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ABSTRACT
In an attempt to attain building-specific characteristics
for urban-scale building energy models, county-specific
tax assessors’ data is often an initial data source. This
data source can contain valuable information such as year
built, area, height, HVAC type, and roof/wall descriptions.
We will show examples of 2,000 fields from Hamilton
County in Tennessee with examples of many fields which
are not relevant to urban-scale building energy model-
ing, are incorrect compared to other data sources, and
highlight some lessons learned working with such a data
source.
There are currently 3,142 counties in the United States,
each with their own data format, field definitions, and data
access policy. As urban-scale involves city-scale analy-
sis potentially covering multiple counties and matures to-
ward state- or nation-scale analysis, county-by-county ap-
proaches are not scalable. While there are efforts to unify
these datasets, there is an increasing proliferation of data
and algorithms that can cover wider areas and provide
more accurate inputs for urban-scale models. This pa-
per summarizes computer vision of imagery, cartographic
layers, building type assessment, and model generation
used to achieve scalable detection and analysis of build-
ings.

INTRODUCTION
Due in part to increasingly available data, ubiquitous
computing, and open source software, the nascent field
(Reinhart and Davila 2016) of urban-scale building en-
ergy modeling has quickly grown to become a dominant
topic in related simulation conferences. As an example,
IBPSA’s Building Simulation 2019 accepted 762 research
papers of which 90 (11.8%) fell under “simulation at ur-
ban scale,” by far the most popular topic with “optimiza-
tion” in second place covering 45 papers. In addition,
ASHRAE has been host to 11 Urban/Multiscale building
energy modeling seminars since 2016. Previous urban-
scale building energy modeling efforts include insights for
CO2 emissions (Parshall et al. 2010), heating energy de-
mand forecasting (Strzalka et al. 2011), city-scale build-
ing retrofit (Chen, Hong, and Piette 2017), and creating a
digital twin of a city utility (Copeland and New 2019).
While urban-scale energy modeling has increased in pop-
ularity and established increasingly mature applications, it
still suffers from a lack of best practices and limited scal-

ability due to the prevalent use of geographically-limited
data sources such as county-specific tax assessor’s data.
The purpose of this publication is to share an approach to
urban-scale energy modeling that has been demonstrated
for a multi-county utility, delineate data sources and al-
gorithms that facilitate scalability toward nation-scale en-
ergy modeling, and might be useful reference toward the
establishment of best-practices.

This publication attempts to facilitate grid-interactive effi-
cient buildings by enabling practical, simulation-informed
targeting, prioritization, programmatic, and operational
decisions for electrical distributors. Specifically, we have
partnered with the Electric Power Board of Chattanooga,
TN (EPB). As with most utilities, their geographical ex-
tent is beyond an individual county, extending to approx-
imately 600 mile2 covering parts of eight counties in East
Tennessee and Georgia. As such, the authors identified
scalable data sources and algorithms that allowed creation
of accurate building energy models with less effort than
would be required to merge tax data into an irreplicable
digital twinning effort. The data sources and algorithms,
which we collectively refer to as “Automatic Building
detection and Energy Model Creation (AutoBEM),” has
been used to create 178,368 distinct OpenStudio and En-
ergyPlus models for every building in EPB’s service ter-
ritory. The models have since quantified energy, demand,
emissions, and cost-reductions under nine monetization
scenarios for the utility and is being used to inform pro-
grammatic rollout of energy efficiency, demand manage-
ment, product/service lines, and new business models. In
addition, EPB provided 15-minute whole building elec-
tricity data from 178,368 premises. Building-specific
measured data allowed empirical validation of urban-scale
models and tests to establish which combination of data
and algorithms tended to provide the most accurate mod-
els.

This paper reviews traditional data sources for urban-scale
modeling (e.g. tax assessor data) followed by a method-
ology used to compare and contrast more scalable data
sources for overcoming the geographical, format differ-
ences, and access limitations of more traditional urban-
scale data sources. As such, a description of the full algo-
rithms to turn these data sources into building descriptors
and the software workflow of how to turn such descriptors
into a simulatable building energy model are beyond the
scope of this paper.



TAX ASSESSOR DATA
There are some countries which maintain centralized data
on each building in the country. These data sources are
often not available for use due to privacy concerns. The
United States tends to have data at each county. The pri-
mary reason? Tax law. While there are 22 countries in
the world which do not have a property tax, the over-
whelming majority do. Specifically, the property tax in
the United States is an ad valorem tax (Latin for “accord-
ing to value”) based on the fair market value of the prop-
erty times an assessment ratio times a tax rate. Property
tax rates vary from 0.27% to 2.4%. These properties are
often tracked as parcels (Figure 1).

Figure 1: Most counties manage parcels. Partial geo-
registration of a building is possible since most building
are registered to a single parcel. However, this is often
non-trivial and a scalability challenge due to non-uniform
file formats and field names between counties.

Such tax law necessitates detailed characterization of
buildings at a local level since property value is dependent
upon the property, building, permanent improvements,
and is highly geographically non-linear (i.e. location, lo-
cation, location). For this reason, the 3,142 counties in the
United States collect property information (see Table 1)
which overlap the input fields needed to construct a build-
ing energy model of each building. Unfortunately, this
data is currently collected with little-to-no standardization
regarding number of fields collected, definition of build-
ing/property descriptors, or data format (e.g. database,
CSV, PDF). While most of these are publicly-available
due to governmental taxation transparency requirements,
the data access policy and approval process is highly vari-
able.
In an effort to be clear about tax assessor data which was
considered for this study and contrasted with more scal-
able energy modeling approaches, we provide summaries
with screenshots and statistics to objectively characterize
the county-specific data.

Table 1: Typical building-related fields from tax asses-
sor’s data for a county in Tennessee. Several fields could
improve accuracy of a building energy model.

Column Field Description Data Type
1 Parcel ID Alpha
2 Exterior Type Code Alpha
3 Exterior Type Description Alpha
4 Jurist Code Alpha
5 Jurist Description Alpha
6 Year Built Numeric
7 Taxable Building Amount Numeric
8 Size Adjusted Area Numeric
9 Story Height Alpha
10 Roof Structure Code Alpha
11 Roof Structure Description Alpha
12 Roof Cover Code Alpha
13 Roof Cover Description Alpha
14 Prime Wall Code Alpha
15 Prime Wall Description Alpha
16 Second Wall Code Alpha
17 Second Wall Description Alpha
18 Heat Type Code Alpha
19 Heat Type Description Alpha
20 Account Number Numeric
21 Card Number Numeric
22 Street Number Alpha
23 Street Name Alpha
24 Land Use Code Alpha
25 Land Use Description Alpha
26 City Alpha

Data Overview
This section provides redacted examples of tax assessor’s
data from a county in Tennessee in an attempt to highlight
uses and challenges of such data for urban-scale energy
modeling. Received files included:

• GIS parcel data - shapefiles (*.shp and supporting
files) which contain parcels but no building informa-
tion. Parcel data was available in an online format,
but did not allow export for large areas.

• Buildings parcel data - zip file (*.zip) of building spe-
cific data. As this data was not available online, it
required contact with the GIS administrator.

• Overview letter - listing of data fields (*.pdf) with
instructions to run an executable and entry into DOS
prompt to extract 300MB of data into a space-
delimited text file.

– Field names/lengths - list of 1,999 property
fields with start/end/length records but no defi-
nitions/descriptions.



Table 2: This statistical summary of tax assessor data shows the top 10 most frequently-used values from 8 tax assessor
data fields related to buildings values with percentage of occurrences out of 139,161 entries. Land Use codes described
in text.

Size
Adjusted

Area
% Story

Height % Land Use
code % Heat Type

Description %

1,000-1,499 32.6 1 74.5 RESID 82.3 CENTRL HEAT& 75.4
1,500-1,999 22.1 2 17.4 COMM 7.9 <EMPTY> 12.6
2,000-2,499 12.2 1.5 7.1 MFG 4.7 GRAVITY 7.4

5,000+ 9.8 3 0.6 IN 2.4 NO HVAC 3.4
500-999 8.3 >7 0.6 AG 1 FORCED HOT A 0.9

2,500-2,999 6.6 2.5 0.1 EX 0.8 GHA 0.1
3,000-3,499 3.8 4 0.1 DU 0.4 CENTRAL A/C 0.1
3,500-3,999 2.1 5 0.0 EID 0.2 REV CYCLE UN 0.0
4,000-4,499 1.3 6 0.0 RLS 0.1 CENT HEAT & 0.0
4,500-4,999 0.8 7 0.0 BCMT 0.1 NONE 0.0

Roof Structure
Description % Roof Cover

Description % Decade % Prime/Second
Wall Description %

HIP/GABLE 86.0 SHINGLE ASPH 81.9 2000 13.7 <EMPTY> 41.9
WOOD RAFTERS 2.8 SHEET METAL 3.5 1960 13.6 WOOD FR W SH 15.5

BAR JOISTS 2.4 BUILT-UP 3.4 1970 13.5 VINYL 13.5
OPEN STEEL S 2.1 METAL 2.9 1990 11.6 BRICK 13.1
STEEL TRUSS 1.8 <EMPTY> 1.7 1950 11.4 WOOD FR ASBT 2.7
<EMPTY> 1.7 ASPHALT SHIN 1.7 1980 10.8 CONC BLK PLA 1.6

NONE 0.8 CORRUGATED M 1.3 1940 7.6 ALUMINUM 1.4
WOOD TRUSS 0.6 NONE 0.9 2010 6.9 HARDIE BOARD 1.4

FLAT/SHED 0.5 ROLL COMP 0.6 1930 4.8 BRICK VENEER 1.2
GAMBREL 0.3 BUILT UP T & 0.4 1920 3.8 CORRUGATED M 1.2

– Property code/type - 1-4 word abbreviated de-
scription of the property

– Sales code/type - property transaction type

– District code/type - name of location

– Land Use codes - detailed break down of
159 code categorizations for different building
uses/types.

• Building data - list (*.csv) of building data. This
was attained after significant coordination through
the municipal utility and we show the top 10 most
common values for these fields in Table 2. We iden-
tify some of the most valuable fields for building en-
ergy modeling along with some examples of their
building-specific values:

– Size adjusted area - often treated as conditioned
square feet

– Story height - number of floors

– Land Use - residential, duplex, multi-family.
These rarely correspond to canonical refer-
ence/protoype buildings most used by energy
modelers.

– Heat type description - type of heating unit.
While valuable, this field was most often blank,
“Central” (different names were used for this
same classification), “no HVAC”, or “gravity.”

– Roof structure - usually hip/gable, sometimes
Gambrel

– Roof cover -shingle, metal, built-up roof

– Prime and Second Wall - wood, brick, vinyl

Tax assessor data has the potential to provide many
fields relevant to creating a more accurate building energy
model. However, this data is not scalable in several ways
related to geographical area (in the United States, differ-
ent for over 3,000 counties), data differences (fields col-
lected and abbreviations vary), format differences (often
provided as several files in PDF and/or CSV format), ac-
cess limitations (special permission from an established
stakeholder relationship may be required), and lack of
availability for software retrieval (rarely an API for data
processing). To overcome these limitations, a methodol-
ogy is shown for comparing and contrasting more scalable
data sources.



SCALABLE DATA CONSIDERATIONS
In an effort to overcome scalability challenges for a dig-
ital twin of a utility covering eight counties, we describe
several categories of data sources and algorithms the team
considered (Yuan et al. 2015; New et al. 2018).

1. Imagery (satellite, airborne) – computer vision can
be applied for extraction of building footprints.

2. Elevation data – LiDAR and computationally-
derived Digital Elevation Models (DEM) can be used
to determine building height and number of floors us-
ing heuristics.

3. Geometry data – computationally-derived 3D tessel-
lation or photogrammetry of buildings.

4. Cartographic data – Geographic Information System
(GIS) analysis layers can be used to inform zoning
for building types, critical facilities (e.g. hospitals),
and other properties.

5. Street-level Imagery – computer vision can poten-
tially extract higher-resolution details of buildings
windows and façade type, but currently suffers from
a lack of robust techniques.

6. Building information databases – this meta-category
can include tax assessor’s data or any building-
specific information, as is common in Multiple List-
ing Service (MLS) data used for real estate sales.

For each of these, a “comparison matrix” was created
which allows side-by-side comparison of datasets. There
was significant iteration and debate over what dimensions
should be considered. We provide our final list of data
source considerations in hopes it saves others the debate:

1. Title – short label for referring to the dataset

2. Summary – short description of the data

3. Data type – the format in which the information is
stored (usually image, database, or computationally
derived from multiple data sources)

4. Company – name of the organization that makes the
data available

5. Website – hyperlink to the most pertinent informa-
tion necessary for using this dataset

6. Temporal resolution – how often the datasets are col-
lected (e.g., 25 years)

7. Spatial resolution – the dimensions of the data (e.g.,
1 km2 per pixel)

8. Measure accuracy – information available regarding
the accuracy of the database based on input sources
or sensor calibration

9. Cost – any initial or recurring costs required to ac-
cess/retain rights to the data

10. Format – the standard file format in which the
datasets are stored

11. Mapping to building input variables – indicates
whether these datasets are useful in identifying prop-
erties necessary or useful for constructing a soft-
ware model of a building (e.g., building type, square
footage, window-to-wall ratio, façade material type,
façade material thickness, façade material density)

12. Mapping to area properties – indicates whether these
datasets are useful in segmenting area type (e.g.,
buildings, roads, open/vegetated spaces)

13. Mapping to material properties – indicates whether
these datasets are useful in determining material
types (e.g., concrete, brick, soil, gravel, asphalt,
granite)

14. Coverage of United States (US) – indicates the extent
to which the data provided are local versus national

15. Orientation – where relevant, the general view from
which the data were taken (e.g., street view, single
side of a building, multiple sides of building, per-
spective, oblique)

16. Existing internal software – does the current team
have software capabilities that leverage this dataset
for purposes that could be synergistically leveraged
for this project

17. Existing expertise – does the current team have any
unique knowledge or skills that would be vital to the
successful use of the data for this project

18. Restrictions – what are the limitations on the use of
the data (e.g., legal/privacy ratings, number of Appli-
cation Program Interface [API] calls per day)

19. Comments – any major observations about the data
that do not fit in the previous categories

While the original analysis covered 37 data sources, a
comparison methodology is shown for only a few ex-
amples - satellite imagery, aerial imagery, elevation data,
street-level imagery, and geological information (see Fig-
ures 2-5).These were used successfully by the team to cre-
ate a digital twin of a utility with evidence that these might
stimulate scalability beyond the urban context.



DigitalGlobe Standard Imagery DigitalGlobe Precision Aerial image
Summary Satellite imagery including panchromatic and

multispectral images (4 bands or 8 bands)
Aerial imagery, including panchro-
matic and multispectral images

Data type Image Image
Company DigitalGlobe DigitalGlobe
Website www.digitalglobe.com www.digitalglobe.com
Temporal resolution N/A N/A
Spatial resolution Pan: 0.5/0.6 m; MS 2.0/2.4 m 0.3 m
Measure accuracy High High
Cost Pan: $24 per sq. km; Pan+MS $27 per sq. km $11 per sq. km; Pricing URL
Format GeoTiff GeoTiff
Building inputs Building footprint Building footprints
Area properties Vegetated areas, road surface, buildings, parking

lots
Vegetated areas, road surface, build-
ings, parking lots

Material properties Road pavement materials (e.g., concrete, as-
phalt), parking lots (e.g., gravel, soil)

Road pavement materials (e.g., con-
crete, asphalt), parking lots (e.g.,
gravel, soil)

Coverage of US High Over 10 million km2 of coverage of the
contiguous US

Orientation Aerial Aerial
Existing expertise Remote sensing data analysis tool Remote sensing data analysis tool
Restrictions Contract-specific Contract-specific

Figure 2: DigitalGlobe provides satellite imagery and
higher-resolution aerial imagery, which can include
multi-spectrum, for determining building footprints or
material types.

Satellite and Aerial Imagery

’Satellite imagery tends to be high-resolution (relative to
buildings), has high positional accuracy, global coverage,
low cost, and multiple bandwidths allow multi-spectral
disaggregation of material types more easily. Major disad-
vantages is insufficient algorithms for material classifica-
tion accuracy, susceptibility to weather (e.g. cloud cover)
and lighting conditions, and advances in computer vision
are needed to make extensive use of this data.
Aerial imagery has very high resolution and texture infor-
mation that’s better for identifying materials. Major dis-

advantage is that objects have larger inner-class variations
and hence are more difficult to extract.

National Elevation Data

Widely-available and free elevation data can allow the ex-
traction of 2D building footprints into 3D building geome-
tries for above-ground floors. One challenge is that reso-
lution varies across different regions.

Street-level Imagery

Street-level imagery holds great promise for enabling
urban-scale knowledge to inform building energy models
and several related applications. Camera parameters are
available (including both intrinsic and extrinsic parame-
ters) to enable projection of options with geo-coordinates
onto images. Major disadvantages include the manual la-
bor or advanced algorithms necessary to reliably extract
high-level information and extrinsic camera parameters
have location-specific errors.

Cartographic Data

The United States Geological Survey (USGS) Earth Ex-
plorer is an example tool which provides various remote
sensing (satellite or airborne imager, LiDAR), with most
datasets free, and relatively convenient user interface for
searching or downloading images. Major disadvantages
include coverage varying significantly across datasets and
very few images are from commercial satellites.

http://www.landinfo.com/satellite-imagery-pricing.html


National Elevation Dataset
Summary Ground elevation data
Data type Raster
Company USGS
Website http://ned.usgs.gov/
Temporal resolution N/A
Spatial resolution 1/3, 1, and 2 seconds of arc;

1/9 arc-second and 1 meter for
some areas

Measure accuracy Mean square error is 1.55 m
Cost Free
Format Raster data
Building inputs Main floor ground elevation
Area properties Road surface elevation
Material properties N/A
Coverage of US High
Orientation Aerial
Existing expertise GIS software
Restrictions Restrictions URL

Figure 3: The US Geological Survey has an intuitive, web-
based interface for exploring freely available georegis-
tered datasets.

Figure 4: Street-level imagery has been used to determine
building height, façade type, window-to-wall ratio, and
building type. Google’s StreetView currently has terms of
use that prohibit saving or processing such imagery, but
could be a valuable resources for computer vision experts
and urban-scale building energy models.

CONCLUSION
Urban-scale building energy modeling is a disruptive
technology that is becoming increasingly tractable and be-

Google Street View
Summary Street view images. Down-

loadable using Google Street
View API

Data type Image
Company Google
Website Developer URL

Temporal resolution N/A
Spatial resolution N/A
Measure accuracy Location errors exist
Cost Free
Format jpg
Building inputs Height, window-to-wall ratio
Area properties N/A
Material properties Road pavement materials

(e.g., concrete, asphalt),
building exterior materials
(e.g., glass, concrete), parking
lots (e.g., gravel, soil)

Coverage of US High
Orientation Multi-side
Existing internal
software

Building height estimation

Existing expertise OpenCV
Restrictions 25,000 API calls per day. Re-

strictions URL

ginning to be adopted by several organizations including
electrical utilities. We have provided redacted excerpts of
tax assessor’s data for a county in Tennessee as an exam-
ple of the useful data and scalability challenges associated
with such information extraction. In an effort to overcome
those challenges, the team has provided an overview of
more scalable data sources and algorithms in the context
of the use cases and workflow utilized to create a digi-
tal twin of 178,368 OpenStudio/EnergyPlus buildings in a
utility’s service area.
Future work will involve empirical validation and shar-
ing building-specific, utility-scale energy, demand, emis-
sions, and cost savings realizable through the deploy-
ment of more intelligent energy efficient technologies
within the built environment. The authors also hope that
comparison matrices for data sources and comparison of
algorithmically-constructing building energy models with
measured data will become more prevalent so that more
direct comparison comparison among urban-scale model-
ing techniques can evolve into best practices.
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NOMENCLATURE
• AutoBEM – Automatic Building detection and En-

ergy Model Creation

• AutoGen – Automatic EnergyPlus file modi-
fier/Generator, worlds fastest building energy model
creator utilizing text replacement for variable in En-
ergyPlus files; awarded by U.S. Copyright Office un-
der registration number TXu 2-159-000.

• AutoSim – Automatic Simulator, (CR17-00072,
UTB80000011) - worlds fastest buildings simulator
for scalably distributing EnergyPlus files on High
Performance Computing devices, simulating on vir-
tual disk, and returning results for storage and anal-
ysis; awarded by U.S. Copyright Office under regis-
tration number TXu 2-141-960.

• ECM – Energy Conservation Measure

• EPB – Electric Power Board of Chattanooga, Ten-
nessee

• EUI – Energy Use Intensity

• EV – Electric Vehicle

• GIS – Geographic Information System

• kWh – kilowatt-hours

• kW – kilowatt

• MLS – Multiple Listing Service

• MPI – Message Passing Interface

• NREL – National Renewable Energy Laboratory

• PV – photovoltaic (e.g. solar cells)

• SDK – Software Development Kit
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