2018 Building Performance Modeling Conference and
SimBuild co-organized by ASHRAE and IBPSA-USA
Chicago, IL

September 26-28, 2018

ENERGYPLUS INTERIOR RADIANT HEAT EXCHANGE RUNTIME PERFORMANCE
IMPROVEMENTS

ABSTRACT

EnergyPlus is the flagship whole-building energy simula-
tion program developed by the US Department of Energy.
This paper describes the various approaches to improve
the performance of the interior radiant heat exchange al-
gorithm. Vectorization, optimized Basic Linear Algebra
Subprograms (BLAS) library, multithreading, and Graph-
ical Processing Unit (GPU) computation are all investi-
gated. The approach with the best performance, while
maintaining drop-in compatibility with existing Energy-
Plus code, is the optimized BLAS library. However, GPU
computing has the potential to reduce simulation time by
orders of magnitude with major refactoring to EnergyPlus.

INTRODUCTION

EnergyPlus began in 1995 to replace DOE-2 and is cur-
rently the US Department of Energy’s (DOE’s) flag-
ship whole-building energy simulation program (Drury
B. Crawley 2001). Since that time, DOE has invested over
$65 million in adding new building technologies and mod-
ern simulation capabilities. The primary users of Energy-
Plus are architects and engineers assessing energy impacts
in design, major software vendors offering simulation-
based services for buildings, and agencies interested in
code and policy impacts on building energy use. Energy-
Plus is released under a commercial-friendly, open-source
license on GitHub. Building Energy Modeling (BEM) has
multiple use cases, both established and emerging:

e Design: architecture, HVAC system selection & siz-
ing

e Operations: HVAC fault diagnosis, dynamic control,
model predictive control, & demand response

e Market: code development & compliance, ratings,
incentives, M&V, policy, etc.

The EnergyPlus development team is active in the Amer-
ican Society of Heating and Air-Conditioning Engineers
(ASHRAE), International Building Performance Simula-
tion Association (IBPSA), and the American Institute of
Architects (AIA). The project team also provides public

outreach, training, feature requests, troubleshooting, and
other support via UnmetHours, email, phone, user group,
helpdesk, and other user support. EnergyPlus is capable
of modeling most building materials, constructions, and
equipment with output from annual to 1 minute resolution
for energy use, temperature, relative humidity, and other
fields of interest. Many algorithms of varying fidelity exist
for modeling certain phenomena within the simulation en-
gine, allowing the user to occasionally define the trade-off
between more accurate simulations and longer runtime.
EnergyPlus consists of 600,000 lines of Fortran code and
was cross-compiled to 700,000 lines of C++ for version
8.0 and is at version 8.8 as of the time of this writing.

To accurately model the build physics, EnergyPlus calcu-
lates the heat transfer in the building every timestep. One
heat transfer calculation, interior radiant heat exchange, is
computationally intensive in its current form, especially
for large buildings with many surfaces in each thermal
zone. EnergyPlus calculates the net long wave radiation
(NLWR) from all surfaces in a thermal zone that have a
direct line of sight with another surface. EnergyPlus uses
Hottels ScriptF method to approximate the gray body heat
exchange of each surface (Hottel 1954). Due to the high
computational intensity for calculating ScriptF factors and
NLWR for each surface, these were investigated for differ-
ent methods to speed up the computation. Multiple Cen-
tral Processing Unit (CPU)-based and Graphical Process-
ing Unit (GPU)-based improvements were studied. To
help facilitate easier testing of the various approaches, as
well as data structure changes, the original EnergyPlus
code for calculating interior radiant heat exchange was
ported to a simplified C codebase specific only to this cal-
culation.

CPU-BASED IMPROVEMENTS

This first section looks at various CPU-based performance
enhancements to the test code. Since the existing code is
serial, CPU-only code, this is a logical starting point for
drop-in ready improvements.

As shown in Table 1, auto-vectorization with data struc-
ture improvements and BLAS yielded similarly good per-
formance. The auto-vectorized code takes better advan-

Table 1: Comparison of performance improvement tech-
niques using timestep of 15 minutes (35,040 iterations),
256 thermal zones, and 128 surfaces per zone

Time Improvement
(minutes) (%)
Naive 4.48 -
Altered Data Structure 2.04 54.5
BLAS (single threaded) 2.25 49.8
Hand Vectorize 4.09 8.7

tage of the machine used for testing, which is a Haswell-
based AVX2 with a 256-bit-wide vector unit and is typical
of current Intel-based processors. These techniques have
the potential for a 4 speed-up using double precision. Al-
tering the data structure allows: (1) reduced number of
calculations for improved arithmetic intensity, and (2) re-
duced number of memory lookups for improved cache co-
herence of the loop. The hand-vectorized results show
the difficulty in writing high performance code that takes
full advantage of the hardware and pipeline. A primary
difference between hand- vs. auto-vectorized code was
that auto-vectorized code performed aggressive loop un-
rolling while the hand-vectorized code had none. Writing
high performance code under all code uses and machines
is challenging; therefore, using a highly optimized BLAS
library is often the best approach to improve the perfor-
mance of an application. The single-threaded BLAS im-
plementation was quicker to implement and less intrusive
than the data structure changes while completing in nearly
the same time.

Table 2: Comparison of performance improvement tech-
niques using timestep of 15 minutes (35,040 iterations), 1
thermal zone, and 1,024 surfaces per zone with 8 threads
(4 cores)

Time Improvement
(seconds) (%)
Naive 67.2 -
BLAS (multithreaded) 6.67 90
OpenMP 13.586 79.8
Altered Data Structure 19.93 70.3

Table 2 quantifies multithreading improvement for a code
base that is already vectorized and pipelined. This test
stressed the O(n?) algorithm when calculating the NLWR,
where n is the number of surfaces. Comparing the vec-
torized code improvements in Table 1 and Table 2, the
runtime improvement increases from 54.5% to 70.3% as
the number of surfaces per zone increases. This is due to
the improvements in loop unrolling, cache coherency, and
pipelining. The OpenMP version of the vectorized code

saw an improvement, but it was only 1.47 times faster
when it should have been 8 times faster if there was lin-
ear scaling. It is anticipated that this algorithm is memory
bound and acknowledge that the OpenMP parallelization
may not have been at an optimal location. The multi-
threaded BLAS did not have linear scaling, but had the
best performance in this test case.

Running Lawrence Berkeley National Laboratorys Empir-
ical Roofline Tool on the test machine gives the roofline
model shown in Figure 1 (Lo 2015). The interior radiant
heat exchange function has an arithmetic intensity of 1 for
the auto-vectorized code. This means the code is memory
bound. The optimized BLAS library is cache aware and
cache sensitive, so it still improves the performance of this
memory-bound problem.

Empirical Roofline Graph (Results.mac/Run.001)
1000 .

180.1 GFLOPs/sec (Maximum)

A2
100 &
Y o
B o ¢
J \"b q,(;b %
P v P g
£ P&
z NS °
f (R
© & v ¢
G
10 < "
&
Q)

L
0.01 0.1 1 10 10
FLOPs / Byte

Figure 1: CPU roofline plot for 2013 i7 Haswell MacBook
Pro.

GPU-BASED IMPROVEMENTS

A GPU accelerator has the potential to significantly im-
prove the performance of some programs. GPUs typ-
ically have higher computational power, relative to tra-
ditional CPUs, but relatively slow data transfer mecha-
nisms. GPUs require computational kernels with low-
data, high-compute algorithms to attain their full poten-
tial. NVIDIAs Compute Unified Device Architecture
(CUDA) was used on a GeForce GT 750M graphics card
with 384 streaming multiprocessors and 2 GB GDDRS
RAM with roofline model, as shown in Figure 2 (Nickolls
2008). Given the same arithmetic intensity of 1 for the
GPU accelerated code, the code is compute bound on this
GPU device.

In CUDA programming, a GPU kernel is a grid of blocks
and within each block is a grid of threads. This threading
hierarchy is how GPUs achieve their massively parallel
computation when computational work is divided across
all blocks and threads. The direct port of the CPU code to

CUDA has one kernel called every timestep (35,040 itera-
tions). This kernel uses one block and assigns the number
of threads to the number of zones. With this setup, build-
ings with larger numbers of thermal zones take better ad-
vantage of the 384 GPU cores.. However, low numbers
of thermal zones can lead to worse performance, or mod-
est improvements for this test compared to the serial CPU
code. The overhead of repeated GPU kernel calls can
overwhelmed parallelization and performance improve-
ments from GPU computation. In order to highlight GPU
potential, a test was created using a single GPU kernel for
all iterations in all zones. This showed a 96.2% reduction
in simulation time, as shown in Table 3. Howeyver, this
improvement is not realizable within the current structure
of EnergyPlus.

Table 3: Comparison of GPU performance improvement
techniques using timestep of 15 minutes (35,040 itera-
tions), 16 thermal zone, and 16 surfaces per zone

Time Improvement
(seconds) (%)
CPU-vectorized code 135 -
One kernel total 5.1 96.2
One kernel per iteration 11.1 17.8

Empirical Roofline Graph (Results.mac.gpu/Run.001)
100 T T

26.6 GFLOPs/sec (Maximum)

GFLOPs / sec

01 L L
0.01 0.1 1 10 100

FLOPs / Byte

Figure 2: GPU roofline plot for 2013 i7 Haswell Mac-
Book Pro with NVIDIA GT 750M.

FUTURE WORK

The potential of GPU computation within EnergyPlus
should be further investigated. Interior radiation heat bal-
ance may not be the best place for performance enhance-
ment, other locations in the code are potentially well-
suited to GPU computation. Specifically, solar shading
calculations seem to lend themselves to significant, GPU-
based acceleration.

Replacing hand-derived linear algebra and matrix inver-
sions within EnergyPluss codebase with calls to an opti-
mized BLAS library would likely yield significant perfor-
mance increases with relatively minor code changes.

CONCLUSION

The highly optimized BLAS library shows the best perfor-
mance improvements while maintaining the best drop-in
compatibility with existing EnergyPlus code and avoids
issues that may arise from hand- vectorizing code or rely-
ing on the compiler to auto-vectorize code. GPU compu-
tation has the potential to improve performance by orders
of magnitude; however, this would require a larger refac-
toring effort to achieve this performance.

ACKNOWLEDGMENT

REFERENCES

Drury B. Crawley, et al. 2001. “EnergyPlus: creat-
ing a new-generation building energy simulation pro-
gram.” Energy and Buildings 33 (4): 319 — 331.

Hottel, H. C. 1954. Radiant heat transmission. 3.

Lo, Yu Jung, et al. 2015. “Roofline Model Toolkit: A
Practical Tool for Architectural and Program Anal-
ysis.” High Performance Computing Systems. Per-
formance Modeling, Benchmarking, and Simulation.
Cham: Springer International Publishing, 129-148.

Nickolls, John, et al. 2008. “Scalable Parallel Program-
ming with CUDA.” Queue 6 (2): 40-53 (March).

NOMENCLATURE
BEM

Building Energy Modeling

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit

GPU Graphical Processing Unit

DDR5 Double Data Rate Type 5 Synchronous
Graphics Random-Access Memory

RAM Random Access Memory

CUDA Compute Unified Device Architecture

NLWR Net Long Wave Radiation

