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Abstract

Building occupancy significantly impacts energy use,
timing for demand impacts, and is a significant source
of uncertainty in building energy models. There are
relatively few sources that define building occupancy
schedules and number of occupants per building or
space type. More importantly, these sources define
traditional schedules that are likely not to reflect the
true occupancy of a given building. We construct
traffic-based occupancy schedules which are more re-
sponsive to changes in mobility patterns, and which
can realistically estimate occupant arrivals, depar-
tures, and counts in individual buildings.

Key Innovations

e Source of 2020 traffic data for city-scale popula-
tion movement

e Travel data used to update occupancy for build-
ing energy models

e A sample of 600 buildings were simulated using
actual meteorological year weather data for 2019

e These simulations are compared to 15-minute
data electricity use of each building from 2019

e Reduced the mean Coefficient of Variation of
the Root Mean Squared Error (CV(RSME)) by
79.2% (but increased the median CV(RMSE) by
16.4%).

Practical Implications

Assuming reference or prototypical occupancy in
buildings can result in similar simulation results for
buildings that vary by 3-5x in total monthly energy
consumption, and they generally do not account for
changes such as increased telework. To address such
uncertainty, consider using traffic or other data to
better inform occupancy and equipment schedules.

Introduction

Occupancy significantly impacts energy use, timing
for demand impacts, and is a significant source of
uncertainty in building energy models. While an
American Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) Multidisciplinary
Task Group is attempting to extend occupancy infor-
mation, there are relatively few sources (e.g, Build-
ing America protocols by Hendron and Engebrecht
(2010), ASHRAE Standard 90.1 by ASHRAE and
Nluminating Engineering Society (IES) (1989), and
prototype building models by Deru et al. (2011)) that
define building occupancy schedules and number of
occupants per building or space type. These sources
define traditional schedules that not are likely to re-
flect the true occupancy of a given building.

The population modeling community continues to ex-
plore higher resolution research into local population
dynamics where population distribution is developed
at the building level using residential surveys (Lea-
sure et al. (2020)). Other research has led to the
development of a global learning framework to specif-
ically report ambient building occupancy through the
use of open source driven observation models (Stew-
art et al. (2016); Wang et al. (2021)), and proba-
bilistic risk models that incorporate building occu-
pancy (Silva et al. (2020); United States Geological
Survey (2020)). On a separate thread, Sparks et al.
(2020) used social media Point of Interest to globally
determine day and night by clock hour for an eco-
nomic answer to day and night, and Lu et al. (2020)
recently compared Facebook and Google popularity
curves for efficacy of development of 24-hour building
occupancy.

There have been a number of works around building
occupancy in relation to energy use. Gunay et al.
(2017) gathered zone level occupancy data from pri-
vate offices to evaluate Heating, ventilation, and air
conditioning (HVAC) impact using EnergyPlus sim-
ulations. Ren et al. (2017) evaluated discrepancies
between measured energy demand from smart meters
compared with simulation predictions and fixed occu-
pancy schedules. Wang et al. (2020) probabilistically
derived building occupancy schedules from lighting
power consumption times, and compared them with
aggregated measurements. Berres et al. (2019) used a
transportation simulation based on annual traffic vol-



umes, as well as more detailed data by day of week
(Berres et al. (2019)). They determine agent arrivals
and departures based on the simulated vehicle tra-
jectories, and assign the vehicle drivers to the sur-
rounding buildings using a quadtree-based approach
for faster performance. Similar works were presented
by Qu et al. (2020) and Alharin et al. (2020). This
provided promising results, however, since these ap-
proaches were based on annual travel information,
they cannot model traffic impact, or the recent in-
crease in telecommuting behavior.

In this work, we bridge this gap by using measured
traffic data for each day, which provides travel in-
formation with much higher fidelity, and at a much
higher spatial resolution where intersection-level traf-
fic sensing is available.

Methodology

Traditional building occupancy schedules have very
harsh transitions from hour to hour, whereas ac-
tual occupancy changes more smoothly in large com-
mercial buildings. Local commute differences, traffic
impacts, and quarantine work patterns lead to sig-
nificant variations in occupancy. With a mobility-
informed approach to building occupancy, it is possi-
ble to not only generate more realistic building occu-
pancy schedules from historic traffic data, but also to
update them in real-time as the traffic sensors provide
continuous updates on the state of the traffic system,
traffic jams on the adjacent highways, travel times,
and vehicle load on city roads. In the future of smart
buildings, this could be used to project changes in ar-
rival times, and preemptively activate or better man-
age energy-consuming appliances within a building to
match the projected level of occupancy. It could also
be used to inform population modeling used by emer-
gency responders about actual impacted populations
at a given time during disasters.

Over the past few years, cities have become in-
creasingly smart and well-connected. Modern sens-
ing technologies are becoming more widespread, and
cities are starting to see the merit of obtaining de-
tailed information about city traffic at the intersec-
tion level without expending personnel to perform te-
dious and expensive manual traffic counts. With an
ever-increasing density of such sensors, this data is
becoming relevant beyond the domain of traffic en-
gineering. This new data is a great opportunity for
obtaining information about population movements
at an aggregate (i.e. anonymized) level. It is also
much less expensive to obtain, and less sensitive to
handle than Global Positioning System (GPS) traces
of phones or vehicles. Figure 1 provides an overview
of our workflow, and it serves as a guide through this
section. The workflow is split into two parts (indi-
cated by arrows), with one part starting from traffic
count data (left column), and the other part starting
from building geometries (right column).

Data Sources

Our approach requires a variety of data sources:

e Traffic Data: We collect traffic data from
GridSmart sensors which are placed on 96 of
Chattanooga’s 334 signalized intersections. In
the downtown area, 45 sensors are forming a well-
connected network. Each sensor uses a fish-eye
camera to detect and record every vehicle that
travels through the intersection.

e Building metadata: All building metadata
was aggregated and processed to generate build-
ing energy models, simulated on high perfor-
mance computing resources, and analyzed as
part of the “Automatic Building Detection and
Energy Model Creation” (AutoBEM) software
suite (New et al. (2018)).

e Building electricity: The Electric Power
Board (EPB) of Chattanooga, TN provided 15-
minute, whole-building, electricity use data from
advanced metering infrastructure for each build-
ing during calendar year 2019.

e Prototype building models: Prototype build-
ing models are a set of models for 16 building
types that represent much of the built environ-
ment. Current models represent about 75% of
US commercial buildings (U.S. Department of
Energy (2019)). The prototype building model
schedules are used as a baseline for comparison
to the traffic-based schedules produced here.

e Weather files: The authors purchased (actual)
Meteorological Year (MY) weather files from the
nearest airport with meteorological variables cor-
responding to calendar year 2019.

Building data preparation

The EPB service area is modeled as a whole using the
AutoBEM framework (New et al. (2018)); a collection
of methods, data sources, and algorithms to generate
and simulate building energy models. Building ge-
ometries were selected from the Chattanooga region
from Microsoft’s data-set of more than 125 million
buildings across the United States, Microsoft (2018).
Building heights were found using Light Detection
and Ranging (LiDAR) of the region. These two fea-
tures provide a general shape to the building. Assign-
ment of a prototype building type and vintage to each
individual building filled the remaining parameters
required for building energy modeling such as HVAC
type, insulation, glazing fraction, occupancy (stock),
etc. The prototype buildings were assigned to each
individual building by comparing simulated electric-
ity results to measured electricity for each building
(Garrison et al. (2019)). The buildings are gener-
ated using OpenStudio (U.S. Department of Energy
(2020b)) and simulated using EnergyPlus (U.S. De-
partment of Energy (2020a)). The EPB service area
is substantially bigger than the area covered by traf-
fic lights (especially those with the traffic sensors),
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Figure 1: An overview of the methodology presented in this paper, guided by the data workflow.

The left-hand side of the figure, (a)-(d), illustrates the traffic data workflow: the data is collected from sensors,
and connected through a topological model. Based on wvehicle turning movements, we determine the number if
vehicles entering the link between two intersections, and the vehicles leaving the link. The difference in vehicles
18 assigned to the two intersections, relative to their available building space. The vehicle counts are multiplied
by 1.67, the average number of occupants per vehicle, to reflect the number of prospective building occupants.
The right-hand side of the figure, (f)-(h), illustrates the building workflow: each building is assigned to all nearby
intersections, based on their Voronoi cells. If the building footprint intersects with multiple cells, the building
area is assigned proportionally to the different intersections based on the amount of overlap between footprint
and Voronoi cell. We eliminate buildings which are outside reasonable walking distance.

Finally, the two workflows join at the bottom of the figure (e): the prospective building occupants for each
intersection are distributed to its assigned buildings (partial or full) based on the available building area.



of more than 178,000 buildings. We clip the extent
of the buildings down to those that are broadly near
downtown Chattanooga. This step results in a total
of 1,893 buildings which are considered in the follow-
ing steps. These building energy models were then
edited to utilize custom occupancy schedules using
the eppy Python module (Santosh et al. (2016)).

Traffic data preparation

First, we download data for every day of 2020, and
process it using an improved version of the official
Python Library by GridSmart (2021). This creates
tables for each day and intersection, which contain
each vehicle’s timestamped information on approach
and turn direction, as illustrated in Figure 1(a). In
traffic engineering terminology, a vehicle approaching
an intersection from the South is considered to be
“Northbound,” meaning that its trajectory is facing
North. To obtain a more intuitive nomenclature for
further use, we transform the data such that the out-
come provides us with origin and destination (O/D)
direction. For example, a Northbound that turns
left has its origin in the South and destination in
the West. Each vehicle’s turning movement is rep-
resented by an O/D pair. Finally, we compile hourly
aggregates of distinct O/D pairs for each intersection.

Topological model for traffic flow

The objective of this work is to determine occupancy
data based on traffic. To satisfy this objective, we
have to find out how many vehicles that enter an
area stay in this area, and how many of them sim-
ply travel through. Therefore, we build a topological
model which mirrors the sensor neighborhoods. For
each sensor in our area of interest (downtown Chat-
tanooga), we add the nearest neighbor in each direc-
tion, if such a neighbor exists. These neighbors can be
on the neighboring intersection, or a few intersections
away if there are no closer sensors. This topological
model of the network ( Figure 1(b)) serves as a basis
to determine traffic flow between sensors, as shown in
Figure 1(c). In this example, eight vehicles leave the
yellow origin sensor, but only five vehicles arrive at
the destination sensor. Three vehicles stayed behind
in the area, and the vehicle occupants can be added
to nearby buildings. If this number is negative, we
remove occupants from buildings accordingly.

Assigning buildings to intersections

Each building is assigned to the closest intersection
sensor (Figure 1(f)). Voronoi diagrams are a compu-
tational geometry approach (De Berg et al. (1997))
which yields cells that contain all the points which
belong to each node (sensor), i.e. points which are
closer to their node than to any other node. To as-
sign buildings to intersections, we determine which
buildings are part of each intersection’s Voronoi cell.
As there are many large buildings and relatively small
city blocks in downtown Chattanooga, we allow build-
ings to be associated with multiple intersections. This

determination is made in a two-step procedure. First,
we check which Voronoi cells the vertices of each
building footprint falls into. Then, we determine the
intersection of the building footprint with the Voronoi
cell, and we compute the area of the building section
that is assigned to the cell. A visual representation
of this assignment is shown in Figure 1(g).

As some of the Voronoi cells are large due to a de-
crease in sensor density outside of downtown, we re-
quire the buildings to be within a reasonable walking
distance. Based on available parking spaces, we chose
a distance of 3-4 city blocks as a threshold. This
reduced the number of buildings considered in this
approach to 1,336. Figure 1(f) illustrates this thresh-
old, using gold for buildings within sensor range, and
purple for buildings outside the sensor range.

Finally, we ensure that we do not duplicate any build-
ings. We address this by assigning appropriate frac-
tions of building area to the intersections they are
assigned to, as seen in Figure 1(h). E.g., if 40% of
a 1000 m? building footprint intersect a cell, we only
add 400 m? to this cell’s available building area.

One of the key advantages of this method is that it
suffices to compute the mapping between intersection
sensors and buildings once. This step produces mul-
tiple outputs: a two-way mapping between buildings
and intersections (for fast look-up), available total
building area per Voronoi cell, and each building’s
partial areas for the Voronoi cells it intersects.

Assigning vehicle occupants to intersections

We take this intermediate step to assign the ingress
and egress we determined through traffic flow anal-
ysis to the intersections. As the traffic flow is de-
termined between pairs of intersections, occupants of
incoming or departing vehicles should be distributed
between both intersections. We split the number of
arriving and departing vehicles according to the avail-
able building area at each intersection, as determined
in the previous step. This allows us to account for dif-
ferent building sizes and gives us flexibility in building
assignments. For example, in Figure 1(d), the origin
intersection has twice as much building area as the
destination, therefore the three vehicles are split into
two for the origin and one for the destination.

Furthermore, we have to account for the number of
vehicle occupants. According to a report by the Ve-
hicle Technologies Office (2018), the average vehicle
in the United States has 1.67 occupants. While vehi-
cle occupancy varies by demographic, we do not have
sufficient data to support differentiation. Therefore,
we use a multiplier of 1.67 to convert from the number
of vehicles to the number of vehicle occupants.

Assigning occupants to buildings

Within each intersection’s Voronoi cell, we distribute
vehicle occupants to the surrounding buildings. As in
previous steps, we assign vehicle occupants to build-



ings according to the area of the fraction of the build-
ing that lies inside in the Voronoi cell in relation to
the overall available building area. Figure 1(e) illus-
trates both of these steps for the vehicle occupants
from one road segment (light gray) between neigh-
boring sensors. The Voronoi cells corresponding to
this segment are colored gold, whereas surrounding
cells are colored purple. We assume that 100 vehicle
occupants arrive on this road segment (purple dots),
and enter the surrounding buildings. The southern
cell only has about 16% of the available building area
between the two cells. Therefore, we assign 16 occu-
pants to the southern cell, and 84 occupants to the
northern cell (please note that rounding is only per-
formed for illustrative purposes). This is also indi-
cated by the large gold numbers inside of each cell.

Within each cell, we distribute the occupants between
buildings according to the available building area of
each building in the cell, relative to the total available
building area of the cell. For instance, the top right
golden building contains 35% of the available building
area in this Voronoi cell (please note that the build-
ing footprint does accurately reflect the available area
for multi-story buildings). This means that we assign
0.35 - 84 ~ 29 occupants to this building. We indi-
cate the number of occupants by a purple number on
the footprint of each building section. For example,
the large building in the right has 11 occupants that
are assigned from the northern intersection, and one
occupant that is assigned from the southern intersec-
tion. Finally, we sum up the occupancy of all building
parts in different cells at each time step to obtain the
number of occupants for every building at each time.

Creating building occupancy schedules

To create occupancy schedules, we need the times-
tamped occupancy for each time step. We begin by
collecting the hourly occupancy totals for each build-
ing. Then, we find the largest value of the timeseries
of each building to serve as its maximum occupancy.
Then, the hourly totals are divided by the maximum
occupancy to obtain relative occupancy (between 0
and 1). Last, we produce one file per building which
contains hourly occupancy for each hour of the year.
All produced files from this step are used by Energy-
Plus to adjust occupancy for the simulation.

Handling data quality issues

There are different causes for data quality issues or
incompleteness, such as sensor age (new sensors have
less data), power outages, sensor configuration issues
(changes or distorted data), or sensor malfunction.
We address data gaps by filling in data from the near-
est similar days. Due to the variations between differ-
ent days of the week, this is limited to the same day of
the week, and due to seasonality, we further limit this
to days that are at most four weeks offset from the
missing day. If the missing data cannot be replaced
by such days, we skip the corresponding intersection.

In these instances, we fall back on a standard occu-
pancy schedule. To address distorted traffic counts,
we rescale the incoming and outgoing traffic such that
the overall number of vehicles balances out over the
course of each day. This was necessary as some inter-
sections have consistently higher traffic counts than
others without plausible cause. While this is not op-
timal for building occupancy, it can be very helpful
information for traffic engineers to further optimize
the sensor configuration.

Results

In order to evaluate the traffic-based occupancy
schedules, we compare their performance in simulat-
ing accurate building energy use to that of stock occu-
pancy schedules. To perform this comparison, we set
up two simulations which are identical in all aspects
except the occupancy schedule. We then compare the
simulated energy use for each simulation with mea-
surements for an entire year of data.

Simulations

Previous work had assimilated several sources of
building-specific data including building footprints,
heights, building types, and other characteristics for
the eight-county service territory of EPB. These
building energy models were simulated using MY
weather data for 2019 from the nearest airport, so
this study does not account for microclimate vari-
ations. DOE’s whole-building flagship simulation
engine, EnergyPlus, was used for these simulations
which runs primarily single-threaded on desktops
without the ability to leverage multi-core Central
Processing Units (CPUs) or Graphical Processing
Units (GPUs) for most of the physics-oriented com-
putations. Over 150,000 buildings were simulated
on Argonne Leadership Computing Facility’s (ALCF)
Theta supercomputer, currently ranked the world’s
39th most powerful supercomputer and one of the
top utilizing primarily CPUs, rather than GPUs, for
its computing performance. EPB provided 15-minute
electricity use for each building for the entire year of
2019. However, many of the traffic sensors we use
are new and were not yet in place for large parts of
2019, or were still under calibration. Therefore, we
use more recent 2020 data. This choice has the obvi-
ous shortcoming that 2020 was an unusual year, how-
ever, it is also a chance to explore the resulting differ-
ences. To align the data for the two years, we use 365
days of traffic data from December 31, 2019 to De-
cember 29, 2020. This corrects the offset in the day of
the week, and it accounts for the leap day. We set up
EnergyPlus using 2019 climate data. We use stock oc-
cupancy schedules for the control simulation, to com-
pare with a simulation using traffic-based occupancy
schedules. The traffic-based occupancy schedules reg-
ulate the people, lighting, and interior equipment of
the building energy models. It is worth noting that
the building types assigned to each building were de-
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termined by classifying buildings based on their elec-
tricity use signatures in previous analyses, and they
are consistent between the two simulations. This does
not always reflect the building’s actual building use,
but it improves the match of electricity profiles be-
tween simulations and measured data.

Comparison metrics

We compare the outputs of both simulations with
the measured data. For this comparison, we use the
CV(RSME). This is a quantitative metric used for
building energy modeling that measures uncertainty
in the model compared to real data. The CV(RMSE)
for N data points (e.g. number of time steps
for each building) is computed as CV(RMSE) =
1 /2, (V—Y)2 s .

+\ ~=L§y— where Y is the simulated energy, Y
is the measured energy, and Y is the mean value of

the measurements.

In the following, we will discuss the results of these
comparisons. Figure 2 shows a comparison of the
CV(RSME) between the simulation using stock oc-
cupancy schedules (left) and the simulation using
traffic-based occupancy schedules (right). While the
median error of the two simulations is quite simi-
lar for most building types, the standard deviations
(whiskers) and confidence intervals (boxes) change
noticeably between the two. Outliers were omitted
from the charts for better legibility. The schedules for
restaurants shows the most visible difference, with a
median of 52 for stock schedules compared to 21 for
traffic-based schedules. This constitutes an improve-
ment of 59.6%. This implies that the stock occu-
pancy schedules do not accurately represent the ac-
tual schedule of these restaurants. Large and small
hotels have noticeably higher errors, which can be
explained by a reduction in travel, and therefore re-
duced hotel visits.

A closer look at the individual scatterplots in Figure 3
reveals more insights about the differences between
the two simulations. These scatterplots contrast the
errors of the two simulations against each other at the
individual building level. Data points above the diag-
onal indicate a lower error for traffic-based schedules,
data points below indicate a higher error for traffic-
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Figure 3: Comparison of errors between simula-
tions wusing stock occupancy schedules and traffic-
based schedules. For better comparability, the azes
were limited to the interesting areas.

based schedules. Data points on the diagonal have
the same error in both simulations. Some outliers
on the diagonal have been cut off to provide a better
view of the data points that we are trying to compare.

Traffic-based occupancy schedules generally per-
formed better than stock occupancy for small hotels.
For high-rise and mid-rise apartment buildings, both
schedules had some buildings in which they outper-
formed the other. For high-rise apartments, this rela-
tionship is balanced, whereas for mid-rise apartments,
stock schedules tended to perform better than travel-
based occupancy schedules. This can in part be ex-
plained by the changes in teleworking across the pop-
ulation due to COVID-19 in 2020, which resulted in
a change in commute patterns. Restaurants, hotels,
and hospitals all had very few buildings with substan-
tial differences in performance between the simula-
tions. Finally, residential buildings had an extremely
wide range in errors. The distribution of errors (and
differences between errors of the two simulations) is
very even. Overall, we found that while the median
error increases by 16.4% for traffic-based schedules
(stock: 95.1, traffic 110.7), the mean error decreases
by 79.2% (stock: 698.7, traffic 145.5). While it is
difficult to decide which of the two is better, the au-
thors believe that a reduction in mean error (fewer
large outliers or outliers with smaller error) can still
be considered an improvement. We expect that a
comparison with 2020 electricity consumption data
will yield more favorable results.

The differences in results are not as large as one might
expect due to two reasons. First of all, the mismatch
in years creates an obvious hurdle, which we have
minimized by aligning the data by day of the week.
More importantly, the impact of COVID-19 further
distorts the results.

COVID-19 impact

In order to gain a better understanding of error, we
examine the fluctuation of error over time. As Fig-
ure 4 demonstrates, the error fluctuates dramatically
during key timeframes on the COVID-19 timeline
(Tennessee Office of the Governor (2021)). The first
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Figure 4: The error for traffic-based schedule in res-
idential buildings peaks during early COVID-19 re-
sponse in March and April, and returning to similar
levels as early in the year. Results for other types of
homes and hotels display the same behavior.

COVID-19 case in Tennessee was recorded on March
5, 2020, with the first recorded case in Chattanooga
following soon after on March 13, 2020. COVID-
response in Tennessee began with recommendations
to socially distance (March 13) and close schools
(March 17), and led to the prohibitions of gatherings
of more than 10 individuals (March 22) and Shelter-
in-Place order for Tennessee (April 2). This order was
in effect from April 4 until April 30, but businesses
were allowed to open on May 1, 2020. This big change
in the population’s behavior is clearly reflected in the
error. The error throughout the remainder of the year
remains at or below pre-COVID levels.

Conclusion

We have presented a workflow to create occupancy
schedules based on traffic data that was collected
through a network of intersection sensors. The sched-
ules were created through a combination of topolog-
ical, geometric, and geospatial methods, and they
were successfully integrated in an EnergyPlus model.
The resulting occupancy schedules provide a cus-
tomized view of building occupancy, which is sensi-
tive to changes at an hourly, monthly, and seasonal
scale. With the available traffic data, even shorter
timeframes (e.g., 15 minutes) could be explored. As
the traffic data is available in real-time, it could even
be used to collect real-time occupancy estimates.

Due to data limitations, the comparison in this pa-
per combined 2019 and 2020 data. Under normal
circumstances, the impact of this comparison would
be less severe, however, the changes in telecommuting
behavior through COVID-19 were remarkable. Nev-
ertheless, we were able to produce some promising re-
sults which will enable us to further optimize building
occupancy schedules. Based on preliminary testing,
we expect that a comparison which uses data for an
identical time range will yield much better results.

The main objective of this paper was to demonstrate
the co-simulation of the occupancy model and En-
ergyPlus. However, a more detailed analysis of the

impact of customized occupancy schedules will be an
interesting future study, that is best undertaken for
datasets with consistent temporal scopes.

For future work, this methodology can be extended
to support different travel modes (such as pedestri-
ans). This will not only introduce additional individ-
uals, but it will also enable a more detailed record of
whether drivers visited buildings in the same area,
or whether they walked a longer distance to their
destination, which will increase applicability of this
methodology for areas with is a higher proportion
of pedestrians, bicyclists, and public transportation
users. Furthermore, point-of-interest data or GPS
trace data could serve to further refine the method-
ology, and serve as a data source for validation.

Finally, it will be interesting to see this workflow ap-
plied to a larger area, as more and more sensors are
installed in Chattanooga and other smart cities.

Acknowledgments

This work was funded in part by field work proposal
CEBT105 under US Department of Energy Build-
ing Technology Office Activity Number BT0305000,
the Office of Electricity Activity Number TE1103000.
This research was also funded in part by the Na-
tional Geospatial-Intelligence Agency and Approved
for Public Release, 21-142.

The authors would like to thank Amir Roth and
Madeline Salzman for their support and review of this
project. They would also like to thank Mark Adams
for his contributions to the AutoBEM software for
model generation, and Jibonananda Sanyal for Au-
toSIM contributions for scalable simulation.

References

Alharin, A., Y. Patel, T.-N. Doan, and M. Sartipi
(2020). Data analysis and visualization of traffic
in chicago with size and landuse-aware vehicle to
buildings assignment. In J. Nichols, B. Verastegui,
A. B. Maccabe, O. Hernandez, S. Parete-Koon, and
T. Ahearn (Eds), Driving Scientific and Engineer-
ing Discoveries Through the Convergence of HPC,
Big Data and Al pp. 518-529. Springer Interna-
tional Publishing.

ASHRAE and Iluminating Engineering Society (IES)
(1989). 90.1-1989. Energy Efficient Design of New
Buildings Fxcept Low-Rise Residential Buildings.

Berres, A., P. Im, K. Kurte, M. Allen, and J. Sanyal
(2019). A data-driven urban scale mobility model
for estimating building occupancy for energyplus.
In ASHRAFE Building Performance Analysis Con-
ference. Denver, CO (USA).

Berres, A., P. Im, K. Kurte, M. Allen-Dumas,
G. Thakur, and J. Sanyal (2019). A mobility-driven
approach to modeling building energy. In Proceed-



ings of 2019 IEEFE International Conference on Big
Data, pp. 3887-3895.

De Berg, M., M. Van Kreveld, M. Overmars, and
O. Schwarzkopf (1997). Computational geometry.
In Computational geometry, pp. 1-17. Springer.

Deru, M., K. Field, D. Studer, K. Benne, B. Griffith,
P. Torcellini, B. Liu, M. Halverson, D. Winiarski,
M. Rosenberg, et al. (2011). U.S. department of
energy commercial reference building models of the
national building stock.

Garrison, E., J. New, and M. Adams (2019). Ac-
curacy of a crude approach to urban multi-scale
building energy models compared to 15-min elec-
tricity use.

GRIDSMART Technologies, Inc. (2021). Open Source
GridSmart Python Code. https://bitbucket.
org/GRIDSMART/public-gtipy.

Gunay, H., W. O’Brien, I. Beausoleil-Morrison,
W. Shen, G. Newsham, and I. Macdonald (2017).
The effect of zone level occupancy characteristics
on adaptive controls. In Proceedings from Building
Simulation 2017. San Francisco (USA).

Hendron, R. and C. Engebrecht (2010, 10). Building
america house simulation protocols (revised).

Leasure, D. R., W. C. Jochem, E. M. Weber, V. Sea-
man, and A. J. Tatem (2020). National population
mapping from sparse survey data: A hierarchical
bayesian modeling framework to account for un-
certainty. Proceedings of the National Academy of
Sciences 117(39), 24173-24179.

Lu, X., F. Feng, Z. Pang, T. Yang, and Z. ONeill
(2020). Extracting typical occupancy schedules
from social media (tossm) and its integration with
building energy modeling. In Building Simulation,
pp- 1-17. Springer.

Microsoft (2018, July). Microsoft building foot-
prints. https://www.microsoft.com/en-us/
maps/building-footprints.

New, J. R., M. Adams, P. Im, H. Yang, J. Hambrick,
W. Copeland, and J. A. Bruce, Lilianand Ingraham
(2018). Automatic building energy model creation
(AutoBEM) for urban-scale energy modeling and
assessment of value propositions for electric utili-
ties.

Qu, A., Y. Wang, Y. Hu, Y. Wang, and H. Baroud
(2020). A data-integration analysis on road emis-
sions and traffic patterns. In J. Nichols, B. Ve-
rastegui, A. B. Maccabe, O. Hernandez, S. Parete-
Koon, and T. Ahearn (Eds), Driving Scientific and
Engineering Discoveries Through the Convergence
of HPC, Big Data and Al pp. 503-517. Springer
International Publishing.

Ren, G., M. Sunikka-Blank, and X. Zhang (2017).
The influence of variation in occupancy pattern
on domestic energy simulation prediction: A case
study in shanghai. In Proceedings from Building
Simulation 2017. San Francisco (USA).

Santosh, P., T. Tran, E. Youngson, and J. Bull
(2016). eppy: A scripting language for e+, ener-
gyplus. https://pythonhosted.org/eppy.

Silva, V., D. Amo-Oduro, A. Calderon, C. Costa,
J. Dabbeek, V. Despotaki, L. Martins, M. Pagani,
A. Rao, M. Simionato, et al. (2020). Development
of a global seismic risk model. FEarthquake Spec-
tra 36(1), 372-394.

Sparks, K., G. Thakur, A. Pasarkar, and M. Urban
(2020). A global analysis of cities geosocial tempo-
ral signatures for points of interest hours of opera-
tion. International Journal of Geographical Infor-
mation Science 34(4), 759-T76.

Stewart, R. N., M. L. Urban, S. E. Duchscherer,
J. Kaufman, A. M. Morton, G. Thakur, J. Piburn,
and J. Moehl (2016, 1). A bayesian machine learn-
ing model for estimating building occupancy from
open source data. Natural Hazards 81(3).

Tennessee Office of the Governor (2021). Covid-
19 timeline.  https://www.tn.gov/governor/
covid-19/covid19timeline.html.

United States Geological Survey (2020). PAGER.
https://earthquake.usgs.gov/data/pager/".

Commer-
https:

U.S. Department of Energy (2019).
cial prototype building models.
//www.energycodes.gov/development/
commercial/prototype_models.

U.S. Department of Energy (2020a). Energyplus.

U.S. Department of Energy (2020b).
https://www.openstudio.net/.

Openstudio.

U.S. Department of Energy (2018). Fact of the Week
#1040, July 30, 2018: Average Vehicle Occupancy
Remains Unchanged From 2009 to 2017. https:
//www.energy.gov/eere/vehicles/articles/
fotw-1040-july-30-2018-average-vehicle\
-occupancy-remains-unchanged-2009-2017.

Wang, J., Y. Ye, W. Zuo, J. New, and A. Rose (2021,
Feb). City-scale building occupancy prediction us-
ing geographic information system data.

Wang, J., W. Zuo, S. Huang, and D. Vrabie (2020,
09). Data-driven prediction of occupant presence
and lighting power-a case study for small commer-
cial buildings.


https://bitbucket.org/GRIDSMART/public-gtipy
https://bitbucket.org/GRIDSMART/public-gtipy
https://www.microsoft.com/en-us/maps/building-footprints
https://www.microsoft.com/en-us/maps/building-footprints
https://pythonhosted.org/eppy
https://www.tn.gov/governor/covid-19/covid19timeline.html
https://www.tn.gov/governor/covid-19/covid19timeline.html
https://earthquake.usgs.gov/data/pager/"
https://www.energycodes.gov/development/commercial/prototype_models
https://www.energycodes.gov/development/commercial/prototype_models
https://www.energycodes.gov/development/commercial/prototype_models
https://www.openstudio.net/
https://www.energy.gov/eere/vehicles/articles/fotw-1040-july-30-2018-average-vehicle\-occupancy-remains-unchanged-2009-2017
https://www.energy.gov/eere/vehicles/articles/fotw-1040-july-30-2018-average-vehicle\-occupancy-remains-unchanged-2009-2017
https://www.energy.gov/eere/vehicles/articles/fotw-1040-july-30-2018-average-vehicle\-occupancy-remains-unchanged-2009-2017
https://www.energy.gov/eere/vehicles/articles/fotw-1040-july-30-2018-average-vehicle\-occupancy-remains-unchanged-2009-2017

	COVID-19 impact

