overall surrogate model’s size

and complexity. Recently, variable importance analysis and meta-model con-

struction with correlated variables has been studied in [44, 45], where statistical

energy meta-models are obtained through linear and non-parametric regression

models.
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1.3. Motivation and research objective

Previous research has demonstrated that surrogate models have the ability

to provide computational advantages and its calibration utility completely de-

pends on the model’s accuracy. The few available studies in the building science

domain explore a limited number of envelope parameters, operation parameters,

and outputs (10 envelope parameters [46] or 16 envelope and operational pa-

rameters [14]). These studies estimate a single output. A vast majority of

surrogate studies in other engineering disciplines frequently use a limited num-

ber of inputs and outputs. Therefore, it is difficult to ascertain how well the

surrogate model created in this study can approximate EnergyPlus on a scale

relative to other studies. Large scale simulation calibration produces significant

scalability issues with fitting MARS, Kriging, or RBF surrogates. In particular,

the computational time and memory requirements quickly become intractable

as model training data increases. Therefore, machine learning methods leverag-

ing world-class high performance computing resources and state-of-the-art data

mining methodologies for big data are needed to mitigate scalability limitations.

FFNN and Lasso regression using Alternating Direction of Method of Multipli-

ers [47] are the methods adopted for this study. These methods can produce

large scale surrogate models and quantify their overall effectiveness at quickly

producing accurate EnergyPlus simulation outputs.

Two surrogate models were constructed using FFNN and Lasso regression

respectively. In leveraging the previously demonstrated inaccuracies of current

simulation engines, we explore the possibility of using machine learning tech-

niques to quantify the trade-off between this innate inaccuracy to more quickly

run approximated EnergyPlus simulations. The surrogate models were gen-

erated using three very large EnergyPlus simulation datasets for a residential

building. The datasets cover fine grain parameter sweeps over seven envelope

parameters with 80 simulation outputs and coarse broad parameter sampling

over 156 envelope parameters with 90 simulation outputs. Data generation and

sampling is covered in more detail in Section 2. Using these datasets, we eval-

uate the two generated surrogate models’ abilities.
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This research is part of a project named Autotune [5]. The Autotune

project’s [5] goal is to create an automated process for tuning simulation in-

puts so that simulation output can match measured data. This work facilitates

that aim by constructing EnergyPlus surrogates that can be used to improve

the overall calibration execution time. The project relies on 300+ channels of

15-minute sensor data from an automated-occupancy research home (real-world

data), supercomputer simulations of millions of EnergyPlus simulations result-

ing in a 267TB database (simulation data), a mathematical mapping between

real-world data and simulation output data, and sensitivity analysis/data min-

ing to determine intelligent ways to quickly find the proper set of building inputs

to match measured data.

The remainder of the paper is organized as follows: Section 2 discusses

the simulation parameter sampling process (data generation); Section 3 dis-

cusses the developed approximation methods; Section 4 presents the evaluation

criteria; Section 5 presents the approximation results; Section 6 discusses our

prediction results and interesting observed phenomena found through the ex-

perimentation process; Section 7 summarizes the findings as well as possible

future directions.

2. Simulation Sampling

Oak Ridge National Laboratory (ORNL) operates four 2,800 ft2 residential

buildings that robotically emulate occupancy according to Building America

benchmarks as part of the ZEBRAlliance project [48]. One of these houses—

which has 269 channels of 15-minute data including on-site weather data—

is leveraged to allow high-resolution comparison between existing EnergyPlus

models of this building and real-world sensor data. For this reason, and because

U.S. homes consume 22% of the nation’s primary energy [1], the residential

building model was selected as a primary building type that needs to be included

in Autotune’s large-scale sensitivity analysis and calibration studies.

There are only 4.7 million commercial buildings in the United States, but
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they consume 19% of US primary energy. Commercial buildings have more

clearly-defined building types associated with designs that typically align with

their use. DOE has previously released a detailed report on the major US

commercial reference buildings [49]. We selected 3 of the 16 commercial building

types for this study—stand-alone retail and warehouse buildings, due to the size

of total floor area, and the medium office building since it is the most prevalent

building type as far as number of buildings.

To conduct thorough sensitivity analyses and calibration experiments, 5 mil-

lion simulations for the residential building and 1 million simulations for each

commercial building type were computed and stored to sample the input param-

eter space. Subject matter experts prioritized hundreds of the approximately

three thousand variables for each of these buildings, as well as the most im-

portant output; some of these variables are meta-parameters that may be a

material instantiated in several places throughout the building (e.g. gypsum

board) or a grouping of inputs that vary together as a single parameter (e.g.

infiltration at multiple zones treated as whole-building infiltration). The most

important variables consisted of 156 input variables and 90 output variables

being collected for the total of 8 million simulations at 15-minute resolution.

With the input file corresponding to approximately 300 KB and output of 35

MB, total simulation data amounts to 267 TB detailing 26.9 trillion data points

that has been shared with the research community.

The total search space for 156 variables, with defined distributions and dis-

cretized ranges, is computationally infeasible as it amounts to 5x1052 simu-

lations. This research was done on desktop systems, the 1024-core Nautilus

supercomputer from the University of Tennessee, the 2048-core Frost super-

computer, and the 299,000-core Titan supercomputer at Oak Ridge National

Laboratory. Titan, at the time the fastest supercomputer in the world, would

require 4.5x1031 lifetimes of the known universe to brute-force every combina-

tion of 156 variables for just one building. Even to run the relatively small

subset of 8 million simulations used in this study, it required approximately 110

compute years. To intelligently search the space, knowledge must be gleaned
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from simulation differences for a small subset of the potential simulations. The

experimental design is such that machine learning agents can quickly learn on

available data but then leverage more complex data as additional simulations

are completed.

The methodology employed for running simulations is according to Markov

order in which increasing orders of complexity take into account the combi-

natorial effect from a correspondingly increasing number of variables. Each

simulation contains 35,040 simulation output vectors (15-minute data for an

annual simulation, for each output variable). The simulations in all experi-

ments use a constant set point for the entire year. In a simplified example

with only a min, average, and max value for each of N input variables, Markov

order 1 (MO1) simulations consist of all simulations that hold all variables at

the average/baseline value, but they change variable 1 to the min value for one

simulation and to the max value for a second simulation, and then proceed to

variable 2 and ultimately all other variables. This results in a total of 2N+1

simulations. For Markov order 2 (MO2), all simulations not previously run

in MO1 are computed for each pair of inputs. In MO2, if you consider each

simulation a variable pair,

MO2 = [(V 1min, V 2min), (V 1min, V 2max), (V 1max, V 2min), (V 1max, V 2max),

(V 1min, V 3min), . . . ] ;

the result is a total of 4×C(N,2) simulations. There is a combinatorial increase

for every step up this Markov order; we proceed until the planned number of

simulations is complete for every building type. This work leverages the MO1

and MO2 residential simulations.

In addition to the MO1 and MO2 simulation datasets, we sampled simula-

tions using a brute force sampling we store and refer to as Fine Grained (FG).

The simulations in the FG dataset use the same inputs as the MO1 and MO2

simulations, but we varied only seven envelope input parameters. In addition,

we captured only 80 output variables. In total, the small FG data set contains

12,000 simulations and is approximately 143 GB. This dataset was constructed
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to estimate how well the surrogate models are able to approximate EnergyPlus

when presented with densely sampled points within the design space of critical

building envelope parameters.

3. Approach

Two different methods were explored for approximating EnergyPlus. The

first approach uses standard FFNN with a modified training process. The train-

ing process was adjusted to accommodate large datasets, which ultimately al-

lows computationally tractable large-scale FFNN learning. FFNN background

information is presented in Section 3.1 and the training procedure is presented

in Section 3.2.

The second approach uses Lasso regression, a linear model, which has the

ability to automatically select relevant input variables. This allows users to de-

termine whether there is sufficient information within the datasets to produce

predictions good enough for a particular use case, or determine if a more com-

plex model (FFNN) is required. However, the standard Lasso regression learning

algorithms are not designed to support large-scale learning. To overcome this

difficulty, we use a recently developed decentralized optimization framework,

Alternating Direction Method of Multipliers (ADMM) [47]. This method sup-

ports arbitrary large-scale learning by dividing the original problem into smaller,

local optimization problems. These problems are either distributed across mul-

tiple computers or solved locally on a single memory-constrained computer that

uses the hard drive as additional storage. Section 3.3 discusses Lasso regres-

sion, Section 3.4 the ADMM framework, Section 3.5 Lasso regression’s ADMM

formulation, and Section 3.6 the best parameter settings found for Lasso and

FFNN models for this problem.

3.1. Feed Forward Neural Network

Previous research has shown that FFNN can be used to approximate non-

linear functions for predicting electrical consumption, and much more [50, 51,
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52, 53]. Essentially, FFNNs can learn to approximate continuous functions that

map <m → < without prior assumptions about the relationships between the

inputs and the outputs. While the FFNN model is general, it requires the user

to create the model structure defined by parameters such as number of hidden

layers, hidden units, and activation function.

An FFNN with a single hidden layer was used to approximate EnergyPlus.

Other work has shown that a single-hidden-layer FFNN performs well on pre-

diction tasks within the building spaces domain [50, 51, 52, 53]. An FFNN with

a single hidden layer for function approximation has the following mathematical

representation:

f(x) =

N∑
j=1

wjΨj

[ M∑
i=1

wijxi + wio

]
+ wjo

where N represents the total number of hidden units, M represents the total

number of inputs, and Ψ represents the activation function for each hidden unit.

In this work, tanh(x) was selected as the activation function because it allows

hidden layer output values to range from [−1, 1], which allows for a wide variety

of possible functions.

A FFNN’s weights are learned using gradient descent-based methods, such

as Newton-Raphson, by minimizing a user-specified error function. There are

many possible error functions, such as mean squared error, sum squared error

(SSE), and root mean squared error (RMSE). In this research, the SSE function

was used.

A gradient descent learning approach poses two problems. The first problem

is over-fitting. The FFNN can adjust its weights so that it performs well on the

training examples, but it will be unable to produce accurate responses for novel

input examples. This problem is addressed by splitting the training set into

two parts – a set for training and a set for validation. When the error increases

on the validation set, the learning algorithm should halt, because any further

weight updates will only result in over-fitting the training examples.

The second problem involves finding a globally optimal solution in the pres-

ence of many local minima. A local minimum is a point at which it is impossible
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to further minimize the objective function by following the gradient, even though

the global minimum is not reached. However, it is not possible to determine

if any particular set of weights is a globally optimal solution or a local mini-

mum. It is not possible to completely address this problem, but it is possible to

avoid shallow local minima by using momentum and an adaptive learning rate.

Momentum incorporates a small portion of the previous weight changes into

the current weight updates. This can allow the FFNN to converge faster and

to possibly step over shallow local minima. An adaptive learning rate dynami-

cally changes the gradient descent step size so that the step size is larger when

the gradient is steep and smaller when the gradient is flat. This mechanism

will allow the learning algorithm to escape local minima if they are sufficiently

shallow.

3.2. Large-Scale Feed Forward Neural Network Training

There are two gradient-based methods for training FFNN – stochastic and

batch. The stochastic method uses a single observation to compute the gradient

and update the network. It is extremely scalable to large datasets, because

it makes updates per training example. However, stochastic gradient descent

only approximates the gradient using local information, which means it lacks

the global information required to follow the objective function’s true gradient.

This allows the stochastic gradient descent method to scale well, but it may

produce less accurate models because an approximate gradient is substituted

for the exact gradient.

The batch gradient descent method uses all training examples to compute

the gradient and update the network. This method is much less scalable than

the stochastic method, because it has to process all examples for every update.

Computing the gradient using the entire dataset allows this method to produce

better gradient estimates, which may lead to more accurate networks. However,

this method is not typically practical since it requires hundreds of passes over

a gigabyte dataset.

Given that both approaches provide different benefits, a hybrid method for
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training the FFNN was implemented. The method can be considered a stochas-

tic gradient descent that performs updates using mini-batches, rather than up-

dates per single training example. This allows us to balance training time

performance and gradient estimation quality. In the developed approach, we

select a random simulation and divide the simulation into mini-batches. Before

the mini-batches are constructed, each sampled simulation is randomly shuffled.

Randomly sampling the simulations and shuffling the internal simulation data

provides the stochastic gradient characteristics. In addition, making network

updates per randomized mini-batch provides a pseudo batch gradient descent

characteristic. In summary, we sample a simulation, randomize the simulation

data vectors, divide the data into mini-batches, and update the network using

each mini-batch.

3.3. Lasso Regression

Standard Lasso regression fits a linear model by modifying a multiplicative

weighting factor for each input and adding the weighted inputs to create the

outputs. The final model has the same functional form as linear regression and

ridge regression, but the learning criteria inserts a term to penalize the absolute

size of the regression coefficients. This allows automatic feature selection and

overcomes standard regression problems with overweighting highly correlated

predictors. The following equation shows the Lasso regression optimization

criteria:
n∑

i=1

(yi − b− wT(~xi)) + λ||w||

where ~xi is an input vector, yi is the response, w is the model weights, b is the

y intercept, and λ produces a trade-off between fitting and sparsity. Increas-

ing λ leads to a model with more zero value weights. This means, under an

appropriate λ value, irrelevant inputs in ~xi are ignored, resulting in a sparser,

more robust model. Note that robustness is defined based on the idea that a

simplistic model is most likely to generalize to new scenarios, which is based on

model complexity studies [54, 55, 56].
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Lasso regression can easily be extended to nonlinear functions using kernels,

but this was not explored in this study for two reasons. First, linear Lasso

regression is computationally fast and its performance indicates whether the

more computationally-expensive nonlinear FFNNs is necessary. If a linear model

is sufficient, then it can substantially reduce the overall training time for larger

datasets. Second, Lasso regression’s variable selection capabilities make it more

interpretable based on the learned values for w. This allows an expert to analyze

which information is important for making predictions and can help a user

ascertain if required information is missing within the dataset.

3.4. Alternating Direction Method of Multipliers

To maximize resource utilization, ADMM [47] was selected instead of other

equally capable distributed optimization methods because it does not use a

master-slave paradigm. While the following detailed ADMM description illus-

trates solving a redundant secondary optimization problem per computer, the

optimization problem in practice is extremely lightweight. This makes it more

efficient to redundantly solve the problem locally rather than communicate the

solution to slave computers.

ADMM is a fully-decentralized, distributed, optimization method that can

scale to very large machine learning problems. It solves the optimization prob-

lem directly without using approximations during any phase of the optimization

process. The optimization process works by splitting the criteria function into

separate subproblems and optimizing over those individual problems with lim-

ited communication. The following is a formal explanation from [47]:

minimizef(x) + g(z)

with the following constraints Ax + Bz = c where c is a targeted response or

agreed target value that correlates the two functions. In addition, f and g are

convex, closed, and proper functions. The functions f(x) and g(z) are inde-

pendent, meaning both can be minimized in parallel. The equality constraint

provides consensus across the two functions. More importantly, the following
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Lagrangian is introduced [47] for this particular optimization problem:

Lp(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22

where ρ defines a tunable parameter that determines the trade off between

violating the equality constraint and fitting the target function. After some

additional algebraic simplifications of the above Lagrangian, the final ADMM

optimization process is as follows:

xk+1 = argmin
x

(f(x) +
ρ

2
||Ax+Bzk − c+ uk||22)

zk+1 = argmin
z

(g(z) +
ρ

2
||Axk+1 +Bzk − c+ uk||22)

uk+1 = uk + xk+1 − zk+1

Iterating over these optimization equations provides guaranteed convergence,

and establishes a method to minimize x and z independently with limited com-

munication between the two optimization problems.

The above form can be deconstructed further into multiple sub-problems

across f(x) by sub-dividing the function across the independent components

within x. This creates independent sub-problems that are solved locally via

the first minimization step, which allows multiple computers to optimize f(x)

locally, and pass information to other computers or processes about xk+1, result-

ing in a global optimization over zk+1 at each individual process. This means all

processes can work to optimize and compute their individual updates by only

communicating their local beliefs for xk+1.

3.5. Large-Scale Lasso Regression

There exist several common substructures for constrained convex optimiza-

tion problems [47]. In particular, the general minimization problem is defined

as follows:

minimizef(x)

with the following constraints x ∈ C, where C defines a constrained solution

space. This general minimization problem is formulated as the following under
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ADMM:

minimizef(x) + g(z)

with the constraint x−z = 0, where g is an indicator function. Using an indica-

tor function for g allows ADMM to represent the original convex optimization

constraints, and the x− z = 0 constraint guarantees that the x that minimizes

f(x) obeys the original constraints.

While [47] used this general solution format to solve many different convex

optimization problems, we are only interested in the version used to solve Lasso

regression. The distributed optimization steps for solving large scale linear Lasso

regression problems are the following1:

xk+1
i = argmin

xi

(
1

2
||Aixi − bi||22 +

ρ

2
||xi − zk + uki ||22)

zk+1 = S λ
ρN

(x̄k+1 + ūk)

uk+1
i = uki + xk+1

i − zk+1

The individual local subproblems are solved using ridge regression, and the

global z values are computed by evaluating a soft thresholding function S. This

function is defined as follows:

S λ
ρN

(v) = max(0, v − λ

ρN
)−max(0,−v − λ

ρN
)

The soft thresholding function applies the Lasso regression sparsity constraints

over z, which are incorporated into the local subproblem solutions on the next

optimization iteration.

The key advantage of this particular Lasso regression formulation is that

the main step is solved exactly once. The direct method for computing xk+1
i

requires computing (ATA+ρI)−1. The resulting matrix never changes through-

out the entire optimization process. Storing this result allows the distributed

optimization method to perform a very computationally intensive task once and

1This version assumes we are only splitting the optimization problem across the training

samples, and not the features. It is possible to split across both [47].
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reduce all future xk+1
i computational steps. Caching the values used to compute

xk+1
i to disk allows a 2.2Ghz Intel Core i7 laptop to solve a univariate 3.9GB

Lasso regression problem in approximately 17 minutes. By way of comparison,

the best FFNN model with 15 hidden units and 10 outputs completed training

in 24 hours on the same 3.9GB dataset.

3.6. Model selection

The final Lasso regression model’s performance is greatly dependent upon

the λ value used during the training process. Similarly, a FFNN’s performance

is greatly dependent upon the total number of hidden units selected. Selecting

a λ value that is too small can result in overfitting, while selecting a value that

is too large can lead to underfitting. The same possibilities apply to FFNN, but

selecting too few hidden units can lead to underfitting, and selecting too many

can lead to overfitting.

Selecting the best parameter setting is achieved by evaluating a model se-

lection criteria, which measures how well the learned model will generalize to

unseen examples. There are several different model selection techniques. For

example, cross-validation methods estimate how well a model generalizes to un-

seen data by periodically testing the current model on a validation set. An

online validation process is one that terminates the learning process when the

model begins to perform poorly on the validation set. K-Folds cross-validation

is another approach that divides the data into K partitions, and builds a model

using K − 1 partitions as training data. The omitted partition is used to evalu-

ate the model as testing data. This training and testing process is repeated such

that each partition is used as the testing set at least once. K-Folds primary

advantage over other methods is that it can provide an almost unbiased error

estimate for any particular model as K approaches the dataset’s sample size

[57].

Ideally, a combination of cross-validation and K-Folds would be used to

select the best parameter values. Cross-validation enables online FFNN learn-

ing termination, and K-Folds facilitates selecting the correct number of hidden
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units. On the other hand, Lasso regression uses the validation set to select λ and

K-Folds to approximate the model’s overall error. However, the large dataset

makes K-Folds cross-validation computationally expensive. Therefore, a pure

cross-validation method for parameter selection was selected. Each model has

a training set, a single validation set, and a testing set. For the FFNN models,

the validation set was used to prevent overfitting, and hidden unit settings using

the unseen testing data were compared. The Lasso regression models use the

validation set to select the best λ value by picking the one that maximizes pre-

diction accuracy for the validation set. This parameter selection method allows

us to estimate the Lasso regression model’s true prediction capabilities by using

the unseen testing data. In addition, the testing data results can be directly

compared with the FFNN results.

4. Methods

4.1. Experimental Design

Given the need for scalability and performance, we optimized the FFNN

network structure and application performance by determining the maximum

number of outputs per network should be 10. This means that eight FFNNs

were used to model the FG dataset’s 80 outputs, and nine FFNNs to model

the MO1 dataset’s 90 outputs2. In addition, the outputs for each network were

selected by grouping the variables based on the order they were stored with

groups that represent similar components (e.g. building descriptors) within the

simulation.

The Lasso regression method used is only able to approximate univariate

response variables. This means a linear model was created for each simulation

output. This restriction results in using 80 linear functions to model the FG

dataset, and 90 linear functions to model the MO1 dataset. While the overall

2The MO1 and MO2 datasets originally contained 96 outputs, but six output variables for

all simulations never changed and were removed.
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model count is high, the overall training time scales very well using the ADMM

optimization technique previously discussed. This allowed computation time to

scale better than the FFNN models on average.

Two experiments were defined using the FFG, MO1, and MO2 datasets in

combination with the FFNN and Lasso models previously described. The first

tests how accurately a model approximates EnergyPlus when only seven simula-

tion variables are varied (FG dataset). This allows us to estimate how sensitive

the learned models are to fluctuations in the building parameter inputs by using

a very densely sampled simulation input set. In this particular experiment, we

selected the best FFNNs by testing models with 5, 10, and 15 hidden neurons,

and we selected the best Lasso regression model by testing λ values between

0 and 1 using 0.15 increments. The training set contains 250 simulations and

the testing set contains 750 simulations; we selected the models that performed

best overall on the testing set. The second experiment measures how well the

models approximate EnergyPlus when presented with MO1, defined in Section

2, a very coarse sampling of the simulation input parameters. FFNN models

with 5, 10, and 15 hidden nodes were trained. For the Lasso regression models,

the best λ value between 0 and 1 was searched using 0.15 increments. Three

hundred randomly sampled simulations from the slightly denser MO2 dataset

was also used for testing and comparing both methods.

4.2. Performance Metrics

Within the building community, there are four commonly used metrics for

comparing prediction accuracy — root mean squared error (RMSE), coefficient

of variance (CV), mean absolute percentage of error (MAPE), and mean bias

error (MBE). These metrics are defined as follows:

RMSE =

√√√√ 1

N − 1

N∑
i=1

(yi − ŷi)2

CV =
RMSE

ȳ
× 100
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MAPE =
1

N

N∑
i=1

|yi − ŷi|
yi

MBE =
1

N−1

∑N
i=1(yi − ŷi)
ȳ

× 100

where yi is the actual energy consumption, ŷi is the predicted energy con-

sumption, and ȳ is the average actual energy consumption. RMSE is a measure

of absolute error. When yi and ŷi are close to zero, RMSE may be absolutely

small but relatively large compared to the signal. CV determines the error

relative to the target’s mean. Predictions with low RMSE and low CV are pre-

ferred. Most figures in this article plot RMSE and the mean target response (i.e.

average of actual energy consumption) so that the reader can visibly ascertain

the absolute prediction error relative to the average actual energy consumption.

MAPE measures the percentage of error per prediction, which avoids issues with

outliers that may skew the average and average-based metrics (e.g. CV). MBE

establishes how likely a particular model is to over-estimate or under-estimate

the actual energy consumption where a negative percentage means the predictor

generally under predicts the real value. The MBE and MAPE metrics are well

described and presented in [34, 36].

5. Results

The datasets generated contain 80+ output variables which makes tradi-

tional table presentations difficult. Therefore, figures were presented to provide

broader comparisons across the models. The figures of results have been split

into non-load variables (not associated with the heating and cooling needs of a

building which must be met by an HVAC unit) and load variables. All variables

are referenced only by numbers rather than by name to show goodness-of-fit for

different models across simulation outputs, although we do later provide explicit

names to facilitate discussion in Section 6. The detailed variable list of inputs

and outputs is provided in the supplementary material.

In the figures below, the two values needed to compute the CV metric are

used where the left y-axis represents the RMSE and the right y-axis represents
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a response variable’s mean (MTR). Normally, the ratio, the CV between these

two values would be presented, but several response variable values are small

which cause misleading CV values that show poor relative performance whereas

the absolute performance is good. For variables in which RMSE (blue) exceeds

the average value (red), predictions are off by more than 100%. Since non-

load results are for variables with very different units (e.g. thickness, density,

and specific heat for multiple materials), all non-load figures restrict the y-axis

to [0, 50] for RMSE and MTR. While RMSE error values in all figures never

exceed the range, a few MTR values are significantly beyond this range and do

not appear on the figure (meaning the prediction performance for this variable

is excellent).

5.1. Fine Grain

Figure 1 presents the FFNN non-load variable prediction results for the ex-

periments on the FG dataset. Most models perform the same on the response

variables, but a few variables do present noticeable differences across the differ-

ent models. In particular, the environmental and electrical variables between 1

and 16, as well as, the envelopes heat gain and loss variables between 20 and 28.

The variables between 1 and 16 present the best performance with 10 hidden

units (Figure 1(b)). Analyzing the figure closely reveals variable 10 has a much

better error rate with 15 hidden units. Even though the performance for the

other variables between 1 and 16 produce similar performance with 15 hidden

units (Figure 1(c)), 10 hidden units is considered the better model since it takes

less time to calculate and is more likely to generalize to new data.

The 15 hidden unit model presents the best performance on the variables

between 21 and 28. Since each network predicts 10 outputs, in practice, we

allow the 15-node model to also estimate variables 20 and 29 since results are

comparable to the 10-node model.

While the non-load prediction performance was considered to be excellent,

the FFNN load prediction performance shows room for improvement. The load

variables in Figure 2 physically represent the sensible heat, latent heat, sensible
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(b) 10 Hidden Units
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(c) 15 Hidden Units

Figure 1: Results for predicting the FG non-load output variables as a function of simulation

inputs. RMSE (blue) and average (red) are normalized [0, 50] to allow side-by-side comparison

of prediction accuracy. Dividing RMSE by MTR gives the average percent error for predicting

that variable. Physical description of each input variable (x-axis) is provided in supplementary

material. Neural networks achieve good prediction accuracy of most simulation inputs for this

dataset.

cooling, and latent cooling for four different thermal zones in the following order:

living room (LR—variables 65–68), master bedroom (MB—69–72), basement

(BM—73–76), and second floor (SF— 77–80).

Figure 2(a) and 2(c) shows the 5 and 15 hidden unit models represent the

best prediction results overall. We considered the 5-node FFNN to best predict

FG load variables since it is more stable than the 15-model FFNN (less variance

in RMSE) and is less complex.

Figure 3 presents the Lasso linear regression results on the FG dataset. The

model performs well on the non-load variables and is fairly competitive with the

previous FFNN models. However, some error rates have much higher variance
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(a) 5 Hidden Units (b) 10 Hidden Units

(c) 15 Hidden Units

Figure 2: Results for predicting the FG load variables. Load variables share the same unit

(Joules) and are not normalized. Load variables are more difficult to predict than non-load

variables, with 7 of 16 variables having error rates above 100%, regardless of the complexity

of the neural network utilized.

than the best FFNN model (Figure 1(c)) for variables 7 and 20–28. In addition,

all error rates for these variables are statistically worse than the FFNN error

rates. This means these variables have a non-linear relationship with their

inputs, and the Lasso regression is not as capable a methodology for capturing

these patterns.

Although the other non-load variables are all statistically worse than the

FFNN models, the Lasso method uses only an input subset3 to make all the

predictions, so the linear model is using less information than the FFNN to

make only marginally worse predictions (i.e. 0.2-5.0 difference in RMSE, with

only a few variables differing in RMSE by over 20). Lasso is fitting simpler

models by reducing the number of input variables used within the model, which

3The subset refers to the inputs that have a non-zero weight in the model
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Figure 3: The Lasso regression generated model’s performance on the FG dataset’s non load

variables.

results in a simpler model that is more likely to generalize to new datasets and

can learn much faster than FFNNs, as previously discussed in Section 3.5.
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Figure 4: The Lasso regression generated model’s performance on the FG dataset’s load

variables.

The Lasso regression load prediction results (Figure 4) are very similar to

the FFNN results (Figure 2). Although the Lasso regression results are worse,

the model performed best on the same variables that the FFNN models were

able to predict—variables 65, 67, 71, 73, 77, and 79. However, the other load
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variables were not fit well by either method, implying there is not sufficient

information within the raw dataset to predict the other load variables.

5.2. Markov Order 1
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(b) 10 Hidden Unit
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(c) 15 Hidden Unit

Figure 5: These figures present the results for predicting the MO2 non-load variables with 5

(Figure 5(a)), 10 (Figure 5(b)), and 15 (Figure 5(c)) hidden unit FFNNs.

Experiments with the MO1 dataset are more challenging than the the FG

dataset, because we are testing how well models generalize when trained with

a limited representation of the input space. While the MO2 dataset represents

a relatively denser sampling than MO1, handling the larger data sizes can be a

limitation to practical implementation of predictive analytics.

MO1 experimental results for non-load variables (Figure 5) and load vari-

ables (Figure 6) shows slightly better non-load variable prediction than with

the FG dataset. All models produce about the same performance results on

the non-load variables with the exception of the 15-node model which performs

statistically better on variables 32 through 36.

Similar to the FG dataset, MO2’s load variables remain difficult to predict.

Additional analysis and improvement directions are discussed in Section 6. The

FFNN models were able to predict variables 74, 76, 78, and 82 (Figure 6).

However, it was observed that the 10-hidden-unit FFNN produced the best

performance on the MO2 dataset based primarily on performance for variables

78, 82, and 86.

The Lasso regression results for MO2’s non-load variables are shown in Fig-

ure 7. These results illustrate that many variables within the MO1 and MO2
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(a) 5 Hidden Unit

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5 Order 1 Loads with 10 Hidden Unit FFNN

Energy Plus Load Variables

R
M

S
E

 

 

 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
0

1

2

3

4

5
x 10

5

M
ea

n 
T

ar
ge

t R
es

po
ns

e

RMSE
MTR

(b) 10 Hidden Unit
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(c) 15 Hidden Unit

Figure 6: These figures present the results for predicting the MO2 load variables with 5 (Figure

6(a)), 10 (Figure 6(b)), and 15 (Figure 6(c)) hidden unit FFNNs.
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Figure 7: The Lasso regression generated model’s performance on predicting the MO2

dataset’s non-load variables.

dataset can be modeled using linear models. In addition, it highlights the vari-

ables that require a non-linear model as can be seen in Figure 5(c) as shown by

variables 6–12, 28, and 36.

Both models present a high variance on variable 10. The high variance

is directly associated with the sparse parameter sampling found in the MO1

dataset. This particular variable has instances in which it produces different

response behaviors, as seen in Figure 8. This means that coarse parameter

sampling used to generate MO1 may have limited abilities to produce meaningful

general purpose models. However, it also implies that models created from

the MO2 dataset will have similar deficiencies, because a limited sampling can

only represent a fraction of the entire domain’s behavior. It may be beneficial
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Figure 8: Comparison between the average MO2 dryer heat gain response (red) and an ob-

served, scale-shifted response (blue), every 15 minutes for a year, shows variables with high

variance can present a challenge for prediction.

to explore simulation parameter sampling strategies that consider the learner’s

fitting capabilities, as well as implement methods that can estimate the variance

associated with each prediction.
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Figure 9: The Lasso regression model’s performance on predicting the MO2 dataset’s load

variables.

Similar to the FG dataset results (Figure 4), the load predictions with Lasso

regression (Figure 9) are all worse than the best FFNN results (Figure 6(b)).

However, the Lasso regression method was able to fit the same load variables
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Model RMSE (W) MEAN (W) CV (%)

FFNN 5 9.125±0.00 1756.8±0.00 0.519±0.00

FFNN 10 1.164±0.00 1756.8±0.00 0.066±0.00

FFNN 15 1.061±0.00 1756.8±0.00 0.060±0.00

Lasso 4.797±1.61 1756.8±0.00 0.273±0.09

Table 1: Whole Building Energy consumption (MO1 Variable 90) can be predicted very

accurately.

as the FFNN model—variables 74, 76, 78, and 82.

The MO1 dataset’s 90th simulation output variable represents whole building

energy (WBE) consumption, which is not present in the FG dataset. Table 1

presents the WBE prediction results for all models. These results illustrate that

the Lasso model provides a better fit than the 5 hidden node FFNN model, but

provides a worse fit than the 10 and 15 hidden node models. It should be noted

that the accuracy indicator, i.e. RMSE, of FFNN 15 model is barely better

than that of FFNN 10 model. In general, we found that 20+ neurons with

1 hidden layer yielded minimal returns in predictive accuracy. Although the

Lasso model does not perform as well, its overall training time is substantially

better than that of the FFNN 10 and 15 hidden node models (Table 2). These

performance characteristics indicate that it is best to use the Lasso regression

model to predict all variables that can be sufficiently represented using a linear

model. This is especially true when one has sufficient computational resources

to run the learning algorithms in parallel. The total training time represents

the execution time associated with training each individual model in serial. A

more parallel approach will converge to the single model training time. Finally,

the overall execution time represents the parallel execution speed for running

the nine MO1 FFNN models in parallel and running the entire Lasso regression

model as a single matrix multiplication. This indicates that the Lasso regression

method’s testing speed scales better than the FFNN when parallel execution is

not possible.
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Model Training Total Training Execution

Time (Hr) Time (Hr) Time (sec)

FFNN 5 ∼2 ∼18 ∼2.70

FFNN 10 ∼8 ∼72 ∼2.85

FFNN 15 ∼24 ∼216 ∼2.93

Lasso ∼0.2833 ∼25.50 ∼2.90

Table 2: The first column represents the single MO1 model training time, and the second

column is the necessary time to train all MO1 models in serial. The execution time represents

single model execution time.

6. Analysis and Discussion

Several interesting findings were observed with regard to both datasets and

prediction accuracy. First, a simulation clustering phenomenon was observed,

which may provide insight into EnergyPlus approximation efforts for specific

variable sand illustrates how prediction accuracy varies as a function of simula-

tion data. Second, HVAC schedule features for improving overall heating and

cooling load predictions are discussed.
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Figure 10: Illustrates the FFNN model’s CV error clustering into distinct clusters on the Fine

Grain dataset.
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Figure 11: Illustrates that the Lasso regression models can produce distinct clusters when a

linear model captures the full relationship between inputs and outputs (Figure 11(a)). When

a non-linear model is required, Lasso regression fails to produce the distinct clustering (Figure

11(b)) necessary for accurate prediction.

There are several properties worth mentioning that were exhibited by the

predictive models related to clustering, representing simulations equally misin-

terpreted by the predictive model. For example, the CV error metric measured

for FFNN prediction on FG’s variable 65, constructs well defined clusters (Fig-

ure 10) and were seen for multiple variables. However, clustering with Lasso

regression occurs only if the variable is sufficiently well predicted by a linear

model (Figure 11(a) and 11(b)). Neither model exhibits the same clustering

behavior in the MO1 experiments. The MO1 experiments show a single group

(Figure 12). This clustering property suggests that as EnergyPlus parameter

sampling density (i.e., sample the data more finely) increases, so will the num-

ber of clusters. In such cases, ensemble learning for specialization in predicting

each cluster may be fortuitous as shown in previous work predicting future

hourly residential electrical consumption via clusters determined by C-means

and Hierarchical Mixture of Experts [36].

While clustering can improve predictive results, it becomes increasingly dif-

ficult due to the curse of dimensionality [58]. Each simulation contains 35,040

simulation output vectors, and the FG dataset contains 80 outputs and the MO1

dataset contains 90 outputs. These directions are discussed in more detail in

Section 7.
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In an effort to improve overall heating and cooling load predictions, we added

features related to HVAC operation schedule and temperature gradients to the

input set. The temperature gradient features include the inside and outside

temperature gradient. The inside temperature gradient represents the average

temperature change across the building’s thermal zones. In the experiments,

the building thermal zones correspond to the LR, MB, BM, and SF. The out-

side temperature gradient represents the change in dry bulb temperature. Using

these temperature gradient features, we manually constructed a heuristic indica-

tor function that limits heating to October through March and cooling otherwise

(based on region).Finally, we use the gradient direction to estimate the on or

off state for each 15-minute timestep. If the inside gradient is increasing and

the outside gradient is decreasing, then the heat is activated, provided the time

corresponds with a heating month. The inverse is used to establish when cooling

is active.

Using these additional features with the FFNN model, we repeated the FG

and MO1 experiments on the heating and cooling load variables. The FG load

results are shown in Table 3. Improved performance is highlighted green, dimin-

ished performance is highlighted blue, and no change is highlighted yellow. The

FG table illustrates that the HVAC operation features and temperature gradient

features produce statistically better prediction results with 95% confidence on

the LR, MB, and BM sensible heating loads (variables 65,69, and 73) as well as

LR’s latent heating and cooling loads, and MB’s latent cooling load (variables

66, 68, and 72). Finally, the LR’s sensible cooling load and MB’s latent heating

load were unchanged (variables 67 and 70). All other FG variable predictions

are worse.

The MO1 experiments (shown in Table 4) with the HVAC operation and tem-

perature gradient features produce statistically better LR, BM, and SF sensible

heating load predictions (variables 74, 82, and 86). In addition, the features

produce statistically better MB latent heating load predictions (variable 79).

The load predictions for variables 75, 77, 81, 83, 85 and 89 were not statistically

different. All other load predictions were statistically worse (variables 76, 78,

32



80, 84, 86, 87, 88).

Incorporating these additional features into the learning systems clearly pro-

vides mixed results since not all load predictions improved. In addition, the

improved variables did not reach prediction rates similar to the better sensi-

ble load predictions (e.g., LR’s sensible heating and cooling). Incorporating

these findings with the Lasso regression results from Section 5, which suggest

that necessary information for predicting latent loads is missing, shows that

improving overall load predictions remains a challenging problem. To improve

prediction, we suggest two complimentary directions: (1) bottom-up feature

synthesis from existing data; or (2) top-down analysis, through continued in-

teraction with domain experts, to determine additional EnergyPlus information

that could improve approximations.

Figures 13(a) and 13(b) show the HVAC heating and cooling (on/off) fea-

tures and the MO1 latent cooling and heating loads for the LR zone. Figure

13(a) shows that the heating is on mostly when the latent loads are non-zero,

and the same is true for latent cooling loads in Figure 13(b). The current HVAC

features correlate well with the MO1 sensible and latent loads, so improvement

in predictive accuracy can be achieved through additional information.

Figures 14(a) and 14(b) illustrate that the FG’s LR latent loads are uni-

formly distributed throughout the year. These latent loads are not necessarily

indicative of HVAC operation. This issue is discussed further in Section 7.

7. Conclusions and Future Works

Using FFNN and Lasso regression, the ability to produce EnergyPlus approx-

imation models for a residential building was demonstrated. The models use

building envelope parameters selected by domain experts, an operation sched-

ule, and weather data totaling 7–156 inputs for 3 benchmark datasets. These

models were able to predict 15-minute values for most of the 80–90 simulation

outputs deemed most important by domain experts within 5% (whole building

electrical energy within 0.07%). While EnergyPlus can take 5 minutes to run,

33



the predicted outputs are calculated in 3 seconds, greatly reducing the simula-

tion runtime required. In addition, variables requiring more complex non-linear

models were identified by comparing the FFNN and Lasso models directly. How-

ever, these models had only moderate success at predicting sensible heating and

cooling loads, and were unsuccessful at predicting the latent cooling and heating

loads.

In an effort to improve the load predictions, we incorporated HVAC opera-

tion heating and cooling features, which indicated the on and off states for these

respective operating conditions with mixed results. Based on Lasso regression’s

ability to automatically select relevant inputs, it can be concluded that either

better use of existing information or additional information would be necessary

to better predict the latent load variables. It is left as future work to analyze

additional features and internal EnergyPlus variable information that can be

incorporated into the prediction process without diminishing the EnergyPlus

approximation’s generality.

The Lasso model is able to predict an entire yearly simulation in ∼3 seconds,

and the FFNN models can achieve the same execution time when run in parallel.

These runtimes are considerably faster than the average EnergyPlus runtime

(∼2-3 minutes). During the process of calibrating a building model to utility

data for creation of a legally useful model, or calculating an optimal retrofit,

such performance increases could dramatically improve the speed at which such

iterative simulation use cases can be completed.

Finally, three datasets (FG, MO1 and MO2) were constructed to determine

the best EnergyPlus approximation model and typically requires multiple mod-

els. While attempts were made to generally represent residential buildings with

these datasets, and efforts were made to quantify the robustness of prediction

through testing and validation datasets, it is left to the reader to ascertain the

robustness of surrogate models to other use cases requiring different simulation

inputs (building descriptors) and outputs.

Given the supercomputing capabilities leveraged to generate the benchmark

datasets, new ones could be generated relatively quickly to extend both the ro-
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bustness and predictive accuracy of surrogate models generated from such data.

There are two approaches to improving predictive accuracy. First, domain ex-

perts could further identify and isolate internal simulation variables that can be

used with care to ensure the variables’ robustness to allow a derivative predic-

tive model’s relevance to other buildings. Second, explore features synthesized

from the existing variables. This first approach would require new benchmark

datasets to be simulated whereas the second requires some expert time and

computational cost for synthesizing general features.
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Figure 12: Illustrates the FFNN model’s CV error clustering into a distinct cluster on the

Markov Order 2 dataset.
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Figure 13: The HVAC on and off operating feature overlayed onto a sample MO1 LR latent

heating (Figure 13(a)) and sample MO1 LR latent cooling (Figure 13(b)).
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Figure 14: The HVAC on and off operating feature overlayed onto a sample FG LR latent

heating (Figure 14(a)) and sample FG LR latent cooling (Figure 14(b))

36



0 2000 4000 6000 8000 10000 12000
0

20

40

60

80

100

120

Number of Simulations

CV
(%

) E
rro

r

Fine Grain Output Variable Clustering

Figure 15: Identifies three potential outlier simulations within the Fine Grain dataset

37



Table 3: Comparison between the best FG FFNN model results, without HVAC features, and

the best FG FFNN model with HVAC operation features.
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Table 4: Comparison between the best MO2 FFNN model results, without HVAC features,

and the best MO2 FFNN model with HVAC operation features.
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