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Abstract

While urban-scale building energy modeling is grow-
ing increasingly mature in data sources, algorithms,
and empirical validation, there is still a need for
best practices, guidelines, and standards for industry-
accepted decision metrics relevant to specific use
cases. Case studies are needed to inform such efforts.
In addition, successful applications are need to moti-
vate investment by, and in partnership with, utilities
to scale grid-interactive efficient building technolo-
gies, realize aspirations of smart homes and cities, and
dynamically dispatch load (rather than generation) in
a way that stabilizes and reduces the cost of critical
energy infrastructure. In partnership with the Elec-
tric Power Board of Chattanooga, TN, OpenStudio
and EnergyPlus models were created of over 178,000
buildings and empirically validated against 15-minute
whole-building electrical consumption of each build-
ing. Eight energy and demand-related measures rel-
evant to nine utility-defined use cases are evaluated
in over 2 million simulations of individual buildings
to showcase statistical distributions over the entire
building stock of potential savings for energy and de-
mand.

Key Innovations

• AutoBEM (Automatic Building Energy Model-
ing) software suite developed to synthesize multi-
ple data sources, generate building energy mod-
els, simulate, and statistically summarize simu-
lation results for large geographical regions.

• Theta, world’s 39th most powerful supercom-
puter, used to perform over 2 million annual sim-
ulations.

• Distribution of annual energy efficiency savings
reported for a full utility service area using four
building energy efficiency technologies.

• Distributions of annual and monthly peak de-
mand savings reported using four demand reduc-
tion building technologies.

Practical Implications

Findings could serve to motivate utility or private-
sector investment in energy efficient building retrofits.
Distribution of savings for specific areas can be used
to inform prioritization, marketing, and testing pro-
gram rollout of technologies for individual buildings.

Introduction

Most urban-scale building energy modeling projects
lack scalability due to use of geographically-limited
data sources (e.g. tax assessors data). Lessons
learned from categorizing and analyzing 37 data
sources have been contrasted with tax assessor data.
This study helped define 19 fields that may be
useful in developing a comparison matrix with ex-
amples comparing/contrasting traditional vs. non-
traditional urban-scale data sources (New et al.
(2020)). The authors leverage generally informative
performance metrics for energy and demand,but ac-
knowledge that urban-scale energy modeling efforts
should first consider the appropriate fidelity neces-
sary to address the use case (Ang et al. (2020)).
This study required development of building-specific
energy analysis. New data sources and algorithms
were applied iteratively to create digital twins of each
building in the 8-county, 1400 km2 service area of the
Electric Power Board of Chattanooga, Tennessee in
the United States of America (EPB). By comparing
the simulated energy use of each digital twin to ac-
tual 15-minute energy data from each building’s ad-
vanced metering infrastructure, the authors were able
to prioritize the value of data source and algorithm
combinations that tended to result in energy models
that more closely match the true electrical consump-
tion. These baselines were then modified to quantify
energy and demand savings prior to potential pro-
gram rollout, targeted marketing, and business model
decisions for utility-prioritized use cases (Bass and
Copeland (2020)). Previous work on savings distri-
butions leveraged the Oak Ridge Leadership Com-
puting Facility’s Titan supercomputer, at the time
the world’s fastest, with data sources used to gener-
ate models in 2018. This study updates that analysis
by leveraging improved data and algorithms in 2019-



2020 and simulations on Argonne Leadership Com-
puting Facility’s Theta supercomputer, currently the
39th fastest supercomputer in the world. However,
it is the 2nd fastest supercomputer in the world, af-
ter the German-only SuperMUC-NG, leveraging the
Central Processing Unit for its computing power, as
needed by the simulation engine used in this study.
While the data sources, algorithms, and scalable com-
pute for building simulations are beyond the scope of
this paper, this study will provide distributions of po-
tential savings for various building technologies across
all buildings in a large, city-sized geographical region.

While empirical validation is increasingly common,
high-resolution measured energy data is still rela-
tively difficult to attain and is typically done for
dozens to 200 buildings in previous literature. This
study performs empirical validation of 179,000 build-
ings, providing a larger sample size with greater sta-
tistical confidence in the final results.

Instead of reporting average savings for energy
(kWh), this study will focus primarily on the con-
tributions involving the distribution (e.g. box-and-
whisker plots) of savings not only for energy but also
for electrical peak demand (kW).

Multiple building technologies are evaluated includ-
ing roof insulation, envelope sealing, more efficient
lighting, smart thermostats, more efficient HVAC,
and smart water heaters. As an example, smart-
thermostat for utility-signaled pre-conditioning of
buildings by 4.4C two hours prior to peak demand
saves on average 27% of a buildings electrical de-
mand but varies significantly from 0 to 93% across the
179,000 buildings. Aggregation of building-specific
savings to utility-scale savings offers reduced risk for
the financing and implementation of utility-scale sav-
ings. Upon approval by the utility, savings will be
presented as average/building or percent to allow
rough estimation of potential savings by other util-
ities.

Methods

Every building in EPB’s 8-county service area is mod-
eled using the “Automatic Building Energy Model-
ing” (AutoBEM) software suite (New et al. (2018));
a collection of methods, data sources, and algorithms
to synthesize data for, generate, simulate, analyze,
and visualize urban-scale building energy models and
related analysis.

The first step in this process is obtaining individ-
ual building physical characteristics. Building geome-
tries were selected from the Chattanooga region from
Microsoft’s dataset of more than 125 million build-
ing 2D footprints across the United States (Microsoft
(2018)). In comparison to pixel-based computer vi-
sion classification or LiDAR-based building footprint
estimation, this dataset provided more regular ge-
ometry with potential challenges involving grouping

of attached buildings into one building footprint due
to the polygonal simplification method used. Build-
ing heights were found using statewide LiDAR of the
state of Tennessee and acquisition of LiDAR for a
small region in the state of Georgia. Description of
data sources considered, selected, and processed in
the creation of this digital twin for a utility is beyond
the scope of this paper, but the interested reader is
referred to New et al. (2020), Garrison et al. (2019),
Wang et al. (2021), Bass and New (2021).

To mitigate potential privacy concerns, assignment
of a prototype building type and vintage is used to
assign all internal building details. This assignment
is a meta-parameter that leverages building code re-
quirements to define the remaining parameters re-
quired for building energy modeling such as heating,
ventilation and air conditioning (HVAC) type, wa-
ter heating, lighting, insulation, glazing fraction, and
occupancy schedule. This study leverages the U.S.
Department of Energy’s flagship whole-building sim-
ulation engine, EnergyPlus, which has an average of
approximately 3,000 parameters per building. This
study, as with many urban-scale studies, has very
little information about the internal characteristics
of a building. Due to the significant source of un-
certainty with such assumptions, 15-minute whole-
building electricity consumption from each building
is used to reduce prediction error, empirically vali-
date results to the extent possible, and results are still
provided as an anonymized-through-aggregation sta-
tistical distribution of potential savings. This study
leveraged 17 prototype buildings with 6 vintages rep-
resenting about 75% of commercial building in the
US were used for this analysis (US Department of
Energy (2019)). In order to capture residential build-
ings, the multi-rise apartment was modified to cor-
rect water usage, lighting (interior and exterior), and
related properties to capture single family detached,
apartments (2-4 units) and apartments (5+ units).
In this study, larger multi-family dwellings are cap-
tured by commercial (aka non-domestic) buildings of
mid-rise and high-rise apartments. Combinations of
every valid building type and vintage, shown in Ta-
ble 1, were used to develop 97 unique building energy
models. To minimize associated errors, the authors
compared the fingerprint of each building’s actual en-
ergy use with each of the 97 unique models’ simula-
tions to assign building type and vintage. Specifi-
cally, each building’s actual 15-minute electrical use
intensity (EUI), whole-building electricity consump-
tion from each building’s utility-grade advanced me-
tering infrastructure was normalized by square feet
of conditioned area. This results in a 35,040-element
vector (15-minute EUI for a year) that was compared
using Euclidean distance to assign the best-matching
building type and vintage (Garrison et al. (2019)).
Once assigned, the unique geometry of each of the
178,000 buildings is used to generate a model that



populates all internal characteristics based on build-
ing type and vintage. Any additional characteristics,
known or inferred (e.g. tax assessor or utility data),
about each building can then be automatically used
to override any default, prototypical assignments.

All buildings are converted to all-electric HVAC
which allows an estimate of maximum total energy
savings potential with the tradeoff that this may over-
estimate electricity savings. The synthesized building
descriptors from such underlying data sources and al-
gorithms are used to generate OpenStudio (US De-
partment of Energy (2020b)) and EnergyPlus (US
Department of Energy (2020a)) models of each build-
ing and immediately simulate them on high per-
formance computing resources. AutoBEM uses the
OpenStudio standards gem to generate and modify
OpenStudio building energy models. The time to
generate a model was comparable to the time re-
quired to simulate it, resulting in generation-and-
execution compute time being twice the number of
core-hours awarded on high performance computa-
tional resources. Urban-scale energy modeling at the
scale of a city or larger would benefit greatly from
more efficient building generation than current stan-
dard practice.

The model baseline simulations were compared to
the measured data to empirically validate the mod-
els. While building improvements are generally re-
ferred to as Energy Conservation Measures (ECMs),
there is growing interest in applying these to demand,
water, or other building performance characteristics.
As such, we apply the general term “measures” to
mean modifications of any kind to a building en-
ergy model. Calibration using 15-minute data has
been conducted for specific buildings, but computa-
tional requirements for reputable automated calibra-
tion methods at the current time are computation-
ally infeasible for 178,000 buildings even with mod-
est HPC resources. Instead, each building was sim-
ulated with meteorological variables from calendar
year 2015, baseline simulated compared to 15-minute
energy consumption of each building for the same
year, and used to generate building-specific bias ad-
justments (normalized mean bias error) to close the
building energy performance gap.

Table 1: Building type and vintage are assigned by
comparing each building’s actual energy use to proto-
type buildings (Garrison et al. (2019)). While not all
building types support all vintages, every valid combi-
nation of prototype Building Types and Vintages were
generated, resulting in 97 unique models.

Building Types Vintages

Full Service Restaurant DOE-Ref-Pre-1980
High-rise Apartment DOE-Ref-1980-2004
Hospital 90.1-2004
Large Hotel 90.1-2007
Large Office 90.1-2010
Medium Office 90.1-2013
Mid-rise Apartment
Outpatient
Primary School
Quick Service Restaurant
Retail Standalone
Retail Stripmall
Secondary School
Small Hotel
Small Office
Warehouse
Residential

Energy Efficiency

Energy efficiency ECMs focus on lowering energy con-
sumption within a building. These ECMs are mostly
efficiency improvements and technology retrofits.
They are useful to both a utility and the energy con-
sumer by simply reducing the amount of energy used.
The energy efficiency ECMs are shown in Table 2.

Table 2: International Energy Conservation Code
(IECC-2012) served as the basis for energy efficiency
measures. These measures, including photovolatics,
focus on reducing annual electricity end-use but can
impact demand.

Measure Type Definition

Lighting Reduce lighting power density to 0.85 W/sf
Infiltration Reduce infiltration by 25% from baseline
Insulation Roof insulation from R-16.12 to R-28.57
HVAC Efficiency COP to 3.55 (heating), 3.2 (cooling)
PV 70% of roof area with cell efficiency of 15%

Peak Demand Reduction

EPB is an electrical distributor that purchases energy
from the generation services of the Tennessee Valley
Authority (TVA). By better managing demand in a
generator’s territory, the most expensive and dirtiest
generation assets can be avoided. By better manag-
ing demand on its distribution network with advanced
control and sensing technologies, EPB was able to
avoid three consecutive rate increases for itself and
its ratepayers. At generation and distribution electri-
cal scales, mitigating energy use for peak loads during
hot summers or cold winter hours can significantly re-
duce the cost of owning and maintaining generation or



responsive load facilities necessary for meeting those
loads. In the United States, there are approximately
125 million buildings, 96% of which are residential
and consume electricity nearly equivalent to the 4%
of commercial (non-domestic) buildings; however, de-
mand charges are typically assessed solely on com-
mercial buildings. While most utilities offer a time-
of-use structure for residential buildings that consid-
ers demand, the subscription rate is currently below
1%. As buildings and cities become smarter, with
connected and controllable devices that can impact
behind-the-meter loads, there is a growing interest in
the ability to develop and deploy new hardware, soft-
ware, communication standards, and business mod-
els that leverage Grid-interactive Efficient Building
(GEB) technologies that deliver more advanced flexi-
bility for modernization of critical infrastructure (esp.
the electric grid).

Peak demand for a utility is generally defined based
on the utility-scale peak hour of energy use in a cal-
endar month, but can vary by utility based on dif-
ferent time-windows or related definitions. How cor-
responding demand rate charges are assessed against
rate payers is defined by a more complicated tariff for
different peaks. For EPB, there is a TVA (generator)
peak and an EPB (distributor) peak that involves dif-
ferent peak rate charges along with building-specific
peak demand use that defines a block rate demand
cost within the tariff. While EPB has integrated
these results with its production database to assess
related costs based on rate classes, block rates, and
tariffs associated with individual customers, the au-
thors simplify this by reporting the distributions of
solely energy and demand in hopes the results are
more useful to utilities with different costing struc-
tures.

Measures related to GEB technologies for demand
management used in this study (Table 3) focus on
reducing energy use during the peak hour, even if
they increase energy usage during the hours prior to
or after the peak hour. Smart thermostats for utility-
signaled pre-conditioning of buildings allows their use
as thermal batteries to coast through the hour of crit-
ical generation. In this study’s implementation, the
thermostat changes are applied to all space condition-
ing types which may be one to hundreds of individual
thermal zones throughout the buildings.

Table 3: Measures focused on demand reduction dur-
ing monthly peak-hour demand, regardless of any syn-
ergies or tradoffs with overall energy efficiency.

Measure Type Definition

Smart Thermostat (2.2) Pre-heat/pre-cool by 2.2◦C for 2 hours prior to peak
Smart Thermostat (4.4) Pre-condition by 4.4◦C for 4 hours prior to peak
Dual Fuel HVAC Swap to natural gas heating for peak hour
Smart Water Heater Turn off heating coil for peak hour

Results

Results are split into electricity and demand savings.
While energy efficiency measures often reduce de-
mand, this is not the primary function of these mea-
sures. Demand reduction measures can, and often
do, result in an annual increase in energy use, though
the peak demand reduction is typically worth the in-
crease. For utilities that make money for selling en-
ergy (kWh, or more specific kVAR) and are charged
based on demand (kW), these measures are finan-
cially lucrative. The analysis includes one baseline
and nine measures, with several reruns, simulated for
each of the 178,000 buildings thereby resulting in over
2 million simulations. While this study assessed other
measures, ones that resulted in either negative or 0
annual energy or demand savings were omitted from
this study and related analysis as they were not to be
considered by the utility for implementation.

Electricity Savings

The distribution of potential urban-scale electricity
savings are broken down by building type and vintage
in the box-and-whisker plots of Figure 2. Decreas-
ing the lighting power density results in the great-
est annual electricity savings, and is typically one of
the most cost-effective measures to enable financing
and deployment of other, less cost-effective measures.
There is a trend for two of the measures in terms of
building vintage. In older buildings (DOE-Ref-Pre-
1980, DOE-Ref-1980-2004), the HVAC efficiency up-
grade and reduction of space infiltration all had more
savings than newer buildings (90.1 vintages). For this
specific data and analysis, the typical lifespan of 20
years was not used to replace/upgrade HVAC sys-
tems. As such, this result should match the reader’s
intuition as the technology in older buildings would
typically be less efficient, but should be informative
by providing quantitative ranges around potential en-
ergy savings from such common measures.

When considering energy efficiency savings across
building types, the lighting measure is especially ef-
fective in the warehouse, retail standalone, and retail
strip mall while being more effective than other mea-
sures in the two prototype restaurants (Quick-service,
Full-service).

Currently, energy efficiency of 20% to 50% is com-
monly a cost-effective first fuel prior to renewable
generation. Nevertheless, many homeowners and
building owners express interest in potential energy
and cost savings of producing their own power from
rooftop photovoltaics. Unfortunately, most such in-
terests starve from lack of relevant information to jus-
tify additional effort. Modeling capabilities and tools
today are sufficiently advanced to give reasonable es-
timates of PV potential for a given roof, and can
sometimes accommodate shading from other build-
ings or trees. EnergyPlus uses PVWatts and can
natively simulate/assess PV generation impacts on



Figure 1: Older vintage buildings had the greatest average savings for the space infiltration ECM while electric
HVAC efficiency savings were consistent across vintages.

Figure 2: Reducing lighting power density had the most savings across all building type especially effective on
warehouses and retail strip-malls.



whole-building energy consumption.

In this study, we simulated PV deployed on 70% of
the roof with 15% cell efficiency and 98% microin-
verter efficiency for every building in EPB’s service
territory of over 178,000 buildings. This maximum
technical adoption potential for PV is shown in Fig-
ure 3. This generated electricity can be viewed as
savings with buildings that generate more than the
building used, resulting in negative values. In some
cases, this can turn the meter backward but in many
cases, building owners are surprised that these are
dual-metered and do not allow them to operate for
a time off-the-grid in the case of an outage. PV in-
stallation results in demand savings for some months
when the peak hour is during daylight, but does not
contribute to demand reduction when the peak hour
is before sunrise or after sunset; typically in the win-
ter months.

Figure 3: Total PV potential in EPB’s service area
correlates to total roof area and daylight hours of each
month, with maximum PV generation in July when
days are longest and minimum PV generation in De-
cember when days are shortest.

Demand Savings

The demand savings are similarly broken down by
vintage and building type in Figure 5. The 4.4◦C off-
set smart thermostat measure results in the greatest
savings with an average of 29.3% across all build-
ing types and vintages. The 2.2◦C offset resulted
in 22.3% annual demand savings across all building
types and vintages. This difference is significant but
should be considered if employing the smart thermo-
stat as comfort levels may wain more for an 4.4◦C
difference compared to a 2.2◦C difference. Thermal
comfort level considerations and percent of poten-
tial overrides is not considered in this total technical
adoption potential study. Annual demand savings of
the dual fuel measure, that emulates fuel-switching
from electricity to natural gas for heating, is limited
in this study since it only results in demand savings

during the winter months for the climate zone of this
utility.

According to this analysis, it appears the oldest
“DOE-Ref-Pre-1980” buildings have the least poten-
tial for demand savings for the measures assessed.
Annual demand savings broken down by building
type carry the same general trends with smart ther-
mostat (4.4◦C) resulting in the greatest annual de-
mand savings. The smart water heater has the least
annual demand savings for all building types except
for the hospital since standby losses for tank-based
water heaters common in the United States are not
significant in comparison to whole-building energy
use.

The demand results can be viewed through a monthly
aggregation which provides a better picture of the
savings throughout the year. The monthly demand
savings for the 2.2◦C smart thermostat measure are
shown in Figure 6. January and February have fewer
lower demand savings as the smart thermostat is less
effective in residential buildings in the winter months
which is approximately 80% of the building stock in
the utility’s service area. Commercial buildings (Fig-
ure 7), illustrate the demand savings difference by
limiting the analysis to only commercial buildings
where the greatest savings are in the winter months.
This increased savings is likely due to the all-electric
heating assumption. The opposite is true in the sum-
mer months, where commercial buildings save less.

The year being analyzed (2015) had a particularly
cold January through March but a mild November
and December; leading to the difference in these
months compared to the first three of the year. The
summer months have the lowest average demand sav-
ings with the spring and fall months in the mid-range.

The smart thermostat with the 4.4◦C offset was not
shown as it mirrors the 2.2◦C offset; scaled to a 7%
greater savings that stays constant throughout the
year.

Figure 6: Smart thermostat (2.2◦C) offset for all
buildings. Demand savings are relatively consistent
through the warm months and vary drastically in win-
ter months.



Figure 4: The smart thermostat 4.4◦C offset measure had the most simulated savings with the 2.2◦C offset
mirroring it at a lesser savings rate. Older vintages have lower average simulated demand savings compared to
newer vintages.

Figure 5: Annual demand savings for dual-fuel HVAC are limited due to heating demand only in winter months
for this climate zone. Warehouses, high-rise apartments, and residential buildings are the building types with
the greatest average savings across all ECMs.



Figure 7: Smart thermostat (2.2◦C) offset for com-
mercial buildings shows different seasonal variabil-
ity than the previous image dominated by residen-
tial performance. Demand management uses cases
often benefit from enhanced segmentation provided by
building-specific urban modeling.

Monthly demand savings for the dual fuel measure are
summarized in Figure 8. Demand savings are signif-
icant in winter months as the electric HVAC heating
is replaced by natural gas for the peak hour. The
relative warmth in the final months of calendar year
2015 in the area is evidenced again as little demand
savings were seen in the typically-cold November or
December. Since this study was conducted in service
to an electrical distributor, it should be noted that
these are electricity savings, not total energy savings.

Figure 8: Dual fuel, fuel-switching, electrical demand
savings for the entire service area are primarily lim-
ited to winter when the HVAC’s heating coil is re-
placed with a natural gas furnace during the peak hour
in the early hours of the winter months.

The monthly demand savings for the smart water
heater measure are shown in Figure 9. The amount
of demand mitigated for each month is correlated di-
rectly with the water temperature setpoint. Winter
months have the most savings, with summer months
having the least.

The smart water heater measure shows significant dif-
ference, as one might expect, among buildings in the
EPB service territory and is pronounced for commer-
cial buildings that typically require larger amounts
of water. The smart water heater measure is shown
monthly in 10. While there are notable savings when
residential buildings are included, these savings are
less for all months when limited to only commercial
buildings.

Figure 9: Smart water heater demand savings for all
buildings in the service area. The demand reduction
correlates to the temperature at that time of the year.

Figure 10: Smart water heater demand savings for
commercial buildings in the service area. Savings are
relatively constant throughout the year for commercial
buildings compared to all buildings.

Conclusion

For this study, over 178,000 OpenStudio and Ener-
gyPlus models were generated, over 2 million an-
nual simulations were performed on high performance
computing results, and baseline models were empiri-
cally validated against 15-minute electrical consump-
tion of each building. This study elucidates meth-
ods and showcases results for statistical distributions
of potential energy and demand savings of 8 build-
ing technologies under a maximum technical adoption
scenario.

Energy efficient building measures were implemented
in each building include energy-efficient lighting,
space-sealing, roof/attic insulation, improved HVAC
efficiency, and rooftop photovoltaics. Lighting was
notably impactful in traditionally-lit warehouses and
retail stripmalls while maximum rooftop PV poten-
tial for the utility’s service area was estimated at up
to 750 GWh in a single month.

Annual demand savings, defined as the sum of energy
use during the peak hour of each calendar month,
were shown for four measures including two scenarios
for smart thermostat building space pre-conditioning,
fuel-switching HVAC, and smart water heaters. The
smart thermostat with an 4.4◦C offset resulted in the
greatest demand reduction. The 2.2◦C offset simu-
lated an average of 7% lower annual demand offset
but would likely result in fewer customer overrides
than the liberal 4.4◦C approach. There was a sig-



nificant difference in the effectiveness of smart ther-
mostats between residential and commercial build-
ings with greater relative effectiveness for commer-
cial buildings in the winter but residential buildings
in the summer. The dual fuel measure reduced de-
mand more than any other technology for a single
month, but was limited to applicability only in winter
months. Demand savings from a smart water heater
were higher overall in the winter than in the summer,
but with relatively constant savings for commercial
buildings.

These findings are actively informing energy effi-
cient program formulation and rollout for demand-
management technologies at this utility. It is hoped
that such metrics and savings ranges can be fur-
ther empirically validated using standard Measure-
ment and Verification (MV) protocols using pre- and
post-retrofit energy use estimates compared to actu-
als. The authors observe a need for empirical vali-
dation of urban-scale modeling toward the establish-
ment of best-practices, community-standard testing
frameworks, and innovative data/algorithm sources
for both external and internal building descriptors
for model inputs. It is the hope that such building-
specific, urban-scale energy modeling efforts will one
day unlock significant investments for the improve-
ment of the world’s building stock to a more respon-
sible, sustainable, adaptive, and optimized built envi-
ronment via actionable steps with investment-grade
metrics for financial, environmental, and social im-
pacts.
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