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Abstract 

Maintaining electrical generation assets to meet peak 

demand increases the cost of providing electricity to a 

country’s buildings and insufficient assets can result in 

power outages. In order to keep reliable electricity costs 

low for consumers and demand charges low for utilities, 

there exist markets and financial incentives for limiting 

consumption during peak demand. 

The team has partnered with an electrical distributor 

servicing a 1,390 km2 area and 178,368 buildings with the 

aim of using urban-scale building energy modelling to 

inform business decisions necessary for the operation of 

their electric grid. A suite of software has been developed 

that allows the scalable creation of a “digital twin” for all 

buildings in the utility’s service area. This virtual utility 

area is analysed for targeted deployment of new 

technologies or policies to assess building-specific 

savings, effects on critically-loaded grid infrastructure 

(e.g. feeders, substations), and aggregated impact to 

utility-scale operations. 

This work leverages 15-minute data from each building to 

compare actual and simulated monthly peak-hour demand 

and assessment of the load factor for each building. 

Findings include market characterization via clustering of 

relative energy use profiles for ~180,000 buildings as well 

as simulation-informed savings opportunities indicating 

residential load factors of 0.17, commercial load factors 

of 0.2-0.4 depending on year of construction, and general 

load factors of 0.16-0.5 depending on building type. 

 

Introduction 

The U.S. Department of Energy has established resiliency 

of critical infrastructure (i.e. the electric grid) as the top 

priority for the Office of Electricity with a synergistic 

Grid-interactive Efficient Buildings (GEB) initiative [1] 

by the Building Technologies Office which extends 

energy efficiency of buildings to understanding time-of-

use grid impacts. 

As buildings become more energy efficient and with the 

increasing proliferation of decentralized renewable 

generation, many utilities are seeing an erosion of revenue 

per customer and actively looking to evolve the traditional 

utility business model. The challenge of balancing 

regulatory requirements between supply and demand is 

becoming more difficult and costly as indicated by the 

trend of the “duck curve” [2][3]. By capturing the more 

difficult, time-varying aspect of energy use to reduce peak 

demand, typically defined by the utility’s hour of 

maximum energy use each calendar month, the value of 

time-varying energy efficiency [4] can be captured. 

Indeed, the growing ubiquity of smart, communication-

enabled devices has enabled energy use to be grid-aware 

and responsive through cost-effective sensing and control. 

Energy efficiency (EE) and demand response (DR) may 

or may not work together in buildings. Nemtzow’s 

decennial Green Effect meta-review of 100 DR programs 

showed 20% EE gains to a 5% EE loss as a function of 

DR [5]. Other work shows an 8.8% peak cut with 13.3% 

increase in energy consumption for residential HVAC 

equipment [6]. Preliminary results [7] from the authors’ 

work seems to indicate EE gains can vary from -25% to 

+27% by building type as a function of a DR measure.  

 

Background 

The Electric Power Board of Chattanooga, TN (EPB) has 

deployed advanced metering infrastructure (AMI) and 

securely shared 15-minute whole-building electrical 

consumption for over 150,000 buildings with Oak Ridge 

National Laboratory (ORNL). EPB’s electrical 

distribution network is backed by gigabit ethernet for 

utility-based smart grid operations [8], allowing it to 

function as a high-fidelity, utility-scale living laboratory 

for EE and DR opportunities in the built environment. 

The partnership has enabled development of a suite of 

software, referred to as Automatic Building detection and 

Energy Modeling (AutoBEM), that is: (1) able to collect 

cartographic, tax assessors, imagery (aerial- and street-

level), elevation, and other data sources from multiple 

locations; (2) process that data with computer vision, 

quality assurance, and related algorithms to extract 

building-specific features; (3) automatically combine 

those features to create OpenStudio and EnergyPlus 

building energy models of each building; (4) quickly 

simulate each building for large geographical areas on 

world-class high performance computing resources; (5) 

modify buildings and compare results to show impacts of 

new technologies or policies in terms of energy, demand, 

emissions, and cost; and (6) aggregate, summarize, and 

interactively visualize the results for any area in a way that 

scales from building-specific, 15-minute impacts to 

critically-loaded infrastructure, to the entire electrical 

distribution grid. This “virtual utility” of all buildings in 

the service area allows city-scale, building-specific 
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analysis with low-cost, same-day turnaround for most 

what-if scenarios. 

Relevant prior work includes survey and comparison 

matrix of 37 different building-specific data sources [9], 

microclimate variation of energy use [10], urban-scale 

energy modelling capabilities [11]-[15], long-term 

climate and resiliency [16][17], creation and analysis of a 

virtual utility [18], and assessment of BEM accuracy to 

actual 15-minute energy use from over 150,000 real 

buildings [19]. This “digital twin” of a utility has 

leveraged over 3 million simulations and 13TB of data to 

quantify $11-35 million in savings across 9 scenarios that 

may be operationally refined, validated, and shared via 

case studies for consideration by other utilities. These 9 

monetization scenarios fall under 5 use cases related to 

potential changes in rate structure, demand side 

management, emissions, energy efficiency, and 

comparative analysis for customers’ consumption [18]. 

Once a robust software Measure is written, the current 

system requires under 7 hours to modify every building 

model, perform an annual simulation, visualize cost 

savings (see Figure 1) using wholesale or retail rate 

classes, analyze/aggregate electrical load changes to 

areas-of-interest, and store relevant data in the utility’s 

operational business intelligence systems. 

 

 

Figure 1. Utility-scale, building-specific impact can be assessed 

for energy, demand, emissions, and cost impacts by leveraging 

big data collection, HPC-enabled processing, simulation of 

each building, and interactive visual analytics. 

Methods 

Clustering of actual building energy data 

Utilities are more frequently formalizing analysis related 

to higher-resolution AMI data. Shown in Figure 2 is an 

example of 2 buildings’ scaled kilowatt-hour (kWh) 

energy pattern from midnight to midnight with data points 

for every 15 minutes. While a similar pattern is observed, 

common utility questions may include: (1) “how would 

we effectively visualize all customers’ data for a year?” 

and (2) “how can we show which customers are similar in 

a way that is useful?” 

Our team first selected time periods of interest (e.g. 

business hours on weekdays) to time-bin the electricity 

use for all buildings. We then identify relative usage 

patterns by applying standard normalization, resulting in 

each building’s peak 15-minute use value as 1.0 and its 

lowest as 0.0.  

 

Figure 2. A plot of 24-hour energy use for two actual buildings’ 

15-minute profiles shows similar trends that might indicate 

candidacy for a specific DR technology. 

Clustering, via k-means, was used to segment all 

customers into significantly different load-shape patterns 

by minimizing the distance from each observation to the 

k cluster centroids based on within-cluster sum squared 

difference by adjusted/normalized kWh as defined by 

Equation 1 

 (1) 

where μi is the mean of the observations, x, assigned to 

cluster Si. By clustering buildings into unique load shapes, 

it is anticipated that additional building characteristics 

relevant to marketing and niche DR applications might be 

made known. 

 

Analysis of simulated building energy data 

EnergyPlus [20] and OpenStudio [21] are the building 

physics simulation engine and middleware software 

development kit in which DOE has invested $93 million 

since 1995. New features, better runtime performance, 

and creation of new prototype models of building types 

have recently been created from assessments of real 

buildings [22][23] to facilitate accurate and timely 

modeling of the U.S. building stock. We leverage these 

tools to create and simulate models of every building in 

the utility’s service area where, due to privacy concerns, 

there are no internal details of the buildings directly 

sensed. 

Quality assurance and quality control methods were 

previously applied to the actual 15-minute AMI data [19]. 

The actual annual 15-minute energy use intensity (EUI), 

kWh per building floor area, was stored in a ~35,040-

element long feature vector for every building. Each 

building’s actual profile vector was then compared 

against the simulated data for 3 residential vintages and 

every combination of the 6 vintages of 16 commercial 



 

 

building types using a dynamic 35,040-dimensional 

Euclidean distance. 

A common metric used by utilities is “load factor,” which 

is the ratio of the average energy use to peak demand as 

defined in equation 2. If a building’s site DR was perfectly 

managed, its energy use would not vary with time and 

yield a load factor of 1. Conversely, a building with a load 

factor near 0 may have significant opportunities for DR. 

 

𝐿𝑜𝑎𝑑𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑇𝑜𝑡𝑎𝑙(𝑘𝑊ℎ) / (𝑘𝑊𝑝𝑒𝑎𝑘 ∗ 𝑛𝑢𝑚𝐻𝑜𝑢𝑟𝑠) (2) 

 

Buildings with low load factor (i.e. occasionally showing 

high demand) impose higher costs on an electrical system 

where expensive generation assets must be maintained to 

meet the relatively high demand. This is used as a metric 

to target individual buildings and flatten the utility-scale 

duck curve. We report results characterizing load factor 

by building type and vintage to promote discussion 

regarding unique EE and DR opportunities for specific 

types and vintages of a building. In ongoing work, we use 

simulations to assess the impact of technologies or 

policies on building-specific load factor and utility-scale 

demand charges. 

 

Results 

Clustering of actual building energy data 

Using 96-dimensional k-means clustering on AMI data 

for different customer classes and time scales, the team 

was able to identify unique usage patterns that are 

actionable. As shown in the top row of Figure 3, our team 

was able to identify a typical residential trend with peaks 

between 5:00 and 7:00pm. This type of average daily 

profile from 15-minute data can help utilities identify the 

highest peak-hour contributors. Indeed, the 26,048 

residential meters belonging to the cluster shown in the 

top right of  Figure 3 were verified to be contributing more 

to the utility’s demand charges and offer the greatest 

potential sites for demand response solutions. 

In contrast to average daily profile for residential 

buildings, we also showcase 8 average weekly profiles for 

commercial buildings and the utility-relevant market 

segmentation this provides. Scaled kWh data during 

business hours from AMI for GSA-1, 2, and 3 buildings 

(i.e. small, medium, and large commercial) were clustered 

using Equation 1 in a way that should generalize to other 

utilities. These findings may help target EE and DR 

measures to the most relevant customers based on market 

segmentation by load profile. As a specific example, the 

grey line on the bottom-right of Figure 3 shows periods of 

highest activity on Sunday, Saturday, and Wednesday. 

Through investigation using geo-registered AMI meters 

and Google Street View, this cluster was verified to be 

composed primarily of houses of worship, a meta-

property building type not indicated elsewhere in the 

utility’s databases and could be used to improve building 

energy model characteristics.

 

   

  
Figure 3. Actual 15-minute data from ~180,000 residential customers was clustered and displayed (top left) rendered in faint blue to 

clarify overlap within the cluster (top middle), and identify unique load profiles, including one daily profile representing 26,048 

residential meters (top right). Average daily profiles can help identify high-value buildings for demand response while average weekly 

profiles can facilitate market segmentation for implementation. This technique was used to identify unique daily and weekly clusters 

across the utility’s entire area, including 9 clusters for all residential buildings during business days in Spring or Fall (bottom left) 

and 8 for all commercial buildings (rate classes of GSA-1, 2, 3) during business hours (bottom right). This market segmentation into 

unique daily and weekly profiles allow utilities to identify, align resources, and appropriately market relevant EE and DR services.   

  



 

 

Analysis of simulated building energy data 

Quality assurance and quality control algorithms were 

applied to the actual 15-minute AMI data for all buildings 

with previous work showing aggregated error rates 

between simulated buildings and measured data [19]. For 

this paper, outliers were removed, resulting in a reduction 

from 178,368 buildings to 178,333 buildings. Using 

annual electricity use intensity profiles of 15-minute data 

for each building, building types were assigned based on 

closeness of match to every combination of residential 

and commercial building type and vintage. We then 

computed both actual and simulated load factors for each 

building. In Table 1, we anonymize by reporting only the 

number of each building type, the corresponding percent, 

and load factor for each building type after selecting only 

building types with a significant number of buildings. 

It should be noted that while our EUI clustering technique 

for assigning building type shows 96% of buildings to be 

residential, similar to the United States average of 95%, 

the utility’s records show approximately 80% as 

residential. While this technique has the advantage of 

closely matching the measured load profiles of the real 

building, there is currently not sufficient data to rate its 

classification accuracy in terms of assigning building 

type. Upon further analysis, we found unusually large 

buildings (in terms of conditioned floor area) classified as 

residential, pointing toward areas for future improvement. 

The load factor for residential and commercial building 

types has been sorted to show Outpatient as having the 

least potential for DR and residential buildings as having 

the most. In practice, however, this may be offset by the 

significant difference in the tractable number of targetable 

buildings for potential DR offerings, energy consumption, 

and business models relevant to these building types. 

 

Table 1. Assigning building type based on EUI15m for buildings 

in Chattanooga, TN allows categorization of each building type 

in terms of potential for DR and improving low load factors. 

Building Type 
Num 
Bldgs 

% of all 
Bldgs 

Avg. 
Load 

Factor 

IECC Residential 171821 96.35% 0.164 

Warehouse 799 0.45% 0.166 

MidriseApartment 851 0.48% 0.261 

SmallHotel 1557 0.87% 0.261 

HighriseApartment 2068 1.16% 0.263 

LargeHotel 408 0.23% 0.365 

QuickServiceRest. 318 0.18% 0.380 

Hospital 319 0.18% 0.399 

Outpatient 59 0.03% 0.501 

 

Rather than reporting every combination of building type 

and vintage, the authors felt it more tractable and 

potentially interesting to aggregate load factor based on 

vintage (Table 2). With the same classification caveats 

described previously, this analysis indicates similar DR 

opportunities in residential buildings, regardless of age, 

whereas older commercial buildings are better than newer 

ones in terms of load factor. 

 

Table 2. Residential buildings show high DR potential across 

vintages, but with deployment challenges for such large 

numbers of buildings. While older buildings typically consume 

more energy than newer buildings, usage profiles of newer 

buildings often indicate greater DR potential from a load factor 

perspective than older buildings.  

 

Vintage 
Num 
Bldgs 

% of all 
Bldgs 

Avg. Load 
Factor 

R
esid

en
tial 

2006 16217 9.1% 0.170 

2009 6357 3.6% 0.177 

2012 149247 84.0% 0.163 

C
o

m
m

ercial 

Pre-1980 670 0.4% 0.405 

1980-2004 1064 0.6% 0.296 

90.1-2004 1478 0.8% 0.255 

90.1-2007 268 0.2% 0.338 

90.1-2010 1224 0.7% 0.208 

90.1-2013 1808 1.0% 0.256 

 

Future Work 

The utility has prioritized over 30 use cases for a “virtual 

utility.” This was used to define 9 monetization scenarios 

under the top 5 use cases related to: (1) potential changes 

in rate structure, (2) demand side management, (3) 

emissions, (4) energy efficiency, and (5) comparative 

analysis for customers’ consumption to assist bill 

inquiries [18]. While this study supports those scenarios 

and use cases, detailed estimates, analysis, or summary of 

specific energy, demand, emissions, and monetary 

savings are explicitly beyond the scope of this publication 

but is reported in other publications currently in-review. 

Furthermore, recommendations for specific technologies, 

policies, incentive structures, or business models are 

subjects of potential future publications. Ongoing work is 

leveraging the virtual utility to analyse the roles of 

electrification (e.g. electric vehicle adoption and managed 

charging), decremental value of decentralized generation 

(e.g. solar), short-term weather impacts for load 

management, resiliency for determining placement of 

local storage for islandable microgrids, and long-term 

climate analysis for infrastructure planning at the 

electrical distribution scale. 

 



 

 

Conclusion 

Actual 15-minute whole-building electrical consumption 

measured by revenue-grade meters from 178,368 

customers has been clustered into 9 residential categories 

to show unique hourly and daily load profiles for U.S. 

homes in Chattanooga, TN. A similar analysis resulted in 

8 categories for commercial buildings that allow better 

understanding of building-specific dynamics and 

marketing for energy-, demand-, emissions-, and cost-

saving opportunities. 

Actual and scenario-based simulation of energy use at 

sub-hourly levels for each building is compared to utility-

scale peak-hour energy use for each calendar month to 

quantify each building’s contribution percentile to utility-

scale demand during each hour of critical generation. We 

showcase initial results using EUI-based Euclidean 

distance between simulation and actual data to assign 

building type and report average load factor by building 

type and vintage to highlight the opportunities, unique 

challenges, and market segmentation for building energy 

efficiency and demand response. 
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