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Abstract: Several companies, universities, and national laboratories are developing urban-scale 

energy modeling that allows the creation of a digital twin of buildings for the simulation and 

optimization of real-world, city-sized areas. Prior to simulation-based assessment, a baseline of 

savings for a set of utility-defined use cases was established to clarify the initial business case for 

specific energy efficient building technologies. In partnership with a municipal utility, 178,337 

OpenStudio and EnergyPlus models of buildings in the utility’s 1400 km2 service area were created, 

simulated, and assessed with measures for quantifying energy, demand, cost, and emissions 

reductions of each building. The method of construction and assumptions behind these models is 

discussed, definitions of example measures are provided, and distribution of savings across the 

building stock is provided under a maximum technical adoption scenario. 

Keywords: urban-scale energy modeling; grid-interactive efficient buildings; valuation; demand 

side management 

 

1. Introduction 

In 2019, approximately 125 million buildings in the United States accounted for USD 412 billion 

in energy bills, 40% of national energy consumption, 73% of electrical consumption, 80% of peak 

demand, and 39% of emissions. The United States (US) Department of Energy (DOE) has set 

aggressive goals for energy-efficiency in buildings—a 30% reduction in average energy use intensity 

of all US buildings by 2030 compared to a 2010 baseline [1]. 

Urban building energy modeling (UBEM) is a useful tool in accomplishing this goal as it informs 

decision makers regarding optimal savings at scale. Building energy modeling at an urban scale is 

primarily carried out using a bottom-up approach (compared to top-down distributions) as 

individual building simulations allow for more specific results and decision making. This method 

requires data collection on an individual building scale including building geometry, height, building 

type, building age, and any of the approximately 3000 parameters that constitute a building energy 

model. Building prototypes or archetypes can be used to assign building parameters that may be 

unknown (e.g., Heating, Ventilation, and Air Conditioning (HVAC) type and efficiency). The 

methodology for collecting data that are used is among the primary factors in distinguishing UBEM 

approaches as more data used to describe a building often lead to more accurate results. The data are 

then used to create and simulate building energy models. If available, the results can be calibrated to 

actual data which can make simulation findings more impactful. 

Various UBEM analyses have been performed in different geographic areas and using different 

methodologies. A study of 332 residential buildings in Kuwait City introduced a Bayesian calibration 

method or archetype assignment with improved error rates compared to deterministic approaches 
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[2]. A similar Bayesian approach was taken on 2663 buildings in Cambridge, Massachusetts, where 

annual and monthly calibration approaches were compared [3]. A smaller analysis of 22 California 

urban buildings evaluated a Data-driven Urban Energy Simulation method which aimed to capture 

the inter-building dynamics of dense urban areas. The results indicated that the framework was able 

to adequately predict energy consumption at various time intervals and partially capture inter-

building dynamics [4]. A study in Boston modeled 83,541 building to outline a workflow for a large 

number of buildings. This analysis was not calibrated but was roughly crosschecked using US 

national consumption data. Metered energy data were the main inhibitor of using these models to 

guide energy policy [5]. While measured energy use is a frequent limitation for most studies, the 

models in this paper benefited from empirical validation of the models with comparison to sub-

hourly, building-specific, whole-building electrical use. 

To coordinate commercial building research across multiple disciplines, Commercial Reference 

Building Models were developed for the most common buildings [6,7] and later adapted as 

Commercial Prototype Building Models for use in code update development [8]. The current suite of 

Commercial Prototype Building Models covers 16 common building types—offices, hotels, schools, 

mercantile, food service, healthcare, apartments, and warehouse—in 17 ASHRAE climate zones [9] 

and represents different construction vintages (pre-1980, 1980–2004) and building energy standards 

(ASHRAE Standards 90.1-2004, 2007, 2010, 2013 and 2016; and International Energy Conservation 

Code 2006, 2009, 2012 and 2015). The current combination results in an overall set of 2448 building 

models that covers 80% of the US commercial floorspace [8]. These models have been used to analyze 

the energy savings and cost impacts of energy-efficiency code updates [9,10]; develop prescriptive 

new construction and retrofit design guides [11,12]; create technical potential scales for building asset 

scores [13,14]; develop typical energy-conservation measure savings estimates for up-front incentives 

through utility programs [15]; create performance, cost, lifetime and time-to-market targets for new 

technologies to inform DOE’s technology investment portfolio [16]; and many other applications [17-

21]. 

Many previously published articles and reports thoroughly document the energy-related 

parameters of prototypical building models and sometimes even the data sources, statistical findings, 

or assumptions underlying those models [6-8]. However, a scientific process is needed to enable the 

definition, collection, and modeling of real buildings at scale in a way that reduces the building 

energy performance gap (i.e., the error rate between measured and modeled energy use). The range 

of acceptable error rates is often specific to a certain use case and can lead to objections for use in 

building codes, informing standards development, utility program rollout, energy efficiency 

investments, or other decision-making criteria. 

Objectives 

This paper reports statistical distribution of potential energy, demand, emissions, and cost 

savings across building type and vintage for a sample of 178,337 empirically validated building 

energy models for several utility-prioritized building technologies. It describes a systematic approach 

for creating urban-scale building energy models, defines a utility’s primary use cases, demonstrates 

scalable analysis of building energy models, and showcases the distribution of potential savings from 

energy efficient building technologies. Traditionally, power generating companies own bulk 

transmission lines that operate at high voltages, whereas local power companies own and maintain 

the lower-voltage power lines that connect to most homes and businesses. The service area for this 

study was the Electric Power Board of Chattanooga, Tennessee (EPB), an electrical distributor that 

purchases bulk energy from the Tennessee Valley Authority (TVA). The information presented here 

is a portion of a broader work involving additional technologies, valuations for new utility business 

models, microclimate variation, resilience, and empirical validation to 15 min data from each 

building, climate change, and land use impacts. As such, these topics are beyond the scope of the 

current paper. 

2. Use Cases and Measures 
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The utility prioritized 98 different use cases with the top five involving peak rate structures, 

demand side management, emissions, energy efficiency, and customer empowerment. For these use 

cases, nine monetization scenarios (Table 1) were defined to identify critical questions that could be 

readily converted into a revenue stream that could be defined in terms of local currency USD) for 

relevant time periods (e.g., monthly, annually). This more intelligent deployment, maintenance, and 

operation of the distribution network reduce utility overhead/costs that are passed on to the 

consumer. Such techniques have allowed the utility’s customers to avoid the three previous rate 

increases by the transmission utility in their territory. 

Table 1. Use cases and potential sources of savings considered in this study for each building 

technology further defined in Table 2. 

Number Use Case Monetization 

1a Peak Rate Structure Identify buildings that contribute disproportionately to energy/demand costs 

1b Peak Rate Structure 
Quantify wholesale vs. retail cost/year for all buildings under different rate 

structures 

2a 
Demand Side 

Management 

Monthly peak demand savings, annual energy savings, and dollar savings 

based on rate structure for each building 

2b 
Demand Side 

Management 

Location-specific deferral of infrastructure (e.g., feeder, substation) cost 

savings potential 

3 Emissions Emissions footprints for each building 

4a Energy Efficiency Optimal retrofit savings of each independent building technology 

4b Energy Efficiency Optimal retrofit package savings of dependent building technologies 

5a 
Customer 

Empowerment 

Percentile ranking of each building’s Energy Use Intensity 

for similar building type and vintage 

5b Cost Savings 
Monthly peak demand savings, annual energy savings, and dollar savings 

based on rate structure for each building 

Table 2. Building technologies/controls (measures) simulated in each of the 178,337 building energy 

models to quantify savings defined in Table 3. Acronyms: IECC (International Energy Conservation 

Code), HVAC (Heating, Ventilation, and Air Conditioning). 

Number Description Category Values Source 

1 Insulate Roof Envelope R-16.12 to R-28.57 IECC-2012 [22] 

2 Reduce Space Infiltration Envelope Reduce 25% from building vintage 
EnergyStar whole-

house [23] 

3 Smart Thermostat (2.2 °C) HVAC 2.2 °C, 2 h prior to peak Utility request 

4 Smart Thermostat (4.4 °C) HVAC 4.4 °C, 4 h prior to peak Utility request 

5 
Change Electric HVAC 

COP 
HVAC 

COP to 3.55 (heating) 

3.2 (cooling) 
IECC-2012 

6 
Change Lighting Power 

Density 
Lighting LPD 0.85 W/ft

2

 IECC-2012 

7 
Change to Gas Water 

Heater 
Water 

Efficiency 80% 

(assumes electric baseline) 
IECC-2012 

8 Change to Gas HVAC HVAC 
Efficiency 80% 

(assumes electric baseline) 
IECC-2012 

Table 3. Consolidated simulation outputs calculated for each measure. Acronym: ECM (Energy 

Conservation Measure) 
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Category Description 

building ID Unique identifier of each building 

electricity (kWh) 
Total simulated electrical consumption. (Default: Annual, monthly, 

daily, 15 min unless stated otherwise) 

demand (kW) 
Total annual energy demand summed over building’s simulated 

monthly peaks. (Annual, monthly) 

energy (GJ) Total electricity + gas consumption 

emissions (lbs) 

Total emissions based on simulated energy use for Carbon Dioxide 

(CO2), Sulfur Dioxide (SO2), 

Nitrogen Oxides (NOx), Nitrous oxide (N2O), and Methane (CH4). 

cost (USD) 

Wholesale and retail costs combining simulated energy and 

demand. 

A simplified block rate structure is employed. 

cost difference (USD) 
Cost difference between wholesale and retail electricity rate. 

Wholesale is treated as a 30% reduction from the retail rate. 

(electricity, demand, energy, 

emissions, cost) savings 
Savings = Baseline—ECM 

While traditional literature focuses on Energy Conservation Measures (ECMs), some of the 

technologies simulated save demand, emissions, or cost rather than energy, so we use the more 

general term “measures” that were implemented using OpenStudio [24], EnergyPlus [25], or custom 

tools implemented in C/C++ for quickly modifying building energy models (BEM) at scale. Each use 

case and monetization scenario (Table 1) is described, along with the implemented measures (Table 

2) to quantify the performance benefits (Table 3). In subsequent analysis, mathematical or statistical 

operations are performed on these fields to determine items of interest such as average 

wholesale/retail cost difference (i.e., average revenue recovery per building by the electrical 

distributor), maximum peak contribution (i.e., which building drives utility’s peak demand), top 10% 

of electricity savings (i.e., low-hanging fruit for energy efficiency), and average energy 

savings/average demand savings per technology (i.e., what is the energy/demand synergy or tradeoff 

for each technology). 

2.1. Peak Rate Structure 

Utilities and related service companies are beginning to leverage grid-interactive efficient 

building (GEB) technologies and aggregate load from these intelligent, connected devices in sufficient 

quantity to be compelling to the traditional business model of electrical distributors. Reducing the 

use of energy during a utility’s times of peak demand offers the possibility of reducing demand, 

emissions, and costs for both utilities and their rate-payers. If trends continue, dynamic building 

responses to user cost/comfort tolerances and electric grid needs may replace the need for new power 

plants. 

In order to assess the demand-saving potential of a GEB technology, it is both important and 

challenging to find the timing and peak contribution of each building, and its end uses, to the relevant 

rate structure for energy and demand charges that signals the value of dispatchable loads. With this 

information, the buildings with the highest peak contribution can be targeted for demand and energy 

reduction measures. The peak demand hour of each month supplied by EPB and the hourly 

simulation output for all buildings in the service area were used to estimate the peak demand 

contribution of each building for each month. 

The cost difference between TVA’s charges to EPB and EPB’s charges to its customers—

effectively, the difference between the wholesale and retail prices of electricity—was investigated in 
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this use case. Analysis of these cost differences was performed with the intent of identifying more 

equitable rate structures and better resilience against potential rate structure changes (e.g., 

interconnect impacts for new solar installations). We leveraged 16 building types and 5 vintages in 

our study to analyze demand impacts for both residential and commercial buildings, even though 

very few residential customers currently opt-in to a time-of-use tariff. 

Wholesale costs were estimated as a 30% reduction from retail costs for the purposes of this 

study. Analysis of the minimum and maximum monthly demand charges and total electricity energy 

usage indicated that a utility’s GSA2 rate structure may, on average, be a good surrogate for utility-

specific saving estimations for commercial buildings if full rate structure tariff and block rates are not 

easily applied. In the future, as more accurate building types and other building information are 

layered into the analysis, the correct rate structure for each building will need to be reevaluated. This 

is especially true for residential buildings. To address business-sensitive concerns, we used a straight 

30% reduction from retail prices to derive wholesale prices to simplify sensitive data processing and 

facilitate the open sharing of results. 

2.2. Demand Side Management 

By better managing demand, utilities can reduce use of the most expensive and dirty generation 

assets, potentially passing on significant savings on to their customers. There are many ways for 

utilities to reduce demand including conservative voltage reduction, deployment of storage devices, 

or aggregated signaling to intelligent building devices. In this study, several building measures may 

reduce demand, but the only ones explicitly designed to do so are smart thermostat and smart water 

heaters implemented in simulation through the use of OpenStudio Measures [26]. 

For this utility, measures which reduce the utility-wide peak demand hour of each calendar 

month are studied. This peak hour is defined in terms of both the transmission and distribution 

peaks, TVA and EPB peaks, respectively. The purpose of the smart thermostat is to use the thermal 

capacity of the building as a thermal battery to “coast” through the peak demand period. This is aided 

by pre-cooling or pre-heating the building, as appropriate for each of building’s thermal zones given 

the building state and active weather, prior to the peak hour. 

For this study’s analysis, we altered the thermostat values in all thermal zones by 2.2 or 4.4 °C 

at the request of the utility, with the realization that these relatively large values could impact 

comfort. For the 2.2 °C scenario, a two hour pre-conditioning period was used where the thermostat 

setpoint was set to the average of the existing cooling and heating setpoint temperature with an 

added 0.5 °C deadband to avoid hysteresis. Then, for the peak demand hour and the following four 

hours after the peak, the cooling setpoint increased by 2.2 °C and heating setpoint decreased by 2.2 

°C. For the 4.4 °C scenario, the approach was the same except the pre-conditioning began four hours 

prior to peak onset. 

The smart water heater measure functions similarly. In this scenario, the measure only turns off 

the heating coil during the peak demand hour. This is accomplished by reducing the water heater 

setpoint temperature schedule for the peak hour to 12.78 °C. Because this value is so much lower than 

the normal 60 °C setpoint temperature, the heating coils will never turn on for the single hour. 

To investigate the opportunity of leveraging demand management for deferred maintenance or 

upgrade costs, we took a subset of the total service area specific to a certain feeder. Utility-provided 

GPS coordinates of every electrical meter were compared with building centroids using Euclidean 

distance to match the utility’s customer-oriented PremiseID with the building-oriented Building ID. 

Because of this customer/building mismatch prevalent for most utilities, it should be explicitly noted 

that an individual customer may span multiple buildings, and multiple customers may reside in an 

individual building. Sum and average fields in Table 4 are across all buildings for the utility’s service 

territory. 

Table 4. Average demand savings, both absolute (kW) and relative (% peak), for 178,337 buildings 

from a utility-controlled smart thermostat under a 2.2 °C pre-conditioning scenario. 
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 Commercial Residential 
Total 

(Residential and Commercial) 

Average savings (kW/bldg) 408.4 kW 52.46 kW 92.02 kW 

Relative Savings (% of peak) 39.49% 11.15% 14.30% 

2.3. Emissions 

Emissions do not typically have a cost (e.g., carbon tax) explicitly associated with them today 

but are often of concern due to regulatory compliance requirements, environment, and social costs. 

To determine the contribution to various emissions outputs per building in the service area, we used 

the Environmental Protection Agency’s (EPA) Emissions & Generation Resource Integrated Database 

(eGRID) [23]. This database provides emission outputs for the United States with dynamic querying. 

The state of Tennessee’s 2016 data were used for several emission types as summarized in Table 5. 

These values are in pounds per megawatt-hour, to assess energy-equivalent pounds of pollutants 

released per building per year. 

Table 5. Conversion factors from energy to emission type defined by EPA’s eGRID [27]. 

Symbol Description 
Emission Rate 

(lb/MWh) 

CO2 Equivalent 

(lbs/MWh) 

NOx Nitrogen Oxides 0.513 NA 

SO2 Sulfur dioxide 0.803 NA 

CO2 Carbon dioxide 992.271 992.271 

CH4 Methane 0.074 1.85 

N2O Nitrous oxide 0.015 4.47 

2.4. Energy Efficiency 

Energy efficient building technologies can reduce demand and emissions, but also cut into the 

energy used to recover costs of transmission and distribution from ratepayers. The measures studied 

(Table 2) consist mostly of traditional energy efficiency measures. 

Adding roof/attic insulation is among the first energy efficiency measures many people consider. 

It can often be cost-effective and acts primarily to improve the thermal performance of the envelope 

so more of the conditioned air can make the occupied space more comfortable for a longer duration. 

For roof insulation, this study increased the R-value of 16.12 to 28.57, the prescribed R-value by 

International Energy Conservation Code (IECC) 2012 for Chattanooga’s climate zone [9]. This change 

in R-value is independent of the roof construction type and alters the default insulation level inherent 

to all the building type roof constructions. 

Often more cost-effective than insulation is reduction in space infiltration. Reducing air 

exchange between the outside and the conditioned inside through the sealing of attic wall joists and 

weatherstripping of doors/windows can result in significant energy savings, especially for older, 

leakier buildings. While insulation reduces conduction pathways, sealing to reduce infiltration 

reduces the pathways for convective heat transfer. This study reduced infiltration in each of the 

buildings by 25%, arrived at through a combination of engineering knowledge and EnergyStar’s 

assumptions for whole house air sealing [23]. 

The Heating, Ventilation, and Air Conditioning (HVAC) equipment that conditions temperature 

and relative humidity of air in a building’s conditioned space uses a significant amount of energy. In 

the US, the average building’s energy use for space conditioning is 54% for residential and 32% for 

commercial. This study defines the baseline for HVAC savings by changing to an 80% efficient 

natural gas heating coil as prescribed by IECC 2012. HVAC efficiency can be measured in terms of 
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the unitless Coefficient of Performance (COP), and this study increased cooling and heating COPs to 

3.55 and 3.3, respectively. These align with IECC 2012 requirements for air source heat pumps [22]. 

No other HVAC parameters were changed. 

Many homeowners may be familiar with the shift from incandescent to compact fluorescent 

lightbulbs (CFLs), and light emitting diode (LED) bulbs. There are similar technology shifts for 

commercial buildings. For the same lighting output, CFLs use approximately 1/3 of the energy of 

incandescents, and LEDs use approximately 1/3 of the energy of CFLs. For an incandescent, 

approximately 94% of the energy is radiated as heat with only 6% light in the visible spectrum. Older 

lighting technologies are essentially efficient space heaters that happen to give off light as a by-

product. As such, swapping to a more efficient lighting technology often results in less internal heat 

gain with a corresponding lower cooling bill and higher heating bill. The assessment of this 

lighting/thermal coupling of paired-measure tradeoffs is as easily done by spreadsheet as by whole-

building energy modeling, but care should be taken as this thermal effect may or may not be captured 

in some analyses. The measure used changes the lighting power density (LPD) to 0.85 W/sf in all 

spaces in the building, which is the LPD prescribed by IECC 2012, and considers the thermal impact 

of this more efficient lighting. 

Most buildings use a tank for water storage with heating for hot water provided by either an 

electric or natural gas heating coil. To assist assessment of maximum technical adoption potential, 

the prototype building’s default water heating system is first converted to all-electric coils with 

awareness that these savings may overestimate actual savings. To assess savings, the measure 

converts from the electric resistance water heater to natural gas. The natural gas water heater is 

changed to an 80% efficient natural gas heating coil, which is the efficiency prescribed by IECC 2012. 

This measure may or may not result in energy savings, but always results in a reduction in peak 

electricity demand. 

In addition to the eight measures previously described and summarized in Table 2, other 

measures can and have been addressed including photovoltaic potential (PV) at each building using 

EnergyPlus’ PVWatts integration, partially-managed scenarios for Electrical Vehicle (EV) charging, 

islandable microgrid formulation, future load shifts with climate change scenarios, and other use 

cases beyond the scope of the current publication. The existing models and software framework allow 

flexible energy, demand, emissions, and cost assessments for large numbers of buildings. The only 

technical gap for any specific technology is to ensure that the measure is developed flexibly and 

accurately applies to all building types, locations, and vintages—especially the different HVAC 

system types and layouts. Analysis of other equipment options has also been evaluated. Equipment 

has included conversion of an electric resistance water heater to one with an air to water heat pump. 

This type of system can be more efficient than electric resistance since it is moving heat from the 

thermal zone or outside into the water heater. A COP of 2.2 is used for the heat pump water heater 

where the heat is exchanged with the outdoor air instead of inside a thermal zone. This example is 

shared as a way that flexible measure code can be simplified and made more easily generalizable to 

all building types. 

2.5. Customer Empowerment 

While utilities necessarily collect energy use data, and building owners having billing or energy 

use data for their own home or building, homeowners necessarily lack the data necessary to gauge 

whether they are an energy saver or energy waster compared to similar buildings in the area. Even 

utilities lack the data to determine the impact of specific building technologies or packages in shaping 

the demand on their electrical network, or a means to assign building types/vintages (beyond land 

use common in tax assessor’s data) for program formulation. In a time when energy use data are 

more regularly being reported or analyzed for better decision-making, the utility was interested in 

quantifying the percent each building is contributing to monthly peaks not just for the current year 

but in typical weather conditions and for each of the measures listed in Table 2. For building owners, 

there was interest in publicly sharing each building’s energy percentile, or percentage of buildings 

that fall below their energy use. 
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For this analysis, we ranked the contribution of each building to the total service area as a 

percentile ranking, effectively breaking the sum of monthly demand from buildings into a pie chart 

with 178,337 slices. This was performed for the baseline buildings using the Actual Meteorological 

Year (AMY), or Meteorological Year (MY), weather file for calendar year 2015 and compared to actual 

demand use measured during that time. Since results were comparable, we simulated all buildings 

using the Typical Meteorological Year (TMY) weather file for Chattanooga (USA_TN_Chattanooga- 

Lovell.Field.AP.723240_TMY3.epw) to generate expected building contributions to demand in a 

typical year for the utility, and (electrical) Energy Use Intensity (kWh/m2) for each building. EUI was 

used to normalize for building size and the percentile calculation compares each building only 

against buildings with the same building type and vintage. The same was simulated for each measure 

under a typical weather scenario to quantify best building + technology targets for saving systemwide 

demand or emissions for the utility, and total savings of each technology for building owners. 

A web-based visualization platform was created to publicly share and quickly identify specific 

energy, demand, and emission reduction opportunities for each building. The resulting database of 

simulation scenarios was integrated with EPB’s operational systems to generate business intelligence 

including Return on Investment (ROI) when considering programmatic deployment cost of 

individual technologies (e.g., smart thermostats); roll up actual cost savings to the customer and 

utility based on the building’s rate/tariff structure; and aggregate these simulation-based projection 

of savings up to critically-loaded feeders, substations, or the entire service territory. 

3. Urban-Scale Modeling Approach 

To create a digital twin of the utility’s service area, a building energy model had to be created 

for each of the 178,337 premises. The team developed a method for accomplishing this task called 

Automatic Building detection and Energy Model creation (AutoBEM) [28,29]. While a full description 

of the data sources and algorithms used to develop these models is beyond the scope of this 

publication, we attempt to provide a brief description for context, references for the interested reader, 

and a public location where results can be viewed. A 2D building footprint was extracted using 

multiple sources (satellite, LiDAR, and other data sources) and compared to available data (tax-

assessor data). The building geometry was defined by extruding this 2D building footprint to a height 

defined by LiDAR and partially by street-view imagery. This study assigned only one thermal zone 

per floor, and it is a matter of potential future work to apply perimeter-core techniques for better 

assignment of both thermal zones and space types. One thermal zone per floor allows loads, solar 

gains, and thermal mass effects which may cancel each other out. Therefore, our approach tends to 

under-predict demand savings, and is therefore, conservative in this respect [30,31]. 

The physical structure was associated with the location (latitude, longitude) of the premise’s 

electrical meter by closest Euclidean distance between each building’s centroid and utility-provided 

electrical meter locations, noting many complications of the one-to-many or many-to-one challenges 

of mapping buildings-to-meters. Building type and vintage were assigned to these models using 

several data sources. First, utility rate classes were used to group buildings into residential or 

commercial building types. Second, tax assessor data for the building parcel’s land use were used to 

map to building type where possible. Third, and relevant for most buildings, the type and vintage 

were assigned by comparing actual annual 15 min electrical use intensity (EUI-15) of each building 

to 97 prototype buildings and vintage combinations. To obtain prototype building EUI-15, the 

prototype building and vintage combinations were simulated with the (actual) Meteorological Year 

(MY) for calendar year 2015, corresponding to the time period that whole-building electricity use was 

collected for this study. The building type and vintage combination was assigned by minimizing 

Euclidean distance between the actual building and the prototype. The building characteristics from 

the prototype building and vintage model were then assigned to each building [32]. This can result 

in a vintage and building type assignment that may not match a human-defined building type, but 

has the advantage of most closely matching the energy signature between the actual and simulated 

building. Once building type and vintage were assigned, the DOE prototypes were used to set 

insulation levels, HVAC efficiency, lighting power density, and all internal characteristics required 
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for simulation. Savings for each building technology were simulated using TMY weather for this 

climate region (ASHRAE-169-2006-4A) [9]. 

All buildings were converted to all-electric HVAC and water heating to define an upper-bound 

of maximum technical adoption potential. AutoBEM was used to create a unique baseline model for 

each of the 178,337 buildings captured in this study. Complicated measures (e.g., smart thermostat 

and smart water heater) leveraged OpenStudio measures to modify the models. For simpler measures 

(e.g., lighting and insulation), a C++ executable using faster text matching and string replacement was 

created and used to modify the model parameters. Simulation-based results including EUI, CO2 

emissions, annual energy, annual demand, and energy/demand/cost savings for each building 

technology (individually and in aggregate) is provided publicly for each building in an updatable 

web platform (Figure 1). 

 

Figure 1. All 178,337 buildings and simulation results can be searched, selected, and visualized using 

flexible regular expressions that can query and combine any number of data fields (bit.ly/virtual_epb). 

4. Simulation and Analysis 

There is a relatively broad and mature field of study which extends and leverages building 

energy modeling software to enable performance simulation for energy efficient technologies in the 

context of whole-building operation. Even prior to the increasing proliferation of urban-scale energy 

modeling studies, scalable application of technology measures in different building types, locations, 

and vintages for the purposes of building codes and standards was, and remains, a well-established 

use case that significantly impacts long-term energy use of the building stock [2-5]. Such use cases 

typically involve hundreds to thousands of individual models. Extending this to the hundreds of 

thousands of individual models used in this study, both for application of the measures and 

simulation, was non-trivial and required developing new technologies for world-class high 

performance computing (HPC) resources. 

The models were originally simulated using Oak Ridge National Laboratory’s Titan, the world’s 

fastest supercomputer at the time of this project. A licensable software was created to handle the 

distribution and simulation of the models on High Performance Computing (HPC) resources called 

AutoSIM. This software demonstrated scalability for performing 524,288 annual simulations using 

131,072 compute cores and writing 45 TB of data to permanent storage in 68 min. With the stated 

HPC resource and software pipeline constructed, the 178,337 models can be created, modified, 

simulated, transferred, analyzed, and summarized with interactive visualization tools online in less 

than 6.5 h. This software was then deployed on Argonne National Laboratory’s Theta 

supercomputer. Theta, the world’s 34th fastest supercomputer at the time of this writing, is focused 

primarily on Central Processing Units (CPU) rather than Graphical Processing Units (GPUs). DOE’s 

EnergyPlus simulation engine also primarily leverages CPUs rather than GPUs. As such, AutoSIM 

leveraged 114,688 compute cores to simulate 458,752 buildings (the equivalent of this utility for 2.5 
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technologies) and write 880 GB of results to disk in 28 min. Such HPC resources are publicly funded 

and can be acquired by anyone, anywhere, if an application is made detailing a sufficiently 

compelling scientific problem and computational readiness for such a resource. The baseline 

simulation results with AMY weather from 2015 were compared to each building’s 15 min electricity 

data from that year to ensure the models were of sufficient quality [32]. 

5. Results 

Urban-scale building energy modeling is growing quickly and offering increasingly compelling 

capabilities for assessing demand-savings opportunities or evaluation of new business models for 

utilities, independent energy savings estimates for building owners, or actionable roadmaps for 

cities’ sustainability plans. In this study, we started by simply summarizing the number of buildings 

that could benefit from the technologies discussed. For each measure, there were a number of 

buildings in which the measure resulted in an increase in energy or demand. These buildings were 

omitted from the measure-aggregated results reported. The number of positive energy and demand 

savings observations for the reported distributions are summarized in Table 6. 

Table 6. Number of buildings/observations of positive energy or demand savings. 

Number Description 
Number of Buildings 

with Energy Savings 

Number of Buildings 

with Demand Savings 

1 Insulate Roof 177,781 (99.7%) 163,485 (91.7%) 

2 Reduce Space Infiltration 177,779 (99.7%) 158,306 (88.8%) 

3 Smart Thermostat (2.2 °F) 177,401 (99.5%) 101,082 (56.7%) 

4 Smart Thermostat (4.4 °F) 172,136 (96.5%) 100,225 (56.2%) 

5 Change Electric HVAC COP 177,781 (99.7%) 163,485 (91.7%) 

6 Change Lighting Power Density 177,781 (99.7%) 167,284 (93.8%) 

7 Change to Gas Water Heater 177,781 (99.7%) 135,647 (76.1%) 

8 Change to Gas HVAC 174,862 (98.0%) 126,764 (71.1%) 

5.1. Peak Contribution 

As previously described regarding customer empowerment, there was interest by the utility in 

breaking down contributions of each building to the peak hours of generation and provide some 

comparison of each building’s EUI to similar buildings (i.e., same type and vintage). Breaking down 

the peak demand contribution by building type and vintage can allow a utility to better formulate an 

energy efficiency program to target buildings and vintages that are disproportionate contributors to 

the dirtiest and most expensive hour of generation. As one might expect, larger buildings such as 

hospital, large hotel, and large office have the highest average peak demand reduction potential per 

building (result not shown for brevity). However, when accounting for the number of buildings, more 

common buildings with high energy intensity use such as restaurants, apartments, and medium 

offices become the primary contributors. 

In Figure 2, box-and-whisker plots are used where the line in the middle indicates the median, 

the bottom and top of the rectangle are the lower/25th quartile and upper/75th quartile (meaning 25% 

and 75% of the data points lie below those values, respectively), and then the solid line indicates min 

and max while not accounting for outliers (individual dots). Since this study involves 178,377 

premises, if every building contributed equally to demand, all data would lie on a line with y-axis of 

0.000005607%. However, with a unit of 0.0001%, buildings at this level would contribute 18x more 

toward peak than such an average building. In this figure, in an attempt to make the distributions 

visible, some outliers are not represented even though those buildings have the best technical 

adoption potential for demand management. Likewise, flat lines indicate building type-vintage 
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combinations where there was not a significant number of buildings (e.g., PrimarySchool). There are 

more buildings of these types within the region, but are not assigned as such since their energy use 

profile more closely matches another building type and vintage combination. 

 

Figure 2. Box-and-whisker plot indicates statistical distribution of each building’s contribution to the 

utility’s twelve monthly peak hours added together, broken down by building type and vintage. 

While utility programs may target specific building types, there is also a temporal dimension to 

consider (Figure 3) where peak management may not be the same in summer and winter months, 

that is, the most cost-effective demand management technique may vary by building type, vintage, 

technology, and monthly weather. 

 

Figure 3. Distribution of potential demand contribution by building type for each month. 

5.2. Demand Side Management 

Smart thermostats, for pre-conditioning buildings as thermal batteries prior to peak hour 

demand, is among the traditional demand management technologies that may be cost effective for 

utility programs to implement. While utility-managed thermostats can lower energy, demand, 
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emissions, and costs for the utility, these are often passed on, either directly or indirectly, to the 

program participant or rate payer. Additionally, technologies such as smart thermostat settings that 

could affect comfort always allow setpoint override so as not to participate at that time. Figure 4 

shows the wide range of potential demand savings for over 100,000 buildings under a maximum 

technical adoption scenario where the percentage reported is the percent of kW during the building’s 

peak that could be reduced through pre-conditioning. 

 

Figure 4. Smart thermostats with utility-signaled 2.2 °C of building pre-conditioning 2 hours before 

peak hour has the potential to save an average of 27% of a building’s demand, but this sample of 

101,082 buildings varies from 0–93% by individual building and time of year. 

Figures 5 and 6 demonstrate the power of building-specific, bottom-up aggregation to allow 

visual analytics of demand savings by vintage or building type. In these figures, demand reduction 

is instead a percentage of kW reduction for the entire service territory. As an example, March and 

November with vintages of 90.1-2010 and 90.1-2013 are relatively high due to the lower energy 

demand during those shoulder months combined with the fact that those are the two most popular 

vintages of buildings in the utility’s service territory. 

 

Figure 5. Potential demand reduction achievable with 2.2 °C pre-conditioning by building vintage. 
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Figure 6. Potential monthly demand reduction achievable with 2.2°C pre-conditioning by building 

type. 

Smart thermostat savings opportunities grouped by building type explain the aggregate results 

even more thoroughly. Again March and November have significantly more savings opportunities 

in the medium office of which there are many in the EPB service area. The other building type with 

significant demand savings potential is the retail stripmall. 

Switching a building’s water heater from electric to natural gas or other fuel type is another 

strategy that could reduce peak electric demand. This study indicates the greatest savings 

opportunities (Figure 7) in the utility’s service territory for such a strategy in April and October.  

 

Figure 7. Changing water heaters from electricity to natural gas can relieve peak electric demand. 

This study found that a building’s demand could be reduced as much as 80% but averages 

approximately 5% of building peak. 

HVAC systems can also be changed from electricity to natural gas for heating. In fact, there are 

dual-fuel systems that offer additional resilience with the potential for a utility-controlled signal to 

request the equipment dynamically swap between electricity or natural gas for heating. Such a 

demand management strategy will be most effective in the winter months. Results, shown in Figure 

8, indicate that older buildings have the greatest average savings potential throughout the winter and 
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even have some savings opportunity in the summer. Newer buildings have close to zero savings 

opportunity in the summer and much lower savings opportunities in the winter months with greater 

savings potential from older commercial vintages (90.1-2004). While not shown here, the study found 

Quickservice restaurants to be the only building type that consistently showed potential demand 

savings from this strategy during summer months. 

 

Figure 8. Distributions of potential demand reduction for a building, broken down by month and 

building vintage, achievable with swapping HVAC equipment from electricity to natural gas or dual-

fuel equipment with a utility signal to reduce electricity use during peak hour. 

5.3. Energy Efficiency 

While demand management remains one of the biggest opportunities for today’s utilities, 

traditional energy efficiency remains one of the most cost-effective opportunities for long-term 

savings for building owners. In the utility’s territory, if the system-wide annual bill was shared 

equally among all buildings and cost USD 5 per year, USD 1 would be for demand and USD 4 for 

energy. 

Technologies 1–6, presented initially in Table 2, are among the most common and cost-effective 

building energy efficiency measures considered. Annual electricity savings by vintage are shown in 

Figure 9. It should be noted that swapping the water heater or HVAC (two columns on the left) results 

in higher electricity energy savings by shifting related costs to other fuel types. This study shows that 

the oldest buildings have the most electricity savings potential. While not shown here, preliminary 

results from the study indicate that annual electricity savings are greatest for newer vintages when 

considering only commercial buildings. 
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Figure 9. Distribution of potential annual electricity savings for two fuel-switching technologies 

(water heater and HVAC), and four traditional energy efficiency measures. 

From a total energy and cost perspective, the traditional energy efficiency measures of a more 

efficient HVAC (typically at end-of-life), reducing infiltration (sealing leaks between the indoors and 

outdoors), adding insultation (further reducing conductive heat transfer), and swapping to more 

efficient lighting technologies, often are at the top of most building efficiency discussions. 

5.4. Emissions 

Long-term environmental impact of the building stock may be better considered via greenhouse 

gas emissions required for the creation and operation of a building. Many activities relevant to urban-

scale energy modeling are in service of individual cities defining sustainability plans with activities 

for curbing emissions of buildings and vehicles. In this study, annual emissions savings were 

calculated directly from annual electricity savings using EPA’s eGRID [27] and thus identical except 

for lbs/MWh scaling factor and resulting emissions unit. In reality, peak demand electricity 

generation often has higher emissions than typical generation so peak demand shaving would result 

in higher values of emissions savings. This is not accounted for in this analysis. Changing from 

electric to gas ECMs is also not shown in the emissions figure, as the total savings from reducing 

electricity savings would not be realized as gas would entail emissions as well. As all emission plots 

are similar in shape with a different scale, only CO2 emissions are shown in Figure 10. 
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Figure 10. Distribution across buildings in the utility’s service area of operational emissions savings 

for four traditional energy efficiency measures. 

5.5. Cost Savings 

While demand, energy, and emissions vary considerably in relative importance by stakeholder, 

almost all stakeholders consider potential cost savings. In these results, retail-rate electricity cost 

savings were calculated using the US national average for 2015 of USD 0.1041/kWh and USD 10.5/kW. 

Since residential buildings largely do not elect a demand-sensitive (e.g., time-of-use) pricing 

structure, these results show limited cost savings for demand response compared to annual electricity 

savings. The utility-wide total potential retail cost savings for both electricity and demand of each 

technology is shown in Figure 11. It should be noted that not all savings could be realized for the 

switch from electricity to gas as the additional cost of gas, and concomitant potential loss of revenue 

for the utility, is not considered here. 

 

Figure 11. Combined utility-scale energy and demand annual retail-rate electricity cost savings. 

While Figures 11–13 constitute business intelligence that can lead to long-term program 

formulation and utility activities, the domination of individual building types at utility-scale can 
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obfuscate the short-term, per-building cost effectiveness for deployment. Figures 14 and 15 normalize 

the demand and energy potential cost savings, respectively, while normalizing for number of 

buildings to achieve the savings that could be seen at an individual building. In these results, it may 

be interesting to note reversal of trends from the totals. For example, switching to a gas water heater 

is actually a more effective cost reduction than switching to gas HVAC, while the totals indicated the 

opposite. High-rise apartments appear to be excellent candidates for demand-related cost savings for 

several measures. When considering energy-related cost savings, switching to a gas water heater has 

a significant amount of savings in large hotel buildings as well as hospitals. Lighting efficiency is 

estimated to have the greatest average potential savings opportunity for quick-service restaurants, 

outpatients, and full-service restaurants. However, since there are particular building types that lack 

a significant number of actual buildings in the utility’s service area, these averages may be biased. 

 

Figure 12. Medium office buildings, the most prevalent commercial building type, account for the 

majority of total, utility-scale, demand-related cost savings. Smart thermostats have very little or 

negative annual electricity savings. 

 

Figure 13. Residential and medium office commercial buildings, due to number of buildings, 

dominate utility-scale potential electricity cost savings. 
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Figure 14. Average demand-related electricity cost savings by building type can indicate cost-

conscious opportunities for short-term wins in demand management. 

 

Figure 15. Average energy-related electricity cost savings by building type are on average 4x higher 

than demand-related savings and typically offer the best cost savings for building owners. 

In addition to demand- and energy-related cost savings, many older buildings may be reaching 

end-of-life for existing equipment or ready for a retrofit to modernize/upgrade the building, further 

increasing the timeliness and likelihood of deployment for energy efficient building technologies. 

Figures 16 and 17 show similar average per-building potential cost savings for demand and energy, 

respectively, broken down by vintage. Generally, and perhaps counter-intuitively, older buildings 

are estimated to have lower demand savings potential for most technologies other than gas HVAC 

swapout for DOE-Ref-Pre-1980. In contrast to previous results, there are some cost savings for the 

smart water heater ECM, the DOE-Ref-1980-2004 vintage in particular had savings. 
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Figure 16. Average demand-related electricity cost savings by building vintage can indicate cost-

conscious opportunities for short-term wins in demand management. 

 

Figure 17. Average energy-related electricity cost savings potential by building vintage indicates 

significant savings opportunities. By combining building type and vintage for energy and demand, 

an initial estimate of cost savings can be used to determine if purchase and installation of these 

technologies may be cost-effective. 

6. Summary 

While there are currently a plethora of data sources, algorithms, software packages, and capable 

people behind the scientific and technological advancements, urban-scale energy modeling still has 

much to gain from cross-study comparative analysis as well as empirical validation against measured 

energy sources and building details before maturing toward the establishment of best practices and 

guidelines. In this study, a utility’s top five use cases and nine monetization scenarios for a digital 

twin of buildings were reported. OpenStudio and EnergyPlus empirically validated building energy 

models of 178,337 buildings were constructed and used to assess the maximum technical adoption 

potential for distributions of energy, demand, emissions, and cost savings of several building 

technologies. For brevity, only eight measures and a limited set of results summarizing distributions 
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of various performance metrics by month, vintage, and building type for some of these measures 

were discussed. 

For the limited set of eight energy efficient building technologies evaluated, the authors found 

energy savings in 99% and demand savings in 78% of the 100,000+ buildings included in this study. 

Combining residential and commercial energy savings, an average 7.5% COP increase in HVAC 

efficiency resulted in a per-building electrical savings of 270 kWh and annual energy costs of USD 

28,500, when averaged across 177,307 buildings. For demand savings, 2.2 °C of building pre-

conditioning 2 h before peak hour has the potential to save an average of 27% of a building’s demand 

and annual demand costs of USD 5200, but varied from 0 to 93% over a sample of 101,082 buildings. 

When taken individually, improved HVAC efficiency, space sealing, insulation, or lighting have the 

potential to offset 500 to 3000 lbs. of CO2 per building. This study provides detailed breakdowns by 

month, building type, vintage, in aggregate, and at the per-building level to facilitate use by utility 

efficiency programs, sustainability officers, and those making investment decisions in upgrading the 

nation’s building stock. 

Significant demand savings were available in the transition months (March/November) for 

smart thermostats, while changing water heaters from electric to gas had the greatest savings 

potential in April and October. Changing HVAC from electricity to gas offers significant demand 

savings throughout the winter for previously electrically heated buildings. The majority of energy 

efficiency savings came from older vintages with greater room for efficiency improvement. 

Regarding cost, electricity cost savings dominated demand cost savings for all ECMs other than the 

smart thermostats. 

The authors are hopeful that such results will be useful for comparison with other studies 

involving explicit data, distributions, or evolving metrics of urban-scale building characteristics, 

energy use, end use loads demand management (especially synergies/tradeoffs), emissions 

reductions, or estimated savings. 

Author Contributions: Conceptualization, J.N. and W.C.; methodology, J.N.; software, B.B., E.G.; validation, 

W.C.; resources, J.N.; data curation, J.N., W.C. E.G., and B.B.; writing—original draft preparation, J.N. and B.B.; 

writing—review and editing, W.C.; visualization, B.B.; supervision, J.N.; project administration, J.N.; funding 

acquisition, J.N. and W.C. All authors have read and agreed to the published version of the manuscript. 

Funding: This work was funded by field work proposal CEBT105 under US Department of Energy Building 

Technology Office Activity Number BT0305000, as well as Office of Electricity Activity Number TE1103000. 

Acknowledgments: The authors would like to thank Amir Roth and Madeline Salzman for their support and 

review of this project. The authors would also like to thank Mark Adams for his contributions to the AutoBEM 

software for model generation, Jibonananda Sanyal for AutoSIM contributions for scalable simulation, and 

Tianjing Guo for implementation of measures used in this study. 

Conflicts of Interest: Disclaimer: This manuscript was authored by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, 

by accepting the article for publication, acknowledges that the United States Government retains a non-

exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this 

manuscript or allow others to do so, for United States Government purposes. The Department of Energy will 

provide public access to these results of federally sponsored research in accordance with the DOE Public Access 

Plan (http://energy.gov/downloads/doe-public-access-plan). 

References 

1. Building Technologies Office Multi-Year Program Plan, Fiscal Years 2016–2020; US Department of Energy: 

Washington, DC, USA, 2016. 

2. Cerezo, C.; Sokol, J.; AlKhaled, S.; Reinhart, C.; Al-Mumin, A.; Hajiah, A. Comparison of four building 

archetype characterization methods in urban building energy modeling (UBEM): A residential case study 

in Kuwait City. Energy Build. 2017, 154, 321–334. 

3. Sokol, J.; Cerezo Davila, C.; Reinhart, C.F. Validation of a Bayesian-based method for defining residential 

archetypes in urban building energy models. Energy Build. 2017, 134, 11–24. 



Energies 2020, 12, x 21 of 22 

 

4. Nutkiewicz, A.; Yang, Z.; Jain, R.K. Data-driven Urban Energy Simulation (DUE-S): A framework for 

integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling 

workflow. Appl. Energy 2018, 225, 1176–1189. 

5. Cerezo Davila, C.; Reinhart, C.F.; Bemis, J.L. Modeling Boston: A workflow for the efficient generation and 

maintenance of urban building energy models from existing geospatial datasets. Energy 2016, 117, 237–250. 

6. Deru, M.; Field, K.; Studer, D.; Benne, K.; Griffith, B.; Torcellini, P.; Liu, B.; Halverson, M.; Winiarski, D.; 

Rosenberg, M.; et al. U.S. Department of Energy Commercial Reference Building Models of the National Building 

Stock; NREL/TP-5500-46861; National Renewable Energy Laboratory: Lakewood, CO, USA, 2011. 

7. Commercial Reference Buildings. Energy.gov. n.d. Available online: 

https://www.energy.gov/eere/buildings/commercial-reference-buildings (accessed on Dec. 2020). 

8. Commercial Prototype Building Models. 2018. Available online: 

https://www.energycodes.gov/development/commercial/prototype_models (accessed on Dec. 2020). 

9. ASHRAE. Climatic Data for Building Design Standards; ASHRAE Standard 169-2013; ASHRAE: Atlanta, GA, 

USA, 2013. 

10. ASHRAE. Energy Standard for Buildings Except Low-Rise Residential Buildings; Standard 90.1-2019; ASHRAE: 

Atlanta, GA, USA, 2019. 

11. Lee, S.H.; Hong, T.; Sawaya, G.; Chen, Y.; Piette, M.A. DEEP: A Database of Energy Efficiency Performance to 

Accelerate Energy Retrofitting of Commercial Buildings; LBNL-180309; Lawrence Berkeley National 

Laboratory: Berkeley, CA, USA, 2015. 

12. Levine, M.; Feng, W.; Ke, J.; Hong, T.; Zhou, N. A Retrofit Tool for Improving Energy Efficiency of 

Commercial Buildings. In Proceedings of the 2012 ACEEE Summer Study on Energy Efficiency in 

Buildings, Pacific Grove, CA, USA, 12–17 August 2012; Volume 3, pp. 213–224. 

13. Wang, N.; Goel, S.; Srivastava, V.; Makhmalbaf, A. Building Energy Asset Score, Program. Overview and 

Technical Protocol (Version 1.2); PNNL-22045 Rev. 1.2; Pacific Northwest National Laboratory: Richland, 

WA, USA, 2015. 

14. Karpman, M.; Wang, N.; Eley, C.; Goel, S. Comparative Analysis of ASHRAE Building EQ As-Designed, 

DOE Building Energy Asset Score and ASHRAE 90.1 Performance Rating Method Asset Ratings. In 

Proceedings of the Building Simulation 2017, San Francisco, CA, USA, 7–9 August 2017. 

15. Roth, A.; Brackney, L.; Parker, A.; Beitel, A. OpenStudio: A Platform for Ex Ante Incentive Programs. In 

Proceedings of the 2016 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 

21–26 August 2016; Volume 4, pp. 1–12. 

16. Scout. Energy.gov. n.d. Available online: https://www.energy.gov/eere/buildings/scout (accessed on Dec. 

2020). 

17. Roth, A. Building Energy Modeling 101: Stock-Level Analysis Use Case. 18 April 2017. Available online: 

https://www.energy.gov/eere/buildings/articles/building-energy-modeling-101-stock-level-analysis-use-

case (accessed on Dec. 2020). 

18. Wang, N.; Makhmalbaf, A.; Srivastava, V.; Hathaway, J.E. Simulation-Based Coefficients for Adjusting 

Climate Impact on Energy Consumption of Commercial Buildings. Build. Simul. 2017, 10, pp. 309–322. 

19. Ng, L.C.; Quiles, N.O.; Dols, W.S.; Emmerich, S.J. Weather Correlations to Calculate Infiltration Rates for 

U. S. Commercial Building Energy Models. Build. Environ. 2018, 127, pp. 47–57. 

20. Shrestha, S.; Hun, D.; Ng, L.; Desjarlais, A.; Emmerich, S.; Dalgliesh, L. Online Airtightness Savings 

Calculator for Commercial Buildings in the US, Canada and China. In Proceedings of the Thermal 

Performance of the Exterior Envelopes of Whole Buildings XIII International Conference, Clearwater 

Beach, FL, USA, 4–8 December 2016; pp. 152–160. 

21. Irwin, R.; Chan, J.; Frisque, A. Energy Performance for ASHRAE 90.1 Baselines for a Variety of Canadian Climates 

and Building Types; Stantec Consulting Ltd: Vancouver, BC, Canada, 2016. 

22. IECC. International Energy Conservation Code 2012; C403(2). 

23. ICF International. Seal and Insulate with ENERGY STAR® Savings Analysis Measure Upgrade 

Assumptions. (I. I. STAR®, Producer). 2014. Available online: 

https://www.energystar.gov/ia/home_improvement/home_sealing/Measure_Upgrade_Assumptions.pdf 

(accessed on Dec. 2020). 

24. Guglielmetti, R.; Macumber, D.; Long, N. OpenStudio: An Open Source Integrated Analysis Platform; Preprint 

NREL/CP-5500-51836 Building Simulation, Sydney, Australia November 14-16, 2011. 



Energies 2020, 12, x 22 of 22 

 

25. Crawley, D.B. EnergyPlus: Creating a new-generation building energy simulation program. Elsevier’s 

Energy and Buildings journal 2001, 33.4, pp. 319–331. 

26. Roth, A. New OpenStudio-Standards Gem Delivers One Two Punch. 15 September 2016. Available online: 

https://www.energy.gov/eere/buildings/articles/new-openstudio-standards-gem-delivers-one-two-punch 

(accessed on Dec. 2020). 

27. E.P.A. Emissions & Generation Resource Integrated Database (eGRID). 2017. Available online: 

https://www.epa.gov/energy/emissions-generation-resource-integrated-database-egrid (accessed on Dec. 

2020). 

28. New, J.R.; Adams, M.; Im, P.; Yang, H.; Hambrick, J.; Copeland, W.; Bruce, L.; Ingraham, J. Automatic 

Building Energy Model Creation (AutoBEM) for Urban-Scale Energy Modeling and Assessment of Value 

Propositions for Electric Utilities. In Proceedings of the International Conference on Energy Engineering 

and Smart Grids (ESG), Cambridge, UK, 25–26 June, 2018. 

29. New, J.R.; Bhandari, M.; Shrestha, S.; Allen, M. Creating a Virtual Utility District: Assessing Quality and 

Building Energy Impacts of Microclimate Simulations. In Proceedings of the International Conference on 

Sustainable Energy and Environmental Sensing (SEES), Cambridge, UK, 18–19 June 2018. 

30. Dogan, T.; Reinhart, C.; Michalatos, P. Autozoner: An algorithm for automatic thermal zoning of buildings 

with unknown interior space definitions. J. Build. Perform. Simul. 2015, 9, 1–14, 

doi:10.1080/19401493.2015.1006527. 

31. Smith, L.; Bernhardt, K.; Jezyk, M. Automated energy model creation for conceptual design. In Proceedings 

of the 2011 Symposium on Simulation for Architecture and Urban Design Society for Computer Simulation 

International, Boston, MA, USA, April 2011; pp. 13–20. 

32. Garrison, E.; New, J.R.; Adams, M. Accuracy of a Crude Approach to Urban Multi-Scale Building Energy 

Models Compared to 15-min Electricity Use. PhD Student Paper award. In Proceedings of the ASHRAE 

Winter Conference, Atlanta, GA, USA, 12–16, January 2019. 

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional 

affiliations. 

 

© 2020 by the authors. Submitted for possible open access publication under the terms 

and conditions of the Creative Commons Attribution (CC BY) license 

(http://creativecommons.org/licenses/by/4.0/). 

 


