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ABSTRACT
Climate change and anthropogenically-forced shift of
weather in the future has the potential to impact energy
use and resilience of the built environment and electric
grids. This study analyzes this impact for 2030, 2045,
and 2100 using Representative Concentration Pathways
(RCP) scenarios defined in Intergovernmental Panel on
Climate Change (IPCC) Assessment Report 6. The large,
gridded simulation of meteorological variables for RCPs
2.6, 4.5, 6.0, and 8.5 are selected and downscaled to cre-
ate an hourly weather file appropriate for building energy
model simulation. This weather is then simulated on high
performance computing resources to quantify the urban-
scale impact of climate change on anticipated electrical
load characteristics in a test area of Chattanooga, TN.

INTRODUCTION
Advances in high-performance computing have allowed
for modeling at larger geographical scales and with more
accuracy. Two fields that have largely benefited from
these advances are climate modeling and urban-scale en-
ergy modeling. With building energy using more than
40% of all energy use in the United States (Administration
2018), understanding the relationship between the chang-
ing climate and the energy used by buildings is critical.
The IPCC created the RCP scenarios to assess future risks
and to consider how decisions may affect possible futures.
These climate scenarios were created to unify the many
climate researchers across the globe with the same start-
ing point. The RCPs contain this set of starting values
with varying emissions up until the year 2100 for each
pathway. Four RCPs were developed with the naming of
the pathways coming from the level of radiative forcing
(Wm-2) at the year 2100. Radiative forcing measures the
influence a factor has in altering the balance of incoming
and outgoing energy in Earths atmosphere. The different
pathways represent projections varying from a decline in
radiative forcing to a steady rise (Wayne 2013).
This study uses data from the Coupled Model Intercom-
parison Project 5 (CMIP5) where each RCP scenario is
projected using an ensemble of climate models. Climate
models have different initialization parameters and utiliz-
ing ensemble models allow for the quantification of vari-
ability in the simulations. While CMIP5 climate models

may share a common lineage, and therefore common bi-
ases, the ensemble technique provides a more thorough
solution than using any individual model (Flato and Rum-
mukainen 2013). Variability and uncertainty are beyond
the scope of this study. Therefore, only one ensemble
(r1i1p1) was used for this analysis, but the methods pre-
sented in this paper could be extended to multiple ensem-
bles in order to further quantify the effect of variability on
building energy use.

Figure 1: The Intergovernmental Panel on Climate
Change (IPCC) defines Representative Concentration
Pathways (RCP) scenarios that range from 1.5◦C to 4.9◦C
by 2100. This could have significant impacts on building
simulation, cities, and utilities. (Silverman 2012)

Error-informed urban scale building energy modeling has
been done for the city of Chattanooga, TN. Partnering
with the Electric Power Board (EPB) of Chattanooga has
allowed for empirical validation of models created by
comparing the simulation results to 15-minute electricity
data from smart meters in more than 178,000 buildings.
These models are created in several steps. The structure
of each building is obtained by combining 2D footprints
from deep learning computer vision segmentation algo-
rithms with LiDAR datasets. Once the structure of the
building is established, systematically assigning building
type and vintage (based on the Department of Energy’s
Prototype Buildings (DOE 2019)) allows for a more repre-
sentative model of what equipment would be in the build-
ing and results in a more accurate model. This process is
combined and applied under the term Automatic Building
detection and Energy Model creation (AutoBEM) (New
et al. 2018).
There are a number of prevalent concerns regarding the



IPCC scenarios and how possible climate trajectories may
impact many of the systems on which humans are reliant.
Many researchers in the ASHRAE and IBPSA communi-
ties are interested in Future Meteorological Year (FMY)
weather files so that future impacts of weather shift can
be accounted for in building energy models. ASHRAE’s
Standing Standard Project Committee 169 (SSPC169) de-
fines “Climatic Data for Building Design Standards” and
plans to release climate-informed shifts to weather and
sizing data for heating, ventilation, and air conditioning
(HVAC) systems in the next release of the handbook. At
a larger scale, generation utilities have to plan to han-
dle higher cooling loads and electrical distributors need
to plan infrastructure deployment (feeders, substations,
transformers) to accommodate weather-induced shift of
building energy loads within their service territory.
With EnergyPlus being used to simulate building energy
models for buildings within the utility, different weather
files can readily be used in the simulation. For this anal-
ysis, a representative building of each building type was
selected and simulated for a baseline year (2015) as well
as each of the RCPs for the given future years of 2030,
2045, and 2100. These results were then scaled up to rep-
resent climate change impacts to the entire utility.

Methodology
Weather can significantly impact non-base HVAC loads
within a building. The weather files for meteorological
years acquired from different providers can impact energy
use ±7% and monthly heating/cooling loads by ±40% in
different building types (Bhandari and New 2012). How-
ever, simply describing it as weather and interchanging a
single file masks the complexity of the underlying me-
teorological variables. While dependent upon primary
HVAC system and other variables, changes in dry bulb
and/or wet bulb (for a hydronic system) tend to dominate
the impacts of HVAC energy use. Figure 2 quantifies this
impact using DOE’s Medium Office Reference Building
(Deru et al. 2011).

Figure 2: Dry bulb temperature, on average, tends to
dominate changes in building energy use as shown here
for DOE’s Medium Office reference model. The next most
important meteorological variables tend to be relative hu-
midity, direct normal incident radiation, direct horizontal
incident radiation, and wind speed.

By assuming the IPCC scenarios as the basis for our anal-

Table 1: Description of IPCC climate model characteris-
tics used in this study to determine weather impacts to a
utility.

Table 2: Name and units of meteorological variables
found in IPCC data.

ysis, the climate model output data (Table 1) had to be
morphed into a format that EnergyPlus could use to sim-
ulate buildings. This study used (actual) meteorological
year weather data from the Chattanooga airport from cal-
endar year 2015 as well as the typical meterological year
(TMY) as the baseline weather file. This file was then
morphed based on the IPCC scenarios. IPCC data was
used for all meteorological variables with the exception
of wind speed, which was left unchanged from the origi-
nal TMY data.
The most impactful meteorological variables (Figure 2)
were identified for each of the RCPs and future years. The
data for each scenario was downloaded in netcdf format
and the data was morphed into a format that was required
by EnergyPlus. Some of the things that had to be done
included selecting the area of the Earth that was being
used for analysis (Chattanooga), unit conversions, as well
as down-scaling from 3-hour data to hourly data. This
downscaling was done linearly, with awareness that this
simple method is unlikely to accurately represent the vari-
ability of some meteorological variables (e.g. solar radi-
ation). The necessary variables were then entered into an
EnergyPlus Weather (EPW) editing software “Elements”
to create twelve weather files.
The next step was to create the building models. Each
of DOEs reference buildings(Deru et al. 2011) for the
area (i.e. 97 building type and vintage combinations)
was simulated with 2015 weather. The simulated electri-
cal profile of 15-minute Energy Use Intensity for a year
was then compared to actual 15-minute EUI data from



Table 3: Breakdown of building vintages by conditioned
area and percent of buildings identified in EPB’s service
area (New and Campbell 2019).

each of the 178,368 buildings to assign a building type
that most closely matched each buildings electrical use
profile(Garrison, New, and Adams 2019). The fourteen
building types that best represent the largest percentage
of buildings in EPBs service territory are shown in Ta-
ble 3.To reduce computational burden, one building of
each type was chosen to represent a portion of the ser-
vice areas buildings with the table providing the multi-
plier for utility-scale impacts. A representative sample
of each building type in the EPB service area was cho-
sen based on the median area. The physical makeup of
these buildings was determined by combing 2D footprints
from deep learning computer vision segmentation algo-
rithms with LiDAR to obtain height. This structure was
associated with an electrical meter by finding the smallest
distance between the GPS coordinates of each electrical
meter with the buildings centroid. Importantly, since the
utility partner provides only electricity (i.e. not natural
gas), all building types were assumed to have both elec-
tric heating and electric cooling for their HVAC systems.
This has the effect of defining an optimistic value for max-
imum technical adoption potential of energy and demand
savings on the utility’s electrical distribution network.

The models were simulated with a baseline meteorolog-
ical year file (2015) as well as with the 12 RCP, future
year combinations. Baseline results were compared (not
calibrated) to the real electricity data for quality assurance
and building type assignment (Garrison, New, and Adams
2019). The referenced paper shows a non-calibrated,
crude approach to urban-scale energy modeling compared
against 15-minute CV(RMSE) and NMBE (not traditional
monthly or hourly values) yields variation by building
type from 87–531,000% and 3.7–478,000%, respectively.
The authors anticipate that future urban/multi-scale em-

pirical validation studies will show significant variability
in the distribution of model accuracy across each build-
ing, but that the aggregation to portfolios of buildings will
show significantly less error with enhanced community
attention to bias (i.e. central limit theorem, law of large
numbers). This study leverages those mathematical prin-
ciples by using a representative building of each type for
aggregate electrical energy use impacts (e.g. multiplying
by the number of those buildings in the utility’s service
area) that show more certain future weather and meteoro-
logical impacts on area-wide building electrical consump-
tion.

Results
Weather files
An initial investigation into the weather files themselves
allows for an intuitive understanding underlying the build-
ing simulation results. The averages for the most signif-
icant weather variables are shown in the Appendix (Ta-
ble 4). The first observation that is apparent is the dif-
ference between average dry bulb temperature between
2015, TMY, and the climate scenarios. The baseline files
temperature and pressure is significantly higher than the
RCP scenarios. This difference is likely explained by how
coarse the grid points are for this batch of climate models.
Rather than choosing an exact location, the grid point with
the location that was closest to the coordinates of Chat-
tanooga was selected. For this reason, total energy values
are shown as the different RCPs and years may still be
effectively compared. It also seems that 2015 was a sig-
nificantly warmer year than the TMY for Chattanooga.
Comparing only the scenarios across the years in (fig-
ure 3), the temperature values make sense and the trend
is apparent. For the scenario with the greatest mitiga-
tion (RCP 2.6), the dry bulb temperature remains rela-
tively constant while the dew point decreases slightly on
average by 2100. For the highest radiative forcing sce-
nario (RCP 8.5), the average temperatures increase sig-
nificantly. There is a greater standard deviation as years
go farther into the future for most cases other than for the
RCP 8.5 scenario in which the 2030 year has the greatest
standard deviation. This case is interesting as the temper-
atures are also significantly lower than the other 2030 sce-
narios which is unexpected given the increase in radiative
forcing.

Energy Use
The simulated energy use results are shown for the EPB
area in (Figure 4) in GWh. The Tables containing all re-
sults for energy use for both individual buildings as well
as scaled to the EPB area can be found in the Appendix
(Tables 5, 6). While TMY (typical) and 2015 (actual) data
are provided for completeness, discontinuities between
these and future years (IPCC) should be disregarded; only



Figure 3: Box and whisker plot of dry bulb temperature
(most impactful variable) across RCPs and years.

2030, 2045, and 2100 are from the same location and
model source for direct comparison. It is important to note
that only static multipliers are used on existing building
simulations with different weather files; the current study
does not consider sprawl of the built environment or land
use changes during those time periods.

Figure 4: Simulated energy use (GWh) for the EPB ser-
vice area across all RCP scenarios and years with base-
line years included.

The trend seems somewhat clear other than RCP 8.5,
2045. The highest mitigation scenario (RCP 2.5) increase
in energy from 2030 to 2100 while the other three scenar-
ios decrease in total energy with a change proportional to
their scale of emission escalation.
Taking a closer look at cooling and heating energy for the
building type that dominates the EPB service area (IECC
- Residential) makes the trend more clear. The heating
energy and cooling energy for a representative residential
buildings are shown in (Figures 5, 6).
It is apparent that the heating energy makes a greater per-
cent of total energy use than cooling energy for the res-
idential buildings which explains the increase in energy
use for RCP 2.6 with the dry bulb temperature decreas-
ing. This also explains the decrease in total EPB service
area energy for the other three scenarios without nearly
as much emission meditation. In addition to the scale of
heating to cooling energy; the change in heating energy

Figure 5: Heating Energy use (kWh) for a representative
EPB IECC building across all RCP scenarios and years
with baseline years included.

Figure 6: Cooling Energy use (kWh) for a representative
EPB IECC building across all RCP scenarios and years
with baseline years included.

is greater than the change in cooling energy across the
scenarios. For RCP 8.5, from 2030 to 2100, the heating
energy decreases by about 1,800 kWh while the cooling
energy only increases by about 550 kWh.
These total energy use results are significant. This states
that with increasing temperatures for RCP scenarios, to-
tal energy use will actually decrease in Chattanooga. It
should be noted that this could be impacted by the as-
supmtion that all buildings in the EPB area use electricity
for heating while in reality, this would not be exactly the
case.

Demand
Utilities are very sensitive to pricing and peak generation
hours for each calendar month. This can often constitute
25% of a non-residential energy bill and is the worst-case
scenario that utilities have to build or purchase power for
to supply without blackouts or brownouts. As such, many
utilities and organizations are interested in how to best
adapt their infrastructure to be resilient against challenges



from climate change.
The demand results are shown in the Appendix (Table 7).
The high and low mitigation scenarios (2.6, 8.5) for years
2030 and 2100 are shown in (Figure 7).

Figure 7: Cooling Energy use (kWh) for a representative
EPB IECC building across all RCP scenarios and years
with baseline years included.

The demand results show some interesting trends. For
example, for RCP 2.6, the demand results for the win-
ter are mixed over time with demand decreasing signifi-
cantly during January from 2030 to 2100 but increasing in
February and December. One would expect the demand to
increase from 2030 to 2100 in the winter in the high mit-
igation scenario as temperatures decreased. It could be
that the peak demand hour could have changed as climate
model forecasts move farther into the future. Also for
RCP 2.6, summer cooling demand is lower for the peak
hours of June and July. For the high emission, low miti-
gation scenario; heating demand decreases significantly in
January and February (as expected), but slightly increases
during December which could be a similar situation as the
low mitigation scenario for the Winter months in which
the peak how may adjust based on the different climate
scenario.
It is interesting to note that the transitional months of the
Spring and Fall remain relatively constant across the ex-
treme years and RCPs with more minor changes in the
Summer months than the Winter months as well. This
observation makes sense with the total energy use as the
change in cooling energy over different RCPs and years
was smaller than the change in heating over the same sce-
narios.

CONCLUSION
This paper has described methods for translating IPCC
RCP scenario data for 2030, 2045, and 2100 into Energy-
Plus weather files. DOE prototype building energy mod-
els were simulated with these weather scenarios to assess
climate change impacts to building energy use for an elec-

trical utility using a baseline of calendar year 2015. Some
of the limitations of these particular climate models were
shown by how coarse the granularity is wihtin the climate
grid. Nevertheless, the buildings could be simulated and
compared down the RCP pathways for useful information.
Dry-bulb temperature is the most influential variable in
affecting simulated building results and it was shown to
decrease over time for RCP 2.6 while it increased over
time for RCPs 4.5, 6, and 8.5. This led directly to an in-
crease in total energy from 2030 to 2100 for RCP 2.6 and
a decrease in total energy from 2030 to 2100 for RCPs
4.5, 6, and 8.5. This was shown to be caused by the larger
proportion of total energy used by heating electricity vs
cooling electricity as well as the larger decrease in de-
crease in heating energy vs decrease in cooling energy for
the EPB area.
The monthly demand profile mostly followed these same
patterns as the total energy use. Demand decreases for
low mitigation scenarios and increases for high mitigation
scenarios in the winter. There are some exceptions likely
due to and adjusted demand peak hour as forecasts go far-
ther into the future. Spring, Summer , and Fall months
were mostly unchanged comparatively across RCPs and
into the future as cooling energy was impacted less by the
climate scenarios.

Future Work
There are several opportunities to further extend this work
or build upon the techniques employed. The authors in-
tend to simulate all 178,000 buildings rather than se-
lecting a representative sample and scaling up to show
variability distributions rather than portfolio-level perfor-
mance. Several shortcomings with the current study could
be addressed including: assumption of all-electric HVAC,
no urban sprawn, no land use changes, linear interpola-
tion of 3-hour meteorological variables, and more direct
comparison between current and future weather.
Newer, higher fidelity climate models could be utilized.
The models used in this study were created in 2012 and
thus are outdated but had to be used as they were the
last complete simulations of all the RCPs for these years.
Higher temporal resolution would allow avoidance of in-
terpolation for hourly values currently required for build-
ing simulation, and higher geographical resolution (or
downscaling) could allow more direct comparison to ex-
isting weather stations or even building-specific weather
data.
Empirical validation (with error/bias distributions), sen-
sitivity analysis and uncertainty quantification could lead
to new best practices, metrics, guidelines, or standards for
urban/multi-scale building energy modeling. Stakeholder-
specific metrics regarding traditional energy use, more
difficult time-sensitive demand management, and ill-
defined resilience could allow urban/multi-scale modeling



to impact application areas such as assessing financial risk
of portfolio-level investments for building upgrades that
could significantly impact existing markets and informed
adaptions to the built environment.
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NOMENCLATURE
1. AutoBEM – Automatic Building detection and En-

ergy Model creation

2. EPB – Electric Power Board of Chattanooga, Ten-
nessee

3. EPW – EnergyPlus Weather file

4. FMY – Future Meteorological Year

5. IPCC – Intergovernmental Panel on Climate Change

6. RCP – Representative Concentration Pathways sce-
narios

7. SSPC – Standing Standard Project Committee

8. TMY - Typical Meterological Year

Appendix



Table 4: Average values of meteorological variables found in EPW files used for simulations.

Table 5: Simulation energy outputs for individually simulated buildings across RCP scenarios and years (MWh)

Table 6: Simulation energy outputs for simulated buildings scaled to EPB area across RCP scenarios and years (GWh)

Table 7: Simulation demand outputs for simulated buildings scaled to EPB area across RCP scenarios and years (GW)


