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ABSTRACT 

ASHRAE has recently named a TC4.7 subcommittee on Multi-Scale Energy Modeling and there have been many technical developments focused on 

urban-scale energy modeling with the goal of creating building energy models for all buildings in a city to facilitate simulation-informed energy optimization 

for the built environment. These efforts often rely on non-scalable, local sources of information (e.g. county’s tax assessor’s database) to create more 

accurate models of those buildings. In partnership with the local utility, a year’s worth of real-world 15-minute electrical use data from 178,377 premise 

buildings has been assessed. This smart meter data is statistically analyzed and compared to corresponding simulation data for 97 different building 

prototypes in order to better assess simulation accuracy for various utility-defined use cases. To our knowledge, this is the first time real world and 

simulated building energy use data have been compared at this scale. 

 

INTRODUCTION 

There are approximately 124 million buildings in the United States which consume approximately $395 billion 

per year in energy bills. This constitutes 45% of national primary energy consumption and 73% of all electrical 

consumption. The U.S. Department of Energy’s (DOE) Building Technologies Office has the goal of reducing energy 

use intensity of U.S. buildings 45% by 2030 compared to a 2010 baseline. While the U.S. Energy Information 

Administration provides some top-down statistics to guide a measure of success against those goals, utilities – which 

hold the high-value building-specific data – are frequently conservative in sharing that data due to legal obligations to 

keep the energy use data of their customers secure. Finding a secure way to recognize value for themselves and their 

rate payers would be very attractive to most utilities. The authors have partnered with a utility to create a digital twin 

of a utility’s service area and compare their built environment to 15-minute electrical consumption from revenue 

grade meters. 

In partnership with the Electric Power Board of Chattanooga (EPB), we have analyzed a full year’s worth of raw 

15-minute electrical energy use data gathered by utility-grade smart meters for 178,377 premise identifiers (premise 

IDs) in the Chattanooga, TN area. The premise ID is an integer value representing a building in EPB’s business 

systems and must be mapped to the EPB building ID corresponding to the building energy model created by the 



authors. These values are different in order to obfuscate the energy use values from a given building energy model. 

However, premise IDs do not map 1-to-1 with building models—there are 178,377 distinct premise IDs but only 

135,481 building models detected from current data sources. The energy use values associated with a premise ID can 

represent a building’s energy use values for an entire year or only a subset of the year. This means multiple premise 

IDs will often map to a single building ID. While EPB has global positioning system (GPS) coordinates for all electric 

meters that can be used to map their billing data to GPS-registered building energy models, there remains an issue in 

correcting GPS coordinates or properly registering 24% of the electrical meters using this crude modeling approach, 

so premise IDs cannot all be combined or linked to their respective building ID. 

As it comes from real-world sensors, the energy use data for each premise ID needs to be checked for possible 

errors. From the raw 15-minute energy use data, the minimum, maximum, average, and standard deviation of energy 

use were recorded for each premise ID. Then, threshold analysis [1] was applied to each premise ID’s energy use 

values to estimate its average 15-minute energy use over the year. The estimated average was used to calculate the 

relative error (RE), absolute error (AE), and root mean square error (RMSE) between this threshold average and the 

reported values. From here, outliers in the data could be detected. 

After analyzing the statistical data for each premise ID, a subset of premise ID energy use vectors were 

normalized by their building square footage to get their 15-minute energy use per square foot for the year – also 

known as the energy use intensity (EUI15min). Only 27% (48,268) of the premise IDs had a floor area registered with 

the utility. These normalized premise ID energy use vectors were compared 97 different simulated buildings 

(residential and commercial building types and vintages) to determine which energy use profile most closely matched 

the energy use per square foot of a given premise ID over the entire year. Once a comparable prototype building was 

determined, the coefficient of variation of the root mean square error (CVRMSE) and normalized mean bias error 

(NMBE) were calculated. 

The contributions of this paper are two-fold: 1) a quality assurance analysis was performed on the raw 15-minute 

electrical energy data of 178,377 premise IDs and was used to improve utility data, and 2) a building type classification 

algorithm based on 15-minute energy consumption profiles was assessed for 48,268 premise IDs using 97 different 

simulated buildings. 

PREVIOUS WORK 

EnergyPlus [2] and OpenStudio [3] are the building physics simulation engine and middleware software 

development kit in which DOE has invested $93 million since 1995. As part of this work, new features, better 

runtime performance, and creation of new prototype models of building types from assessments of real buildings has 

been constructed [4][5] to facilitate accurate and timely modeling of the U.S. building stock. In an effort to retain 

individual building information but at larger, city-scale geographical areas, ASHRAE has hosted 8 seminars focused 

on Urban-Scale Energy Modeling [6][13]. These efforts by government, universities, and industry has focused on 

leveraging increasingly diverse data sources and algorithmic capabilities to automatically construct individual building 

energy models in a scalable, compute-driven manner [14]. 

EXPERIMENTS 

Data 

The original electrical energy consumption data came from 15-minute measured electrical use for each building 

in the EPB service area over an entire calendar year. The raw data given from EPB is approximately 50 gigabytes, has 

several million tuples consisting of a 15-minute time period, electrical energy use values in kW consumed during each 

15-minute time period (the sum of four consecutive values provides the kWh), and an associated premise ID. The 

data was reorganized by premise ID and ordered chronologically to facilitate comparison to the energy use data of 

simulated buildings. 



As expected with this volume of raw data, there are several issues involved with data formatting. First, not all 15-

minute intervals have energy use values for many of the premise IDs. Second, some data is incorrectly formatted, 

either through an incorrectly formatted date/time string or a non-numeric value for energy use. Third, some 

customers change rate structures or owners which may result in a mid-year change of premise ID. Finally, some of the 

15-minute intervals for the same premise ID have duplicates in the raw data. The result of these issues means that 

most premise IDs are missing at least some of their energy use values and some premise IDs may be missing almost 

all of their energy use values. Ideally, each premise ID would have a complete set of 15-minute energy values for the 

entire year (35,040 in total). Most premise IDs have only a small amount of missing data, with over 93% of the 

premise ID energy use vectors missing 2% or less of their energy use values. A breakdown of missing data is shown in 

Table 1. 

 

Table 1.   Missing Energy Use Data in Premise IDs 

Number of 
Premise IDs 

Missing Data 
(Nearest %) 

Percent of Data 
(%) 

146,318 1 82.03 

20,617 2 11.56 

11,387 3-99 6.38 

55 100 0.03 

Each premise ID had its energy use values stored in a 35,040-element vector for the annual data. For example, January 

1, 00:00-00:15 is index 0, January 1, 00:15-00:30 is index 1, and so on. Missing or badly formatted data is represented 

by a token ‘NaN’ rather than a zero value in order to differentiate between actual zero values and missing or badly 

formatted data. 

Prototype Vectors 

All commercial prototype buildings and a group of prototype residential buildings were simulated for every 

vintage using climate zone ASHRAE-169-2006-4A building codes and simulated using Actual Meteorological Year 

(AMY) weather data for the calendar year corresponding to the measured data. Each prototype building’s 15-minute 

energy use was simulated for 17 different building types including Full Service Restaurants, Hospitals, Office buildings 

(small, medium, and large), Primary Schools, and more.  Each building type uses several different vintage types 

averaging 6.75 vintages per building type. A total of 97 different prototype vectors were used. Based on this simulated 

data, the energy use profile is used to determine building type from actual, building-specific energy use intensity. 

Statistical Analysis 

Real-world data can be inaccurate or contain errors, through recording errors with equipment, transcription 

errors, or from several other sources. To get an idea of how likely the real-world data is to contain such errors, 

statistical information about the data can be computed an analyzed. Although it is not possible to know whether or 

not the real-world data is accurate (because there is no ground truth against which it can be compared), it is important 

to know how likely the data represents its real-world counterpart before significant time is spent comparing it to 

models. 

Based on previous work, threshold analysis [1] is a more accurate way to determine an average of a series of data 

with missing values than several other methods. Threshold analysis works by finding the average of sliding averages of 

data within a certain threshold over the data set. First, the naïve average, µ, and standard deviation, σ, of the full data 

set is calculated. From these, a user selected value c is chosen to create a “threshold” for valid values, where 

 

                    (1) 



 

For a particular window size n (determined by the user), the average of the first x1, x2, …, xn values is calculated. 

Only values inside the threshold are used to calculate this average—values outside the threshold are ignored. Next, the 

window shifts by one value, and the average of the next x2, x3, …, xn+1 values (within the threshold) is calculated.  This 

process repeats until the averages of all windows have been calculated. Finally, the average of the window averages is 

the threshold average of the series. 

The threshold analysis (c = 3, n = 6) was performed as described in [1] with a modification to properly 

accommodate questionable data; since values are missing at unpredictable locations, the sliding window size cannot be 

guaranteed to always contain all valid values. A minor change was made to average only valid values. With a window 

size of six (i.e., 1.5 hours if all data is present), if two values in the window are missing or invalid, the mean of only the 

four valid values are taken as the mean of the window. Windows with no valid values are not included in the threshold 

average. This process repeats every time the window shifts. The data was split with 70% of valid values used for 

training and 30% for testing. 

Once the threshold average had been calculated for a given premise ID, an average energy use vector was created 

with each value being the threshold average. The AE (equation 2), RE (equation 3), and RMSE (equation 4) were 

calculated between each premise ID energy vector and its average energy use vector. Again, only valid data points 

were used to calculate the error measures. In addition, the following metrics were recorded from each premise ID 

energy use vector: minimum and maximum energy use values, number of badly or incorrectly formatted data, number 

of missing data points, number of duplicate data points, number of correctly formatted data points, naïve average and 

standard deviation, and the threshold average. As discussed in the results section, these measures helped give 

confidence that most of the real-world data did not contain errors. 

Euclidean Distance 

In addition to analyzing each building’s actual electrical energy use using statistical information, the primary goal 

was to determine how similar each premise ID energy use vector was to each of the simulated prototype vectors so 

that building type could be assigned based on the electrical signal (i.e., the one that matters most for utilities). A naïve 

Euclidean distance metric was employed to compare the similarity of each premise ID’s actual EUI15min to that of each 

prototype building. Any 15-minute intervals without an energy use value for the premise ID were excluded from the 

distance calculation (each prototype vector had energy use values for all 35,040 time intervals). 

Of the 178,377 initial premise IDs, only 48,268 could be mapped to a building area, which is required to find 

EUI15min and measure the Euclidean distance. The prototype building with the smallest distance was considered to be 

its match and used to assign the premise ID’s building type based on the closest prototype/vintage EUI. For each of 

the 48,268 premise IDs, CVRMSE (equation 5) and NMBE (equation 6) were calculated between it and its matched 

prototype building. 

Utilities are very cost-sensitive to the time-varying cost of energy as energy is more expensive during peak energy 

use times (esp. peak demand during critical generation times.) A common measure of this is the ratio of each 

building’s total energy use to the maximum continuous energy use, known as load factor (equation 7). Once the 

building type was assigned as described above, the load factor for the building was computed. For utilities, this could 

be used to inform operational decisions for the electrical distribution network, such as moving transformers to handle 

larger loads. 

            (2) 



             (3) 

             (4) 

            (5) 

           (6) 

where  is the number of valid values in the premise ID energy use vector,  are the valid premise ID energy 

use values,  are the corresponding prototype energy use values,  is the mean of the valid values in the premise ID 

energy use vector, and  is 1. 

            (7) 

RESULTS 

All work for implementing the experiments described above was written in Python scripts for preprocessing, 

statistical analysis, and Euclidean distance calculations. All code was run on a secure internal, 24-core Linux server. 

Statistical Analysis 

For the 178,377 premise ID buildings, the previously-described statistical data was calculated and threshold 

analysis run to determine error measures, which were then used to look for outliers. Initial analysis revealed several 

outlier premise IDs that warranted further investigation. 

A total of 3,658 premise IDs had minimum and maximum energy use values of 0, indicating that these premise 

IDs had zero vectors for energy use and were likely not representative of an actual building. Additionally, several 

premise ID energy use vectors were very close to a zero vector with only a few non-zero 15-minute energy use values, 

and these values spiked into the tens of thousands. With all energy values measured in kWh, these high values in this 

pattern seem unrealistic. Average statistical data for the premise ID energy use vectors was calculated for several cases: 

using the data from all premise IDs, using only premise IDs with non-zero vectors, and using premise IDs with non-

zero vectors without spiking. Premise IDs with spiking were defined as having both a maximum kWh value of 10,000 

and a maximum value more than 1,000 times the threshold average. This definition does not remove all premise IDs 

with high outlier values, but testing different thresholds shows that these values remove the most obvious outliers. 

The statistical data was averaged for each of these cases and values are shown in Table 2. 

 

Table 2.   Averages of Statistical Information for Premise IDs 

Premise IDs 
Included 

Min. Max. 
Threshold 

Avg. 
Raw 
Avg. 

Raw Std. 
Dev. 

RMSE RE AE 
Total 

Removed 

All 0.084 3,510.513 1.644 15.088 147.439 67.641 1.153 105,748.077 0 



Removing 
0-vectors 

0.085 3,510.493 1.674 15.351 150.320 68.951 1.176 107,961.451 3,658 

Removing 0-
vectors and 

spiking 
0.085 194.291 1.573 4.822 21.014 6.253 1.027 19,441.787 3,782 

It is interesting to note that removing the premise IDs with zero vectors did not significantly change the average 

statistical information of the premise IDs, which indicates that many of the premise IDs with non-zero data have an 

average energy use close to a zero vector. Only 124 premise IDs (0.06%) were filtered with the spiking criteria but 

caused a dramatic change in almost every measure except the threshold average and minimum values (which should 

be expected). These dramatic decreases are best explained by how significantly the maximum energy use of these 

spiking premise IDs lies outside of standard energy use. This gives support to the intuition that the spiking premise 

IDs are not likely accurate representations of real energy usage. 

The averages of formatting errors were also tracked, shown in Table 3. The most significant changes came from 

removing the zero vectors, which reduced the average number of outliers and greatly reduced the average number of 

missing values. 

 

Table 3.   Average Data Formatting Statistics for Premise ID Data 

Premise IDs 
Included 

Bad Formats Outliers Missing Duplicates Valid Values 

All 8.345 580.588 829.295 37.039 34,202.360 
Removing 
0-vectors 

8.373 592.740 756.888 36.855 34,274.739 

Removing 0-vectors 
and spiking 

8.373 593.122 753.170 36.849 34,278.455 

From this analysis, only 2% of premise IDs seemed to have unrealistic energy patterns.  Enough of the data was 

useful that it could be included in the next part of the analysis. 

Euclidean Distance 

Comparing the real-world data to simulated data in a meaningful way requires normalizing the energy use of each 

building. Of the initial 178,377 premise ID buildings, a total of 48,268 had square footage data available, which was 

required to normalize the premise ID energy use vectors and compare with the prototype energy use vectors. The 

number of premise IDs matched with each building type and the averages of several metrics are displayed in Table 4. 

 
Table 4.   Average Values for Each Building Prototype 

Building 
Type 

Distance Valid Data 
Points 

Load 
Factor 

CVRMSE 
(%) 

NMBE 
(%) 

Total 
Matches 

FullServiceRestaurant 0.322 34,409.412 0.348 96.541 3.535 51 
HighriseApartment 0.052 34,585.214 0.214 87.439 -6.297 3,324 

Hospital 0.232 34,331.950 0.260 108.868 7.232 558 
IECC Residential 0.025 34,508.290 0.164 531,380.321 -477,671.045 38,380 

LargeHotel 0.316 34,229.087 0.303 208.323 8.997 403 
LargeOffice 0.102 32,217.706 0.278 87.600 3.980 34 

MediumOffice 7.250 34,640.000 0.000 5,262.907 48.370 1 
MidriseApartment 0.059 34,299.668 0.219 117.646 -21.999 1,192 

Outpatient 16.658 32,595.766 0.377 539.962 13.409 64 
QuickServiceRestaurant 1,433.371 34,085.328 0.402 604.051 48.724 305 

RetailStandalone 0.101 26,219.800 0.294 111.854 3.926 5 



RetailStripmall 0.108 33,985.231 0.215 108.856 5.978 26 
SecondarySchool 1.886 20,618.000 0.002 1,880.802 18.612 1 

SmallHotel 0.085 34,709.770 0.197 97.889 3.693 3,751 
SmallOffice 0.200 18,784.000 0.190 302.404 14.007 4 
Warehouse 0.096 26,383.550 0.191 2,664.157 -2,070.092 169 

 
Of the 17 possible building prototypes, only PrimarySchool is not represented. The MediumOffice and 

SecondarySchool building prototypes only have one match. The number of primary schools, secondary schools, and 

medium offices (the most common commercial building type) in reality is much larger than what was found with this 

building type assignment. While any energy conservation measures applied to inappropriately labeled building types 

would be physically unrealistic, it is important to note that simply matching the EUI profile for load factors is 

beneficial for the utility use cases driving this study. 

Nearly 80% of the 48,268 premise IDs matched with the IECC Residential building type. The IECC building 

types have significantly lower EUI than any of the other building prototypes. As noted in the statistical analysis, some 

spiking premise ID vectors have over 35,000 energy use values of zero and only one non-zero value. This contributes 

to large average CVRMSE and NMBE errors and can causes their individual CVRMSE to be in the millions. The low 

EUI15min of these premise IDs match with the IECC building type. For the statistical analysis, thresholds were set to 

filter premise IDs with spiking energy use. Extreme CVRMSE values are the result of more factors than maximum 

energy use, so a different filter was needed to remove unrealistic premise IDs. Filtering out CVRMSE greater than 

10,000 removes 584 premise IDs and reduces the CVRMSE and NMBE for IECC buildings to 259.338% and -

144.423% respectively. Although this filter is not optimal, testing has shown that it is a good starting point and can be 

optimized in future work. 

While ASHRAE Guideline 14 [18] specifies CVRMSE<30% and NMBE<10% for hourly data for a calibrated 

model, existing reports covering over 3,000 buildings show manually-created building energy models have monthly 

CVRMSE between 23% and 97% [19][20]. For either calibrated data or preliminary manual BEM creation, there is not 

yet an equivalent 15-minute data. If CVRMSE and NMBE quadruple with the number of data points (i.e., 15-minute 

instead of hourly), these comparisons are within range of those typically constructed manually. As such, the Euclidean 

distance method is adequate for this application. 

The largest average distance is from the QuickServiceRestaurant (QSR) building type, which is nearly 90 times 

larger than the second largest average distance, the Outpatient building type. The QSR distance is heavily weighted by 

several premise IDs whose distance values were measured in the thousands. The best explanation for this is that the 

QSR has the highest total EUI of all building prototypes over the course of a year. Any premise IDs with higher EUI 

than any of the prototype buildings will match with the QSR. Of the 305 premise IDs matching the QSR, 242 match 

with the DOE-Ref-1980-2004 vintage, which is the prototype building type/vintage combination with the highest 

EUI over the year. This indicates that at least a subset of the 242 premise IDs matching the indicated vintage are not 

well represented by any of the 97 prototype buildings. A breakdown of metrics by vintage type for the QSR is in 

Table 5. 

 

Table 5.   Average Values for QuickServiceRestaurant by Vintage. 

Building 
Vintage 

Distance Valid Data Points Load 
Factor 

CVRMSE 
(%) 

NMBE 
(%) 

Total 
Matches 

90.1-2004 0.540 33,794.500 0.156 134.236 -0.153 2 
90.1-2007 0.303 34,611.941 0.426 66.880 11.569 17 
90.1-2010 0.253 34,826.000 0.393 65.032 9.258 1 
90.1-2013 0.314 34,626.000 0.185 100.160 3.804 2 

DOE-Ref-1980-2004 0.280 34,158.122 0.429 59.015 11.915 41 
DOE-Ref-Pre-1980 1,806.445 34,030.876 0.399 744.402 58.509 242 

 



CONCLUSION 

A quality assurance analysis was performed on raw 15-minute electrical energy data of 178,377 premise IDs in 

the Chattanooga, TN area. Statistical information was analyzed to determine the usefulness of the data and whether 

individual premise IDs were likely to represent actual buildings. The analysis determined that nearly 98% of premise 

IDs were a reasonably representative and could be used as a baseline to compare with simulated data.  

In partnership with a utility, actual 15-minute electrical whole-building energy use from each of 178,377 premise 

IDs was compared to 97 prototype buildings (different combinations of building types and vintages) using Euclidean 

distance to assign each premise ID a vintage and building type based on the most similar 15-minute energy use profile. 

For 47,684 premise IDs which met the data availability and statistical requirements, crude building energy models had 

a 15-minute error added over the entire year which is likely within range of error rates from previous studies for 

manually-created building energy models. 
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