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ABSTRACT 

The availability of large-area sensing, scalable algorithms, and 

high-performance computing has enabled the possibility of urban-

scale building energy modeling using new methods not limited to 

the scalability of manual building energy model creation or 

retrieval of county-by-county tax assessor’s data. Automatic 

Building detection and Energy Model creation (AutoBEM) has 

created 178,368 building energy models for the Electric Power 

Board (EPB) of Chattanooga, TN, and compared simulation 

performance to 15-minute data from each building. These models 

leverage several data sources (e.g. imagery, GIS, utility), software 

tools to extract building properties (e.g. footprint, height, façade 

type, window-to-wall ratio, occupancy, building type), simulate at 

scale on two of the world’s #1 fastest supercomputers, and provide 

web-based visual analytics. 

Grid-interactive efficient buildings offer the potential to reduce 

utility and rate-payer energy costs during each calendar month’s 

hour of critical generation – when the least efficient, most costly, 

and often dirtiest generation assets must be brought online. In this 

paper, EnergyPlus is used to simulate over 150,000 buildings to 

assess the technical potential of utility-controlled smart 

thermostats. This is analyzed under a couple scenarios leveraging 

buildings as thermal batteries via pre-conditioning to coast through 

peak hours. Results are provided in box and whisker plots assessing 

the distribution of peak demand reduction at the utility-scale along 

with breakouts of energy and demand savings by building type and 

vintage. 
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1 Introduction 

High-performance computing and machine learning have led to 

new capabilities for processing large amounts of data. Among the 

possible capabilities is urban-scale building energy modeling. 

Obtaining building footprints from deep learning computer vision 

segmentation algorithms and building height from massive LiDAR 

datasets are two critical features of several that enable the creation 

of useful external details for building energy models.. The team has 

developed and applied such processing capabilities under the term 

Automatic Building detection and Energy Model creation 

(AutoBEM) [1][2]. Partnering with the Electric Power Board 

(EPB) of Chattanooga, TN, the corresponding building energy 

simulations can be compared to 15-minute electricity data from 

smart meters 178,368 real buildings. These serve to empirically 

validate and quantify subhourly, building-specific accuracy of each 

model. Digital twinning of a utility via processing of imagery 

(satellite and street-level) and other data sources for building-

specific properties with custom software is beyond the scope of this 

study, but the interested reader is referred to [3][4]. 

 

By creating an error-informed digital twin of all buildings in the 

service area, any technology or policy can be assessed to determine 

building-specific and utility-scale information regarding the impact 

in terms of energy, demand, emissions, and financials. We apply 

Energy Conservation Measures (ECMs) as well as measures that 

impact demand and other elements related to building performance. 

ECMs applied include reducing building infiltration, improving 

HVAC efficiencies, reducing lighting power density, increasing 

insulation, and swapping out different HVAC and water heater 

system types. While these ECMs reduce the utilities energy use and 

thereby overall peak demand, they only indirectly impact the 

maximum monthly generation. Utilities are especially interested in 

reducing peak demand since it is costly, both to utilities and their 

customers, when they must utilize their least efficient and most 

costly generation assets. 

 

Utility controlled smart thermostats are one such ECM that directly 

addresses demand reduction. Such a setup allows buildings to be 

used as thermal batteries. This is aided by pre-cooling or pre-

heating the building prior to the peak hour and then coasts through 
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the critical hour. Which buildings are pre-conditioned, at different 

times, and by different amounts is an ongoing area of interest.  

 

For this analysis, EnergyPlus is used to simulate more than 150,000 

buildings to evaluate the potential for grid-interactive buildings in 

the form of smart thermostats with multiple offsets. The results are 

visualized in box and whisker plots of percent demand reduction 

across the EPB service area as well as by building type and vintage. 

These demand reduction figures can be viewed as not only a cost 

saving measure to the utility and the ratepayer, but also as a 

reduction in emissions as the least efficient means of generation 

will be less utilized. 

2 Methodology 

 

The first step that had to be taken in building energy models for the 

EPB service area was collecting data that described the building’s 

physical makeup. The two things necessary for this are building 2D 

footprint and building height. These two features provide a general 

shape to the building. These footprints were then associated with 

an electrical meter by finding the smallest Euclidean distance 

between each meter’s GPS coordinates and the detected buildings. 

Building type and vintage were assessed by comparing the 15-

minute electricity use to the 97 prototype buildings and vintage 

combinations for this climate region (ASHRAE-169-2006-4A). 

Various other factors were calculated from these values and from 

there, building energy models could be created.  

 

The models were created and simulated using two of the world’s 

#1 fastest supercomputers, Jaguar and Titan. The baseline 

simulation results were compared to the real electricity data from 

EPB for quality assurance. By using a crude approach of assigning 

building type as small, medium, or large office and comparing to 

15-minute energy data, we achieved CV(RMSE)15 = 205.9% and 

NMBE15= 10.1% [5]. ECMs, once defined properly, can be used to 

modify all buildings, simulated on HPC resources, output 

transferred to analysis node, analyzed, and summarized with 

interactive, online analytics within 6.5 hours. This paper focuses on 

the demand-reducing measure for smart thermostats under 

scenarios where each building model is simulated at a four and 

eight degree (F) offset. The utility requested these setback values 

with a target of eight degrees or higher for potentially unoccupied 

or abandoned buildings. 

 

We use actual meteorological year (AMY) weather data for 

Chattanooga, TN, that corresponds to the time period for which 15-

minute data has been provided. Based on that, we look up the 

HVAC mode and temperature at the peak hour to determine 

whether heating or cooling are needed for proper pre-conditioning. 

We note that while this clairvoyance may be unrealistic in practice, 

most buildings (even during shoulder months) are typically in a 

clear heating or cooling mode both before and at the peak hour 

(which often is in the cold morning on cool months and the hot 

evenings during warm months). For the four-degree offset, there is 

a two hour pre-cool or pre-heat period where the thermostat 

setpoint is the average of the existing cooling and heating setpoint 

temperature with an added 0.5 degree (C) deadband to avoid 

hysteresis. Then for the peak demand hour and the following four 

hours after the peak, the cooling and heating setpoints increased 

and decreased by four degrees respectively. 

 

For the eight-degree offset, the approach is the same as the 4-degree 

offset with only minor differences. The pre-cool or pre-heating 

period increase to four hours prior to the peak demand hour. In 

addition, the cooling and heating setpoints increased and decreased 

by eight degrees respectively for the peak demand hour and the 

following four hours after the peak. 

3 Results 

3.1 All Buildings 

 

The results are reported in by percent demand reduction and are 

shown in box and whisker plots. The results are in three formats for 

the four- and eight-degree offsets; All buildings, grouped by 

building type, and grouped by vintage. Figures 1 and 2 contain all 

buildings in the service area.  

 

 
Figure 1. Average peak demand reduction across all 178,368 

buildings is 13% under a 4°F pre-conditioning scenario.  

 

The overall average peak demand reduction over the course of the 

year is 13.19%. The summer transitional months (March, April, 

May) tend to have the highest percentage demand reduction with 

March having the highest average percentage demand reduction of 

22.28% for the 4-degree scenario. It should be noted that these 

shoulder months have less demand, so while the relative percentage 

may be higher, the absolute kW is typically lower compared to 

other months. The average percent demand reduction stays 

relatively constant throughout the summer before dipping to a local 

minimum in October. The average percent demand reduction then 

increases in the winter transitional month (November) before 

decreasing to the global minimum of the winter in January and 

February. 
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March and November tend to have the highest variance with March 

having a variance of more than 3.5 times the average variance and 

November having a variance of more than 2.5 times the average. 

 
Figure 2. Average peak demand reduction across all 178,368 

buildings is 22% under an 8°F pre-conditioning scenario. 

The eight-degree smart thermostat offset has a similar shape to the 

four-degree offset. As should be expected, eight-degree demand 

savings is higher than four-degree demand savings, but is not twice 

the four-degree amount. The overall average peak demand 

reduction over the year is 21.70% (60% more than 4-degree). 

Similarly, the summer transitional months have the most percent 

peak demand reduction with April being the highest at 29.35%. 

Again the demand stays somewhat constant throughout the summer 

with the local minimum occurring in October before rising in the 

winter transitional month of November. The percent demand 

reduction then falls to the yearly minimum in January and 

February. 

March and November still have the high variance among buildings 

with March varying by more than 3.05 and 1.44 times the average 

variance respectively. Although, for the eight-degree case, January 

and February also has a large variance at 2.01 and 1.68 times the 

average variance respectively.  

3.2 By Building Type 

As the structure of the percent demand reduction plots for four and 

eight degrees are similar except on a different scale, only the eight-

degree plots are shown when grouped by building type and vintage 

so the striation can be better seen. The four-degree figures are 

located in the appendix, Figure A1. Figure 3 contains the percent 

peak demand reduction grouped by building type.  

Figure 3. Each building type is shown with the quartile ranges and outliers for each calendar month. This could enable empirical validation 

for what are indicated to be high-value building types (e.g. common medium offices and retail strip malls) and times. 
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The trend for percent demand reduction for each of the building 

types is similar to the overall trend for all buildings. There are a 

couple building types that have somewhat different patterns. As 

expected, medium office it’s highest reduction potential in March 

but interestingly, this building type also has very high demand 

reduction potential in January and February compared to the 

summer months which is opposite the total building trend. It is of 

note that many buildings including residential (IECC) have close to 

zero demand reduction with almost no variance. This could be due 

to the use of gas for heating while it was cold in these months in 

this particular year, but is certainly an artifact of the building energy 

models. Residential should be noted as more than 80% of building 

types in the EPB service area are residential. It appears that the 

residential buildings follow the overall building trend closely. 

Slicing the data by building type enables identification of lucrative 

buildings and times for maximum peak reduction. The building 

type with the most potential for reduction is the medium office 

which has consistently higher percent demand reduction than the 

other building types. The average percent demand savings for a 

medium office in March are well over 75%. After medium office, 

retail strip malls have the highest demand reduction potential.  

3.3 By Vintage 

As in Section 3.2, only the eight-degree plots are shown for the 

vintage comparison. The four-degree figures are located in the 

appendix, Figure A2.  Figure 4 contains percent peak demand 

reduction grouped by vintage. 

The trend with each vintage is similar to the overall building trend 

with March and the summer transition months being the highest in 

general and the winter months (January and February) being the 

lowest.  

While most vintages follow the overall trend, it is interesting to note 

that vintages before 2004 have higher percent peak demand 

reduction in December. The authors conjecture that this may be due 

to the higher infiltration rates in older buildings with a setback 

temperature that reduces the exfiltration of heating during cold 

months. It is encouraging to note that newer vintages have a higher 

relative demand savings potential than older buildings. Such 

buildings are also likely to have other sensors or equipment that 

could respond to grid signals. 

4 Conclusion 

A digital twin of buildings in a utility’s service area was simulated 

using EnergyPlus, validated with real 15-minute whole-building 

electricity data, and used to assess the potential of grid-interactive 

smart thermostats for managing monthly peak demand. 

The BEM-based assessment indicates smart thermostats with a 4-

degree offset resulted in an average of 13.19% reduction in peak 

demand over the year while a 4-degree offset resulted in an average 

of 21.70% reduction in peak demand over the year. The summer 

transition months offered the highest potential for demand 

reduction while the winter months offered the lowest. 

Figure 4: Relative demand reduction potential for each vintage (across all building types) slightly increases with 

newer vintages.  
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The building type with the highest potential for grid-interactive 

smart thermostat demand reduction was clearly medium office 

while other buildings offered similar reduction values over the 

course of the year. Both commercial and residential building types 

had nearly zero demand reduction in the months of January and 

February. The trend amongst the different vintages was similar to 

the overall trend with the exception of older buildings (pre 2004) 

having higher potential to shave peak demand in the month of 

December. 

There is much ongoing and future work involving scalable and 

cost-permissive extraction of building-specific properties being 

investigated by the authors. It is known that building energy use 

can vary by 3x per year or 5x per month between an energy saver 

and an energy waster in a similar building. Occupant behavior is a 

significant remaining source of uncertainty in building models, is 

difficult to address in light of privacy concerns, and is an area of 

active exploration by several funding agencies. Enhanced 

assignment of occupancy, further comparison to measured data, 

testing and improvement of different data layers/sources to quantify 

reduction of modeling errors, and empirical validation of predicted 

energy savings are all activities being actively explored by the 

authors. 
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