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Abstract

United States building energy use accounted for 40%
of total energy use, 74% of peak demand, and $412
billion in 2019. Building energy modeling allows
researchers to simulate building physics, gain in-
sights into possible energy/demand saving opportu-
nities, and assess cost-effective resilience amidst cli-
mate change. Many building features needed to cre-
ate building energy models are readily available such
as 2D footprints and LiDAR (height). A critical fea-
ture that is not generally obtainable is the building
type. In partnership with a utility, a years worth
of real-world, 15-minute electrical use data has been
examined. The smart meter data is compared to
97 different prototype building energy models to as-
sign building type. Real-world considerations includ-
ing data preparation, quality assurance, and han-
dling of missing values for advanced metering infras-
tructure data are addressed. Euclidean distance for
pattern-matching of energy use, dynamic time warp-
ing, and time-window statistics with machine learn-
ing are compared for determining building type from
measured electricity use.

Key Innovations

• Data preparation for real-world, sub-hourly elec-
tricity data

• Compare three novel methods for assigning
building type using utility data

• Illustrate method for assigning confidence in pre-
dictions on an individual building basis

Practical Implications

This framework can be used to assign individual
building archetypes at a utility level; scaling beyond
where tax-assessors may be easily available.

Introduction

There has been increasing attention paid to energy in
recent years as the effects of climate change are felt
around the world. There are many ways to decrease
energy use, demand amidst increased cooling loads,

and building resilience for extreme weather events.
In the United States in 2019, approximately 125 mil-
lion commercial and residential buildings consumed
about 39% of the nations primary energy (Energy In-
formation Administration (2020)). Building energy
use constitutes one of the greatest opportunities to
mitigate or adapt anthropogenic forcings on climate
change in the coming years. The United States De-
partment of Energy (DOE) has made it a national
priority to reduce energy use intensity (EUI) of the
building stock 30% by 2030 compared to 2010 usage.
Building energy modeling (BEM) allows researchers
to quickly explore thermal and energy flows within
buildings to inform investments in promising tech-
nologies, assess total energy and demand savings po-
tentials for the US building stock, provide a level
playing field of information and energy tools for the
private sector, and close market gaps through field
deployment to de-risk efficient building technologies
and practices.

In recent years, the prevalence and accessibility of
software tools, cloud services, and high-performance
computing have led to a wide array of uses for
machine learning and the ability to process large
amounts of data. Among related emerging applica-
tions is urban-scale energy modeling which includes
generating, simulating, and analyzing energy use in a
way that scales from individual buildings to the scale
of cities, utilities, or larger. These approaches often
benefit from methods for obtaining building-specific
descriptors (e.g. 2D footprints) from deep learning
computer vision segmentation algorithms on satel-
lite imagery. For this analysis, building footprints
were obtained from the Microsoft building footprint
dataset which contains over 125 million computer
generated footprints across the country (Microsoft
(2018)). In this project, the utility has smart meters
collecting electricity use of buildings. This advanced
metering infrastructure is referred to as premises,
which were associated with buildings using Euclidean
distance on the latitude and longitude of each premise
and each building. Each building footprint was asso-
ciated with one or more premises and the polygon of



the footprint was used to calculate each building’s 2D
footprint area. Building height was obtained from a
LiDAR data set that was developed over the course
of five years for the state of Tennessee State of Ten-
nessee (2019). The 2D footprint was extruded based
on LiDAR processing for the height of the building
and used as an estimate of total conditioned area. In
partnership with the Electric Power Board (EPB) of
Chattanooga, TN, 15-minute electricity data for cal-
endar year 2015 from smart meters for each of 178,368
buildings was shared in order to analyze energy and
demand savings opportunities. With the building 2D
area, building height, and whole-building electricity
use, the electrical portion of actual energy use inten-
sity (EUI) was calculated.

Computation of EUI can be a guide for utilities in as-
sessing demand or emissions reduction opportunities
for energy-intensive buildings, but EUI doesn’t pro-
vide sufficiently detailed metrics necessary to make
utility-scale investment decisions. To make such data
actionable, building energy models have the poten-
tial to provide energy, demand, emissions, or cost
impacts dynamically at the scale of individual build-
ings, feeders, substations, or the entire service terri-
tory. While building footprint data is readily avail-
able today and LiDAR data for building height is
becoming more available at reasonable costs, the ge-
ometry of the building must be populated with thou-
sands of details to create a modern building energy
model. There are ASHRAE audit processes (levels
1-3) with prioritized lists for collecting major energy
use contributors in a building. However, both due
to the intractability of such labor-intensive efforts
at an urban scale combined with the privacy con-
cerns associated with extracting some data automat-
ically, accurately identifying the building type is an
outstanding issue in the area of urban-scale energy
modeling. Several countries have defined reference,
prototype, or other canonical building energy models
by common building functions (e.g. offices, schools)
over different building code vintages based on surveys
of energy-relevant characteristics (e.g. HVAC type,
water heating, lighting, hours of operation) in these
buildings. Such intelligent defaults are often neces-
sary since modern simulation engines such as Ener-
gyPlus, used in this study, has on average approxi-
mately 3,000 inputs (depending on size and complex-
ity of the building) and an input/output reference
manual with over 3,000 pages of everything that can
be inserted or simulated/output from a building en-
ergy model. If building descriptors can be used to
accurately assign building type, all internal charac-
teristics can be assigned as an intelligent guess, used
to generate answers to initial investment-grade ques-
tions, and refined as necessary. This paper explores
the use of 15-minute measured electrical use of each
building as one building descriptor which, if available,
could be used to assign building type in a useful man-

ner.

Obtaining the inputs about individual buildings phys-
ical characteristics may be easy on a county-sized
scale with tax assessor’s data, but is more diffi-
cult to obtain as the number and geographical re-
gions of buildings increase. Simulations can be per-
formed with relatively few parameters if major inter-
nal, energy-use characteristics are assumed from pro-
totype buildings. The more input information avail-
able to generate the model, the more accurate the
simulation. DOE’s prototype buildings are a set of
typical residential and commercial building models
derived from the DOEs earlier commercial reference
building models. The 16 different commercial proto-
type models represent approximately 80% of commer-
cial buildings in the U.S. (US Department of Energy
(2019a)). There are also residential prototype build-
ings that cover a large number of residential variation.
The prototype models provide a consistent baseline
of comparison for actual buildings of these types (US
Department of Energy (2019b)). As one would ex-
pect, the building type assignment to a prototype
has a large effect on the type of equipment (sizing
and schedules), envelope characteristics, occupancy,
and many other related characteristics that determine
the anticipated energy use or energy savings oppor-
tunities from that BEM. If the simulations are of suf-
ficient quality, a cogent digital twin of buildings at
city- or utility-scales can be generated, simulated, an-
alyzed, and intuitively visualized. A digital twin of a
utility can facilitate infrastructure-scale investments
from the quantified energy, demand, cost, and emis-
sions reduction opportunities for relevant buildings.

Each DOE prototype building, in addition to having
a building type, has a vintage based on the build-
ing codes relevant at different years. While building
codes in the U.S. are updated every three years, each
state or local region elects which code-release year
they choose to enforce: the ASHRAE (i.e. 90.1, 90.2),
International Energy Conservation Code (IECC), or
some variant of those standards within its geograph-
ical region. Each new code release typically requires
higher levels of energy efficiency, with current build-
ing codes requiring a building that uses approxi-
mately 40% of the energy than they did in 1985 (Liu
and Athalye (2018)). For urban-scale energy mod-
eling of buildings, building type and vintage are an
integral part of the simulation with much of the accu-
racy or value of the resulting analysis deriving from
the accuracy by which building type and vintage are
assigned.

The impact that building type and vintage have on
simulation results are shown in Figures 1 and 2 for cli-
mate zone 4A (Chattanooga). Each building type and
vintage combination was simulated using the same ge-
ometry to illustrate the impact these parameters have
on simulated annual energy use. The difference in



electricity use across building types is significant with
warehouses using less than 500 GJ annually whereas
hospitals use 4000 GJ annually with the same geom-
etry. These findings change across different climate
zones throughout the U.S., but this is representative
of building energy models in Chattanooga and the
EPB service area.

For EPB’s service area of 178,368 buildings, data
for footprint and height were used to determine esti-
mated conditioned square footage and calculate elec-
trical use intensity from measured smart-meter data.
This was then compared to all possible building type
and vintage combinations to determine which an-
nual, 15-minute electricity use intensity pattern most
closely matched each building’s actual electricity use
pattern. An example of a real building compared to
two sample prototype buildings is shown in Figure 3.
Three methods of assigning building type and vin-
tage labels to each of the buildings were compared.
The first method is calculating Euclidean distance
between each sample building 15-minute EUI to the
97 prototype combinations 15-minute EUI with the
shortest distance being the label. The second method
uses the minimum dynamic time warping (DTW) dis-
tance to select the appropriate building label. The
last approach is to create a machine learning (ML)
model from time-based statistics from the 15-minute
EUI to predict labels. These methods are described
and compared in greater detail within the Methods
and Results sections.

A critical piece of this analysis was how to handle
missing data from the real EPB 15-minute electricity.
Premises had differing amounts and different types
of missing data. Missing data was ultimately catego-
rized into three different types. The first type of miss-
ing data was small gaps. Small gaps were considered
less than one week. Small gaps were dealt with using
autoregressive integrated moving average (ARIMA)
in which ARIMA was fitted to the signal and the
small missing gaps were imputed. The next type of
missing data was large gaps. These large gaps were
greater than one week but less than three quarters of
the year. Large gaps were either left out (where impu-
tation was unnecessary), or they were imputed using
univariate DTW imputation. The last type of missing
data was premises that had more than 75% of their
data missing. These files were removed as classifying
buildings on that small amount of data could lead
to error. Since results can vary significantly based
on the methods of preliminary data preparation, our
methods are disclosed within the following Data sec-
tion.

Data

The real 15-minute electricity data was provided by
EPB Chattanooga. The data covered more than
178,000 premises while this study focuses on a small
sample to test out several methods. The electrical en-

ergy values were reported in average kilowatts (kW)
consumed during each 15-minute interval with the
sum of four consecutive values resulting in kilowatt-
hours (kWh). With this real, raw data, there were
several issues with the data and its format which we
attempt to succinctly describe and address here.

First, the data was provided in a streaming format at
a resolution of 15-minutes from each utility-grade me-
ter as it was available. This meant that the reporting
and interleaving of data use information needed to
be assembled into time-series for each unique meter’s
ID. The result of the initial pre-processing phase was
a spreadsheet with 178,368 rows and 35,040 columns
of 15-min energy use (kW) of each building’s elec-
trical use for calendar year 2015. Second, there was
missing data for many of the 15-minute intervals for
many of the premises. While previous work has re-
ported over 93% of buildings were missing less than
2% of their data, out of the small sample that was an-
alyzed for this comparison, none of the premises had
“full” sets of data. Third, some data is incorrectly for-
matted, being either a wrongly formatted date/time
string or a non-numeric value for energy use. Fourth,
as this data represents real electricity use, business
operations occur in the middle of time series that can
raise complications for data processing, such as cus-
tomers changing rate structures, meter swapouts with
different IDs mid-year, or stopping power to a build-
ing. Duplicate reporting was also present in the data.
Properly dealing with such issues is a critical part of
any analysis.

The 97 combinations of prototype building and vin-
tage combinations were simulated using EnergyPlus
and climate zone ASHRAE-169-2006-4A building
codes and actual meteorological year (AMY) weather
data for the year corresponding to the year of the
EPB data. Table 1 contains the prototype building
types and standards. The 15-minute electricity data
output was measured in Joules and converted to kWh
for comparison to the EPB data. For this analysis,
and to address confusion between electrical and en-
ergy use intensity, all building energy models were
converted to all-electric HVAC for comparison pur-
poses.

Missing Values

Many researchers underestimate the time required for
data preparation. While this may vary dramatically
by project, total project time spent on data prepara-
tion often ranges from 70 - 92% (KDnuggets (2003)).
Likewise, preparing data files was a major part of
this analysis. The prototype files were outputs from
the simulation and therefore did not need cleaning.
For comparison, the real electricity data had to be
cleaned. The distributions of the number of missing
values and the number of 0 values of the sample of
100 premises is shown in Figure 4.

Many of the premises had a relatively low percent



Figure 1: Building Type has a significant impact on annual electricity use with some buildings using orders of
magnitude more electricity for the same geometry.

Figure 2: The building vintage affects electricity use
with older vintages using more energy than newer
ones.

of “NA” or “0” values; however, there are several
premises in which much of the data is missing or 0, in-
cluding several premises that had values of 0 for the
majority of the year. First, it is important to note
that 0s are treated differently than NA values. Only
gaps of 0 values greater than one week were treated as
missing values and thereby imputed. Any zero value
that contained values greater than 0 within a week be-
fore or after was kept in the data while these longer
strings of 0s were treated as missing. It is impossi-

Table 1: Every valid combination of Building Type
and Standard were used to create 97 prototype models.

Building Type Standard
Small Office DOE-Ref-Pre-1980

Medium Office DOE-Ref-1980-2004
Large Office 90.1-2004

Standalone Retail 90.1-2007
Retail Stripmall 90.1-2010
Primary School 90.1-2013

Secondary School
Outpatient

Hospital
Small Hotel
Large Hotel
Warehouse

Quick-service Restaurant
Full-service Restaurant

Mid-rise Apartment
High-rise Apartment

Residential

ble for one to know if these longer than one week 0
strings are legitimate values or some sort of sensor or
recording failure during these periods of time. The
reason they are being treated as missing is because
these long 0 strings will not compare to the proto-
type buildings which have no missing or 0 data. The
first thing that was done was to categorize the missing
data into three types.

Small Gaps

This study defines small gaps to be less than one
week of consecutive missing values. If these small



Figure 3: Comparing real building 15-minute EUI to two prototype simulations shows this building more closely
matches a residential prototype rather than the office prototype. In this study, every building’s real data is
compared to all 97 Building Type and Vintage combinations.

gaps were 0 values, they were left in the data. If
these small gaps were missing values, they were im-
puted using Auto Regressive Integrated Moving Aver-
age (ARIMA). ARIMA models forecast a time series
based on past values. The ”Autoregression” (AR)
refers to model that regresses on lagged values. ”In-
tegrated” (I) represents the differencing of raw obser-
vations to allow for the time series to become station-
ary. And ”Moving Average” (MA) incorporates the
dependency between an observation and a residual
error from a moving average model applied to lagged
observations. These combined features attempt to fit
the data and forecast future points (Hyndman and
Athanasopoulos (2020)). An ARIMA model was fit to
each of the series of 15-minute data for each premise.
The model was then used to forecast the small gaps
throughout the 35,040 points of the year. ARIMA
was a good choice for this imputation as it can nat-
urally handle missing data and provided the impu-
tation (forecast) with more depth than interpolation
various other methods that were explored. An ex-
ample of the ARIMA imputation is shown in Figure
5.

Large Gaps

This study defines large gaps to be any number of con-
secutive missing values or 0s greater than one week
and less than three months. These gaps were dealt
with in two different ways. Both ways started out
the same in which small gaps were imputed as pre-
viously shown using ARIMA. Once the small gaps
were imputed, a copy of the premises was stored with

NA values remaining for DTW which will be shown
later. Another copy of the premises was imputed us-
ing univariate dynamic time warping for large gaps of
missing data. ARIMA and several other imputation
methods were attempted for the large gaps, but most
could not handle this much missing data in a row and
the result was imputation that looked nothing like its
surrounding points. An example of the univariate dy-
namic time warping imputation is shown in Figure 6.

The three types of gaps as well as their respective im-
putation strategy are shown in Table 2. This overall
imputation methodology allowed for a full compar-
ison of 15-minute prototype simulation EUI to 15-
minute actual building EUI for classification of build-
ing type and standard.

Table 2: Different imputation strategies were used for
different gap sizes in the meter data.
Missing Data Type Imputation Strategy

Small Gaps Auto Regressive Integrated
(< 1 Week) Moving Average (ARIMA)
Large Gaps Univariate Dynamic
(> 1 Week) Time Warping (DTW)

> 75% Missing Omitted

Methods

Euclidean

The first and most straightforward method of com-
parison of the real 15-minute EUI data to the pro-
totype 15-minute EUI data was measuring Euclidean
distance between the EPB sample to each of the 97
prototype simulation combinations. For this analysis,



Figure 4: Most meter data had less than 1000 “NA”
or “0” values, some had significant gaps, and a few
had nearly all “0” values. Different strategies were
used to address these.

the previous sections about imputation were ignored
as time did not factor into this method. This re-
sulted in a comparison of however many points were
in the EPB sample to the same number of points from
each of the prototypes. The prototype and standard
combination with the smallest distance to each of the
observations was chosen as the label for that obser-
vation. This method has been previously analyzed
(Garrison et al. (2019)).

Dynamic Time Warping

The next method of comparing the EPB data to
the prototype combinations was DTW. DTW is a
commonly used measure of the similarity between
two time series. DTW works by finding the optimal
global alignment between two time series accounting
for temporal distortions. The algorithm optimally
maps one time series onto another and similarly to
Euclidean by comparing each point in one time series
to every other point and returns the warped distance
as a result. By doing this, even if time series are not
exactly in phase, their points are compared and the
warping distance would be small. This method may
be a good fit for electricity data as the same patterns
may occur at different points throughout the year.
As one would expect, this vast comparison is very
computationally expensive (quadratic time and space
complexity) and many modifications have been made
in an attempt to expedite this process. For this anal-
ysis, an approximation called ”FastDTW” was used
(Salvador and Chan (2004)). A comparison of Eu-
clidean to DTW is shown in Figure 5. The DTW
warps to another section of the time series and maps

Figure 5: Example of Small Gap ARIMA Imputa-
tion, shown for a single building at full year and 2-day
scales, qualitatively illustrates filling in logical values
within the time series data.

Figure 6: Example of Large Gap Univariate DTW
Imputation, shown for a single building at full year
scale, demonstrates original data (top) filled with data
based on the imputation strategy (bottom) in a way
that preserves characteristics of the time series.

similar queries together which may result in a better
match. DTW cannot be used directly on time-series
with missing data. The data either had to be omitted
or imputed. For this analysis, the missing data was
imputed for comparison using the small and large gap
strategy previously described.

Windowed Statistics Machine Learning

The final method of labeling building type and stan-
dard was using a Machine Learning (ML) classifier.
The ML classifier was done in a different way than
the previous two methods. Instead of directly com-
paring the data to the prototypes, this method ex-
tracted time and statistics-based features from the
data with the prototypes considered the labels. The
Caret package in R was used to build, tune, and com-
pare these models (Kuhn (2019)). The first thing that
had to be done was to impute the data. Similar to
the second DTW method, time series small gaps were
imputed using ARIMA and large gaps were imputed



Figure 7: Euclidean Distance vs Dynamic Time
Warping (Schfer (2015)). Sine curves demonstrate
Euclidean distance may not adequately compare two
time series.

using univariate DTW. Several time-based statistics
were extracted from the time series. They are shown
in Table 3 below.

Table 3: Combinations of Time windows and Statis-
tics were calculated to identify unique statistical vari-
ations between buildings at different time scales. For
example, weekends can traditionally serve as a signif-
icant differentiator between building types.

Time Window Statistic
Monthly Maximum
Yearly Mean

Weekends Median
Minimum

Standard Deviation

These time windows were chosen as they summarize
critical structures of the time series. For example, one
would expect the EUI of a large office on the week-
end to be different than normal and completely differ-
ent when compared to other building types. Weekly
windows were originally used but removed as they
resulted in lower cross-validation metrics. Three dif-
ferent models were evaluated with a hyperparame-
ter grid search being used for each to compare op-
timal models for each. These models were k-nearest
neighbor (KNN), random forest (RF), and extreme
boosting (xgbTree). KNN is a classifier that works
by assessing the distance of a test vector to all train-
ing vectors with the label being the vector at which
distance is minimized (Ripley (1996)). xgbTree and
RF are both decision tree classifiers which work by
recursively partitioning data based on feature values
for which each of the partitions serves as a test for
on a feature of test data (Quinlan (1986)). Boosting
(xgbTree) relies on shallow trees for which error is
minimized by minimizing bias while RF utilize fully
grown decision trees and minimizes error by mini-
mizing variance (Chen and Guestrin (2016); Breiman
(2001)).

As there were 97 different classes with one observation
per class, cross-validation could not be done with the
raw labels. Instead, the labels were changed to build-
ing type only (removing vintage), thereby incorporat-
ing at least 3 labeled observations (6 for most) into
the training data set which allowed for classic cross-

validation to get a rough estimate of what the hy-
perparameters should be to split the building types.
The random forest ultimately had the highest clas-
sification accuracy and was the final model used to
create the building energy models for the EPB sam-
ples. The hyperparameter grid values are shown in
Table 4 while the cross-validation results are shown
in Table 5.

Table 4: Hyperparameter values used for grid search
are shown with optimal hyperparameter values from
cross-validation in bold. For more on these met-
rics, see Ripley (1996), Schliep et al. (2016) Breiman
(2001), Chen and Guestrin (2016).

Method Hyperparameter Value
KNN Kernel Rectangular

Gaussian
Triangular

Epanechnikov
Kmax 30, 40, 50, 60

RF Trees 500
Mtry 2, 125, 390

Min Node Size 1
Split Rule Gini

Extra Trees
xgbTree N rounds 50, 100, 150

Max Depth 1-3
Eta 0.3 -0.5

Gamma 0
Col Sample By Tree 0.6 , 0.8
Min Child Weight 1

Subsample 0.5 , 0.75, 1

Table 5: Cross-validation metrics for KNN, xgbTree,
and RF. RF had superior mean and median classi-
fication accuracy as well as κ, which considers the
chance of randomly classifying correctly.
Method Median Mean Median Mean

Acc Acc κ κ
KNN 78.4% 80.1% 77.1% 78.8%
RF 84.3% 82.2% 83.3% 81.1%

xgbTree 80.3% 81.0% 79.0% 79.7%

Results

For this analysis, three different datasets were created
with building type and standard being classified from
one of the methods. The models were then simulated
using EnergyPlus and compared to the actual data to
obtain accuracy metrics. There are two ways of com-
paring the methods; error rates of simulated electric-
ity to actual electricity usage and assigned building
type compared to actual building type. Actual build-
ing type was found manually by searching each of the
100 buildings. Building electricity data was adjusted
using a single, annual adjustment factor. Both of
these metrics may be valuable depending on the goal
of an analysis.

Runtime will become an increasingly important factor



as these results are scaled beyond 100 buildings. The
Euclidean distance calculation was the fastest with a
runtime 25x faster than the very slow dynamic time
warping which must compare all sets of points. This
runtime gap could be improved with additional nu-
merical methods. The random forest was took only a
few seconds to train as it only needed to be trained
on 97 samples.

Quantitative Summary

Coefficient of Variation of Root-Mean Squared Error
(CVRMSE) is a quantitative metric used for build-
ing energy modeling that measures error between
simulation output and real data. The equation for
CVRMSE is shown in equation 1.

CV RMSE =
1

Ȳ

√
Σn

i=1(Yi − Ŷ )2

N
(1)

It should be noted that CVRMSE is often computed
for building energy models on monthly or hourly data
for a year, whereas these numbers are computed for
15-minute data over a year. Also, missing data for
this calculation was addressed by omitting ”NA” val-
ues and the aforementioned imputation strategies.
The performance metrics based on comparison of the
resulting BEM and measured data is shown in Table
6.

Table 6: While all three methods tested have similar
error values, random forest demonstrates the lowest
maximum error. For assessment of these quality re-
sults, <15% monthly or <30% hourly CVRMSE are
often considered “investment grade” and errors here
are 15-minute resolution. (ASHRAE (2014))

Method Min Median Mean Max
RF .7% 38.6% 44.1% 206%
Euc .5% 38.5% 48.6% 545%

DTW .5% 38.7% 49.1% 560%

Qualitative Summary

Qualitative results are sorted into three categories; di-
rect accuracy, general accuracy, and commercial accu-
racy. Direct accuracy was determined by comparing
the exact prediction with the actual building type.
This was difficult to classify in some instances as a
church or a car dealership could not be directly clas-
sified into building prototypes. General accuracy cor-
rects this issue slightly by classifying actual buildings
into their closest representative prototype building as
well as combining categories such as small, medium
and large office into a general ”office” label. The fi-
nal category is commercial accuracy which is simply
residential (detached) or commercial (other). The ac-
curacy values are shown in Table 7.

While accuracy is a reasonable metric, it can be a bit
misleading given the dataset was comprised of about
80% residential detached houses. The ability of these
classifiers to differentiate between residential build-

Table 7: Euclidean distance classifier demonstrated
the highest accuracy, primarily due its number of res-
idential predictions coupled with the amount of resi-
dential buildings in the sample.

Method Direct General Commercial
RF 62% 63% 78%
Euc 80% 80% 81%

DTW 71% 71% 77%

ings and commercial buildings is important as it has
a large impact on building properties and energy use.
Though this is a multi-class problem with 17 differ-
ent buildings types, an estimate of the binary com-
mercial classification quality can be obtained by sim-
plifying the actual building type and the prediction
to commercial or residential. As the simplification to
commercial vs residential is done in a post-processing
step, a single decision threshold is used.

Sensitivity (true positive rate - method predicts com-
mercial and building is commercial) and specificity
(true negative rate - method predicts residential and
building is residential) are useful metrics for binary
classification exercises as they highlight class imbal-
ance issues. The sensitivity and specificity values are
shown in Table 8. While the Euclidean classifier had
the best direct accuracy of the three methods (Table
7), it’s over-prediction of residential in a highly resi-
dential dataset is problematic as it shows the classifier
does not have the ability to separate these important
building distinctions. In contrast, the lower direct ac-
curacy of the Random Forest (Table 7) may be caused
by certain real commercial buildings in the dataset
that behave more closely to a different commercial
prototype, likely making these predictions more rep-
resentative than a residential classification.

Table 8: Random Forest was best at differentiating
commercial vs residential buildings while Euclidean
Distance over-predicted residential.

Method Commercial Commercial
Sensitivity Specificity

RF 78.9% 78.3%
Euc 0.05% 100%

DTW 36.8% 87.8%

There are some other interesting observations in the
qualitative building classifications. For the Euclidean
distance classification method, the large number of
residential building assignments could be explained if
the 15-minute electricity data for an apartment build-
ing was for a single unit which may closely resemble
a small house and would be the closest classification.
The number of warehouses classified is interesting as
there were no actual warehouses in the dataset. This
would lead one to believe that some of the houses elec-
tricity signature functioned more closely to a ware-
house than a house based on scheduling an electricity
use. This could also be due to the assumption that all
buildings were 100% electric HVAC; if a building was



heating with gas, it may more resemble a warehouse.

It should be noted that no post-processing was done
for any of these methods. If 15-minute electricity is
available, often billing rates may be available and may
be used to change a building classification with aware-
ness that assigning the correct building type may not
lead to a more representative energy simulation.

Confidence

All of these methods utilize some sort of distance
metric from Euclidean distance, to warping distance
(DTW), and class probability (RF). These distances
can be viewed as a pseudo-confidence factor with the
premises with the smallest EUI distance (i.e. highest
similarity) to prototypes being labels of the highest
confidence. This confidence level allows the utility to
determine to what degree they trust certain labels as
well as if some buildings need to be labeled in an-
other way if the distance is out of the normal range
for that method. For visualization, the distances for
each method were scaled between 0 and 1 and are
shown in Figure 8.

Figure 8: Distance-based classification methods per-
form well at finding a close EUI signature match for
building types whereas the RF classifier is least confi-
dent with its building type assignment.

For both the Euclidean distance and DTW distance
methods, the majority of prototype-actual building
matches has a small distance that increases for several
observations. The observations with the smallest dis-
tance would be the predictions with the highest con-
fidence. The shapes of these two methods is different
than the random forest because of the way they are
calculated. For this dataset, the maximum random
forest probability was 37.4%. The reason the per-
cent was this low is because of the similarity between
prototype building vintages within building type bins
which decrease the maximum probability per class.
For example, the EUI signature of a 2010 small of-
fice may be similar to a 2007 small office; leading to a
split in probability voting. A confidence could still be
used for this method, but one would have to consider

the top probability classes to ensure a high-confidence
prediction.

If was one to filter the dataset to only predictions
below the mean, and below the first quartile distance
for each method, the error rates would be expected to
decrease. These scenarios are shown in Tables 9 and
10. The increased filtering does limit the number of
buildings in each; taking the average to 45 buildings
for the mean filter and 20 buildings for the quartile
filter.

Table 9: The mean and median CVMRSE improves
for Euclidean and DTW methods but worsens for RF
compared to Table 6.
Method Min Median Mean Max Acc

% % % % %
RF 18.7 45.8 51.8 138 71
Euc 5.5 35.2 37.5 78.4 97

DTW 20.2 35.2 41.3 206 87

Table 10: When filtering data for higher confidence
levels, mean and median CVMRSE improves for the
Euclidean and DTW methods but worsens for the RF
compared to Table 9.
Method Min Median Mean Max Acc

% % % % %
RF 18.7 48.1 57.2 138 59
Euc 5.5 29.9 31.6 66.8 94

DTW 20.2 29.9 32.4 55.4 100

These results are generally as expected with a de-
crease in CVRMSE for the Euclidean distance and
DTW methods but the CVRMSE increases for the
random forest method. This leads one to believe that
the random forest probability may not be as effective
as measuring confidence as the distance methods or
building type probabilities across vintages need to be
included.

Conclusion

Assignment of building type and vintage is currently
an outstanding challenge in the emerging area of
urban-scale energy modeling. This study leveraged
15-minute whole-building electricity use and building
energy models of 97 prototypes to assess data prepa-
ration and algorithmic accuracy for accurately assign-
ing building type and vintage. Omission of large gaps
(>75% of data), Auto Regressive Integrated Moving
Average (ARIMA) for filling small gaps (<1 Week),
and Univariate Dynamic Time Warping (DTW) for
filling large gaps (>1 Week) was found to be ef-
fective in this study. Three building type classifi-
cation methods were compared involving Euclidean
distance, DTW, and machine learning with random
forest and time-based statistics. Euclidean distance
was the fastest and had the best overall classification
accuracy, whereas the random forest performed bet-
ter for commercial buildings. The run-time of DTW



would be a significant hindrance as the number of
buildings to be classified increased. For each method,
a pseudo-confidence was obtained via the similarity
distance (Euclidean, DTW) or the class probability
(RF). The distance metrics proved to yield higher-
confidence building type assignments with lower er-
ror metrics. The imputation strategies and building
type assignment methods demonstrated in this pa-
per result in building energy models with error rates
comparable to ASHRAE Guideline 14 requirements.

This study suffers from several limitations. Most of
this work derives directly from the use of sub-hourly,
whole-building electricity use information at utility
scales. Many utilities do not collect sub-hourly data,
and any such energy data is rarely shared outside the
utility (esp. at the building-specific level). The au-
thors are hopeful that responsible data sharing and
the demonstrated value of this data, both for util-
ities and building owners, will in some small part
help make such data more prevalent in the future.
While lacking comparison to other quality assurance
and building type classification methods, the authors
provide quantitative results using industry-standard
metrics to facilitate apples-to-apples comparison to
other techniques toward the establishment of best
practices for urban-scale energy modeling.
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