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Abstract— In 2019, 125 million U.S. residential and
commercial buildings consumed $412 billion in energy
bills. These buildings currently consume 40% of the
nation’s primary energy, 73% of electricity, 80% of energy
during peak electric grid use, and responsible for 39% of
greenhouse gas emissions [14].

Urban-scale building energy modeling has grown signifi-
cantly in the past decade, allowing individual campuses or
communities of buildings to be modeled, simulated, and
cost-effective solutions for intelligent management to be
identified and implemented. While traditionally limited to
individual counties and usually less than 2,000 buildings,
the Automatic Building Energy Modeling (AutoBEM) soft-
ware suite has been developed to process unconventional,
nation-scale data sources to generate unique OpenStudio
and EnergyPlus models of each building. Through the use
of High Performance Computing (HPC) resources, every
U.S. building has been simulated. This paper showcases
the data layout, node partitioning, algorithmic approaches,
and analytic results that were used to create, share, and
analyze 124.4 million U.S. building models.
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I. INTRODUCTION

Buildings consume vast amounts of energy and produce
a large portion of the world’s emissions. In 2019, buildings
consumed 35% of all energy use and contributed 38% of
emissions world-wide [21]. The United States alone consumed
about 15% of all energy used world-wide, at only 4.25% of
the world population [17]. Heating and cooling are major
contributors to world-wide energy consumption [1]. Residen-
tial heating alone contributes to half of all residential energy
use, and 11% of all energy use. It is crucial to gain a better
understanding of how much energy is currently consumed in
order to determine how much energy could be saved through
improvements in Heating, Ventilation, and Air Conditioning
(HVAC) systems, insulation, and other building properties.

Building energy simulation plays an important role in
assessing the status quo, and understanding which building
improvements can make the biggest impact in energy savings.
They can also be a helpful tool in understanding how energy
use will change with urban population growth [4], or in
response to climate change [5].

Traditionally, building energy simulation is performed for
a single building or a small number of building on a desktop
computer or a small cluster. In recent years, there have been
efforts to move towards urban scale modeling, which is already
enough to push a small cluster to its limits [35]. National-scale
modeling has not been attempted so far.

In this work, we present the parallelization of a new building
energy simulation workflow to simulate 125 million U.S.
buildings on the Theta supercomputer at Argonne Leadership
Computing Facility (ALCF). We present a semi-automated
workflow to

• set up and start large batches for supercomputer runs for
millions of buildings with minimal manual intervention,
and optimizing the input data to minimize I/O and syn-
chronization issues



• automatically analyze and check each run’s outputs for
missing buildings, and create the data required to re-
submit them in an iterative process,

• postprocess and package up the results to publish data
while minimizing storage needs.

II. RELATED WORK

Building energy simulations have been an active topic
of research for the past 50 years. Today’s building energy
simulation codes support a vast array of different parameters
that can be configured, including building use type, building
standards (which depend on location and year built), geometry,
number of floors, type of HVAC system, window-to-wall ratio
(relevant in heating loss), insulation, and many more [12].
By running different simulations, one can compare different
options during new constructions and to retrofit buildings with
more energy-efficient infrastructure. This can answer questions
such as “Should I invest in a smart thermostat, a new water
heater, or double-pane windows?” for an individual building
(depending on the climate in a specific area, the answer to
this question may vary), or inform decisions about energy
efficiency technology investments for whole utility service
areas [8] and cities [11]. It can also support policy-makers
in decisions about introductions of new building codes [22] to
pave the way towards a more energy-efficient future.

The severe impact of future weather and climate change on
building energy and the electric grid has been studied based on
the Intergovernmental Panel on Climate Change Assessment
Report 6 [7], using an ensemble of climate simulations and
empirical relationships between weather and energy consump-
tion [34], using a combination of different downscaled climate
models [6], and using LandCast [3], a population growth
projection for the U.S. for 2030 and 2050 [27]. Similar works
have been performed for the European Union [10] and other
countries world-wide [33].

While fields like climatology and population dynamics
have operated at national and even global scales for many
years, building simulations have historically been challenging.
Even recent works [20], [22], [32] focus primarily on on
neighborhood to city scale modeling. To get to nation-scale
modeling, the typical approach is to categorize the buildings
into different building archetypes, simulate models of these
building archetypes for all relevant climate zones, and sim-
ply multiply the results with the number of buildings for
each archetype [35]. However, there are substantial changes
between building geometries, materials, and codes between
different areas, which are missed in this approach.

Building simulation codes such as [40] and [39], the codes
used in this work, take much time and effort to set up. A
typical program often has hundreds of input parameters that
need tuning. Previous efforts have been made to “autotune”
EnergyPlus models [36] to streamline their setup. Both build-
ing simulation codes we use in this work can be run in an
“embarrassingly parallel” fashion (i.e. independent of each
other), as models for different buildings are typically inde-
pendent. However, the scale of the data processing for setup,

the output data, and the computational resources required to
run the simulations at nation scale, have been prohibitive.

As our application has big data and big compute, these
two aspects have to be balanced against each other [19],
[38]. Fiore et al. [18] provide an overview of the challenges
of the availability of compute time, and scaling under strict
performance (e.g. processing time) and cost (e.g. storage).
There has been work to enhance the functioning of HPC
architectures [2] and scheduling [25] to improve I/O efficiency
in big data HPC applications. Other approaches focus on the
data transfer from HPC simulations to real-time analysis [26].

In this work, we address the challenge of big data and big
compute by focusing our efforts on three main aspects: (1)
We minimize I/O on the main lustre file system by running
the main application entirely in node memory, and only
synchronize data between the node and the lustre filesystem
at the beginning and end of each node’s compute. (2) We
optimize data management with big compute in mind, by
splitting the input data a priori and packaging it up by core
and node to take advantage of the embarassingly parallelizable
nature of the task. (3) Finally, we reduce overall storage use
by limiting data extraction from compressed outputs (tarballs)
by examining the list of contents where possible, or extracting
just specific files we need.

III. METHODOLOGY

In this section, we will introduce all relevant steps along the
large-scale Automatic Building Energy Modeling (AutoBEM)
workflow. Figure 1 provides a high-level overview of the
workflow, from inputs, through several iterations of compute,
to outputs, and the various data extracts in between. We begin
by describing a typical building simulation workflow and the
modifications we have made to it to enable large-scale comput-
ing (Section III-A), and we discuss data preparations required
(Section III-B). Then we discuss the different steps along
the workflow: preprocessing steps (Section III-C), different
job configuration parameters (Section III-D), an overview of
the parallel workflow (Section III-E), handling missing data
(Section III-F), and postprocessing steps (Section III-G).

A. Typical Building Simulation Workflows

Physical building energy modeling simulation engines such
as EnergyPlus [39] take a set of thousands of building
properties and combine them with weather data to calculate
thermal loads, system responses to those loads, and energy use,
along with several other related metrics. Building simulations
for a small number of buildings can be done on a desktop
computer. We expand an existing workflow [32], [37] which
uses pre-generated EnergyPlus [13], [39] building models in
Input Data File (IDF) format. If such IDF building models are
available, this workflow scales well. However, the generation
of such models for individualized buildings takes about as long
as simulating the building models, rendering this workflow
insufficient for nation-scale modeling.

We alleviate this issue by integrating OpenStudio [40] in
our HPC workflow. OpenStudio is a tool which can generate
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Fig. 1: High-level workflow for large-scale building simulation with AutoBEM: The bottom part of the workflow represents
the overall workflow while the top portion provides more detail about the steps which run on compute nodes. The legend at
the bottom contains the color-coding: all data is represented in blue, while compute steps are highlighted in different shades
of yellow, depending on parallelism (darker colors indicating more parallel execution).

OpenStudio and EnergyPlus models from a set of build-
ing property inputs: Geometry, Centroid, Height, Number of
Floors, Window-to-Wall, Building Type, Building Standard,
and Climate Zone. Then, a building energy simulation is
run for each of these models using EnergyPlus. With this
integration, we are able to both generate and simulate the
models on HPC resources.

B. Data Preparation

The building simulation workflow with OpenStudio and
EnergyPlus requires the inputs listed above. The OpenStudio
workflow takes these inputs and creates an building energy
model. Then, it calls EnergyPlus to simulate building energy
use, outputting a year of hourly building energy data. Each
model is simulated using the Typical Meteorological Year
(TMY) weather file for the representative city associated
with the climate zone for the building location based on
ANSI/ASHRAE/IES Standard 90.1-2016 [9]. The outputs of
this workflow include an OpenStudio model, an EnergyPlus
model, building energy use data, as well as log files with data
about the simulation.

In this work, our goal was to simulate 125.7 million
buildings in the United States. To better manage this workload,
we divided the buildings into the 9 U.S. census regions as well
as California (Table I), which was separated due to the large
number of buildings and outside interest.

When simulating a single building, modelers typically know
all relevant properties for the building in question. However,
at national scale, not all information is known, and we had
to apply heuristics to generate suitable input data for some
building properties like building type. For this work, we
use building geometries from Microsoft’s building footprint
dataset [28] while building heights were provided by a data

TABLE I: Region definitions: each region number corresponds
to a census region which includes between one and nine states.
The total number of buildings contained in a region varies
between 5.1 million and 23.6 million.

Region States #Buildings
1 Connecticut, Maine, Massachusetts,

New Hampshire, Rhode Island,
Vermont

5,435,392

2 New Jersey, New York, Pennsylvania 12,637,184
3 Illinois, Indiana, Michigan, Ohio, Wis-

consin
22,528,155

4 Iowa, Kansas, Minnesota, Missouri,
Nebraska, North Dakota, South Dakota

12,463,109

5 Delaware, District of Columbia,
Florida, Georgia, Maryland, North
Carolina, South Carolina, Virginia,
West Virginia

23,558,752

6 Alabama, Kentucky, Mississippi, Ten-
nessee

9,977,403

7 Arkansas, Louisiana, Oklahoma, Texas 15,480,692
8 Arizona, Colorado, Idaho, Montana,

Nevada, New Mexico, Utah, Wyoming
7,551,785

9 Alaska, Hawaii, Oregon, Washington 5,149,591
10 California 10,933,546

partner. The representative city EnergyPlus Weather (EPW)
files come pre-loaded with OpenStudio.

The result of this data preparation step is one Comma-
Separated Values (CSV) file per region, which contains build-
ing IDs, building type, building standard, height, number
of floors, the building footprint geometry (embedded json),
window-to-wall ratio, climate zone, and other parameters.

C. Preprocessing

The preprocessing step takes the CSV for each region,
produces suitable inputs for HPC jobs, and submits these jobs



to the queue. This step happens on a login node, which is a
shared resource between many users.

First, we need to choose what maximum size we want the
jobs to be. This depends on the number of buildings in each
region, as well as the HPC configuration. Theta has 4,392
compute nodes. Each node has a 64-core, 1.3-GHz Intel Xeon
Phi 7230 processor, so we can simulate up to 64 buildings
in parallel on each node. Next, we have to decide how many
buildings each core will simulate during a job. We let each
core process a few buildings during a given job, and we call
the number of buildings a core simulates during a job the
number of churns.

We process each region as a separate batch of jobs in order
to better keep track of which buildings have been processed,
and which regions have more difficulties than others. For each
batch, we choose a batch name. The last job is typically a bit
smaller than the others, as we want to minimize the resources
used, and keep the load between nodes evenly balanced. The
output of this script is a batch script which calls the run
generation code for each job in a region.

The run generation code takes the number of nodes and
churns, a desired name for the list of jobs, and the CSV input
(subset from the preparation script) for the region. During
preprocessing, we first split up the region CSV file: each core
gets a CSV file with enough buildings for the number of churns
requested. These CSV files are compressed into one tarball for
each node, which is saved to disk. In addition to chunking up
the input into appropriate sizes for nodes, the preprocessing
script also produces a job submission script for the job, which
is automatically submitted to the queue.

D. Job Configuration

Finding a good job configuration can be challenging. The
three main considerations for our job configuration are:

• How much data needs to be processed? We have 125
million buildings to process. At 80% Theta usage, we
can process 3, 514 · 64 = 224, 896 buildings in parallel.
If every building took 15 minutes to process, we would
need about 139 hours of time on 80% of all nodes.

• How long will our jobs wait in the queue? This depends
on the job size (number of nodes) and its requested
walltime (duration of the reservation). For a job with
more nodes, more jobs will have to finish running before
there is enough space to run a large job. The requested
walltime also has an impact (longer walltime generally
results in a longer wait).

• How can we best use the available resources? We want
the majority of cores to be busy during the entire run, as
idle cores are wasted resources. However, the processing
time can vary dramatically between buildings. We have
to balance the number of completed buildings against
keeping all cores busy.

Prior to our production runs, we experimented with differ-
ent job configurations to heuristically determine suitable job
parameters.

1) Number of Nodes: The theoretical maximum job size
would use 4,392 nodes. However, sometimes a few nodes are
off-line, or a certain percentage of nodes is reserved for a
specific project and not available. The theoretical minimum
job size is 128 nodes as this is the minimum requirement for
production runs, as the reasoning is that any job smaller than
this does not require a supercomputer as it could run on a
small cluster. Through experiments, we determined that jobs
that used 20-25% of Theta’s nodes had queue times of 4-5
days, whereas jobs that used 80% of Theta’s nodes had queue
times of 6-7 days. In addition, there is a limit on the number
of jobs a single user can have in the queue, so it was in our
best interest to minimize the number of jobs to submit. At a
goal of 125 million buildings to process, 80% was an easy
choice. For our project, the maximum number of nodes used
is 3,514 nodes, or 80% of all available nodes on Theta. This
size is used for 59% of our jobs for this project. 73% of our
jobs used at least half of the available nodes. If the last job
becomes too small (under the minimum number of nodes), we
reduce the size of the other jobs of the batch to get a valid
size for all jobs. For example, if a region has enough buildings
to run on 3,600 nodes, we could split them into two jobs of
1,800 nodes to avoid having one job that is too small to run
as a production job.

2) Number of Churns: We ran some initial experiments on
a small subset of the data to determine the expected processing
time per building. We found that that on average, it takes about
15 minutes to generate a model and simulate building energy
for it, using our OpenStudio/EnergyPlus setup. This means we
can process about four buildings per hour on each core. At
the determined job size of 3,514 nodes, we expect to process
3, 514 · 64 · 4 = 899, 584 buildings per hour.

3) Walltime: Based on initial experiments with walltime,
we determined that increases in walltime were theoretically
worth the additional wait, with 120 hours for a 2-hour job
and 196 minutes for a 10-hour job. However, depending on
the distribution of the buildings, this may result in many
cores running idle while waiting for a few cores to finish the
complex buildings they are processing. This would waste a lot
of valuable compute time. To minimize this risk, we decided
to use a walltime of 2 hours. This means that the number of
buildings we expect to process almost 1.8 million buildings
per full-size job with 2 · 4 = 8 churns.

E. Parallel Execution Workflow

The parallel execution workflow begins as soon as a job
from the queue starts executing on the compute node. A visual
representation of this part of the workflow is shown at the
top of Figure 1. During initialization, the building simulation
code and input data are copied from lustre and untarred in
the on-node memory. This initialization step is carried out in
single-thread mode on the compute node as we only have two
inputs.

Then, we spread out the work between all cores on the node.
Each core receives a CSV file containing building data for a
#churns buildings. Then, we start the OpenStudio/EnergyPlus



simulation workflow, which simulates each of the buildings
and writes the building models, energy use, and any error logs
to the local memory.

When the job’s walltime is nearing its limit, the outputs of
each core are compressed into one tarball per core, and written
back out onto the lustre file system.

F. Handling Incomplete Jobs

Ideally, each job can finish processing all buildings it was
assigned. However, this is not always the case as building
processing times can vary. There are many parameters that
influence processing times, such as building size, number of
floors, or HVAC can play a substantial role in the time it
takes to set up a model or simulate it. Certain building types
inherently take longer to simulate based on complexity while
other individual models that are much larger or have complex
geometries may take a long time to converge. There have been
extensive works on fault management [24] and checkpointing
[23], [41], and redundancy [16], as well as their tradeoffs [15].
We take a redundancy-based approach: we provide jobs with
enough resources to complete the majority of their buildings,
but not so much that too many cores or nodes run idle while
a few are still busy.

In order to strike this balance of processed buildings and
computational resources (compute time on Theta), we devised
the following submission strategy, which is illustrated in
Figure 2. At a high level, we begin with 8 churns, and then
cut the number of churns in half every time we have to
resubmit a building which did not complete processing in the
previous step, which is shown in the top row. If there are not
enough buildings left for a full job (80% of all nodes) at the
current number of churns, the missing buildings are added to
a “remainder” pool of buildings from miscellaneous regions,
to enable more efficient processing, and minimize the number
of jobs in the queue. The white diamonds indicate a check to
determine whether the buildings are resubmitted as individual
jobs or as part of the pool, based on the number of missing
buildings from each set of runs. If there are not sufficient
buildings to fill a production run for the next iteration of job
settings, the missing buildings are added to the remainder pool.
The process of reducing churns with each iteration remains
the same for the remainder pool, but unlike the pools for each
region, the remainder pool does not always shrink in size with
each iteration because it receives additional building inputs
whenever one of the region is sufficiently complete.

Based on initial testing, we determined that most buildings
can be processed within 15 minutes, including model gen-
eration and building energy simulation. Therefore we began
by submitting an inital set of runs with 2 hours of walltime
and 8 churns per core, i.e. 8 buildings assigned to each core.
We submitted 92 jobs of varying node count, using 8 churns.
88.4% of all submitted buildings were processed successfully
during 8-churn runs.

The buildings which did not complete were collected and
resubmitted in a 1st Rerun using the same walltime, but only
4 churns per core, which gives each building half an hour

to complete. We submitted 21 jobs using 4 churns, and we
were surprised to find that only 34.3% of the buildings were
processed successfully during these runs.

In the 2nd Rerun iteration, we again cut the number of
churns in half, and submitted 11 jobs with only 2 churns.
These jobs fared much better than the previous iteration, with
86.2% successfully processed buildings.

The 3rd Rerun uses a single churn. We submitted four jobs:
one job for Region 1 with about 225k buildings which had a
completion rate of 92.1%, and three jobs for Region 6 which
totaled about 486k buildings and which had a completion
rate of only 20.1%. The missing buildings from these were
transferred to a dataset for further exploration why they were
so time-consuming to simulate.

G. Postprocessing and Analysis

The output data from this process is quite large. The project
presently fills over 80TB of data on Theta’s lustre filesystem.
We employed a multi-step process for postprocessing and
analysis which avoids extracting data unless it is absolutely
necessary.

The first important step after a job had completed was to
determine the number of completed buildings, and identify
missing buildings. To quickly and efficiently fulfil this task,
we used the tarfile python library to examine the contents
of each node’s tarball outputs without having to untar all of
its contents. This was performed in parallel using python’s
multiprocessing library.

• If a building is complete, the outputs include an IDF
model named [buildingID].idf.

• If a building was not processed completely or was never
simulated, this model is missing from the node outputs,
or there may be no outputs at all.

We kept track of completed and missing buildings using
lists, and once the processing was complete, we filtered the
input data submitted for the run to just the rows for missing
buildings and wrote out the file to be used for the next iteration
of runs.

Once we collected the missing buildings for all jobs in a
given region, we merged the files into one CSV, which was
then handed back to the preprocessing step (Section III-C) for
the next iteration of runs (Section III-F).

Next, we wanted to know how different parts of the code
performed, such as the chunking and tarballing during prepro-
cessing. The processing times for these two steps, as well
as various steps of processing on compute nodes (such as
individual building processing times), can be found in log files.
The postprocessing step includes a sweep through all relevant
logs to extract these data for analysis and future use.

Finally, as this level of processing is not widely available,
we want to share the building models with the wider building
simulation community. Most users are interested in a specific
area, e.g. a single county. To facilitate easier access, we
processed the building outputs to separate them by data type
(e.g. IDF EnergyPlus building model, or OpenStudio Model
(OSM)) and county. Each successfully processed building
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Fig. 2: Overview of our strategy to handle incomplete jobs: with each iteration, we cut the number of churns in half. While
there are enough buildings for individual runs per region, we follow the top row, otherwise buildings are added to a remainder
pool and follow the bottom row from that iteration onwards. In both rows, the color indicates the time provided per building,
growing darker with each iteration of jobs.

results in five files (with much higher numbers of files for
incomplete buildings, as there are temporary files during
simulation). Simultaneously untarring all results would result
in at least 628.6 million files on disk, which could result in
adverse effects on the file system.

Instead, only OSM and IDF files were untarred. State level
aggregation allowed for models to be selected for a given
region within a state easily as data requests were processed.
This also allowed for the models to be zipped by county,
allowing for easier access to the data for the general public.

The 122.9 million buildings (97.8%) of buildings have
already been published as part of the Model America dataset
[29]. Smaller extracts are available for Los Angeles (with
detailed climate inputs from the WRF climate simulation) [31]
and Clark County (Las Vegas) [30].

IV. RESULTS

Using the methodology described in the previous section,
we processed 124.5 million of the 125.7 million buildings, or
98.9% of all U.S. buildings.

For testing purposes, a total of 2.3 million buildings from
region 2 were submitted with 2 churns rather than 8 churns
on their initial run, and had a success rate of 86.9%, which
is a little higher than the success rate of 8-churn runs for the
same region (75.2%), but not as good as the very successful
regions. These 2.3 million buildings were included in the
Initial category for comparisons by iteration, and the 2 churns
category for comparisons by churn count.

Table II lists the number of buildings available (Total), and
how many buildings were successfully processed during each
iteration of runs (Initial, Rerun1, Rerun2, Rerun3). Regions
for which the Rerun columns are empty had such high success
rates, that there were not enough buildings left to justify a
rerun for the region. These missing buildings were added to
the remainder pool (R). The first iteration of remainder reruns
included about 742k buildings from regions 3, 5, and 7-10.

Figure 3 provides a visual view of these numbers and
how they relate to other factors, such as number of jobs

TABLE II: Each row gives the number of buildings available,
and how many of them were processed during each iteration.
The bottom two rows provide the sum across all regions for
each iteration, as well as the percentage of buildings completed
during each iteration.

# Buildings Initial Rerun1 Rerun2 Rerun3
1 5,435,392 4,362,202 518,576 291,327 207,103
2 12,637,184 9,019,214 1,358,741 1,821,282
3 22,528,155 22,467,370
4 12,463,109 10,748,054 791,385 820,444
5 23,558,752 23,207,301
6 9,977,403 4,517,672 1,442,752 3,046,398 97,638
7 15,480,692 15,452,216
8 7,551,785 7,531,113
9 5,149,591 5,051,863
10 10,933,546 10,781,507
R 742,174∑

125,716,992 113,138,512 4,853,628 5,979,451 305,741
% 89.99% 3.86% 4.76% 0.16%

and number of churns. Figure 3a shows that 90% of all
buildings completed during the initial iteration of runs. There
are more Rerun1 jobs than Rerun2 jobs, but Rerun2 yielded
better results. The results for Rerun3 has the worst overall
performance. Rerun1 performs very badly with a median of
about 40, whereas Rerun2 performs well with almost all jobs
having 80-100% success rates. Finally, Figure 3b gives more
insight into the regional differences. The 90% of successful
building completion are not evenly distributed: where Regions,
3, 5, 7, 8 and 10 have extremely consistent and high success
rates of over 98%, other regions are much more spread out in
performance. Regions 4 and 9 have a much higher variation,
but high completion rates as seen from their dark blue coloring
(based on overall completion, which includes several reruns
for both regions). Region 6 has the worst overall performance,
with a current completion rate of 91.25%. This region also had
the single worst run of all, with only 1% success rate.

The big differences in success between different regions
can likely be explained by differences in the number of
computationally complex buildings. Further investigation into
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Fig. 3: Box plots comparing the percentage of jobs completed by iteration (3a) and by region (3b). Colors are kept consistent
with Table II: 8 churns/Initial, 4 churns/Rerun1, 2 churns/Rerun2 and 1 churn/Rerun3. Figure 3b uses are a linear blue colormap,
with darker hues indicating higher overall completion for a region throughout all iterations (values ranging from 90.2%-99.8%).

this will be an interesting topic for future studies. Based on
the bad performance of Rerun1 (4 churns), it is plausible
that the majority of buildings are either very simple (compute
successfully in the Initial, 8-churn iteration), or they are very
complex and require more than half an hour to compute. This
could explain the relative success of Rerun 2 (2 churns) which
provides an hour of time per building.

Finally, we would like to acknowledge that none of this
work would have been possible without access to the Theta
supercomputer. In order to generate 124.5 million building
models and simulate their energy use, we have used over 10
days of walltime on Theta. 72% of the jobs used more than
50% of its nodes, and 59% of them used 80% of its nodes.
We have spent 752k node hours or 48 million core hours. It
would take a 64-core server almost 86 years to perform the
same task. An average 8-core desktop would have to spend
687 years on the same task.

V. CONCLUSION AND FUTURE WORK

We have presented the AutoBEM workflow which processes
large amounts of data to generate and simulate building models
for almost all buildings in the continental United States. Our
workflow has proven to be reliable and highly scalable. We
have successfully demonstrated the use of this workflow at
nation-scale for 124.4 million buildings. The building models
have been published and shared with the building energy
modeling community, and through this work, we have also
collected detailed information on building processing times,
which can be used in future work.

We have set up and tested a preliminary workflow to load
balance jobs for buildings with known processing times. We
expect that this load balancing module will be a great asset
for planned building simulations which will explore which
types of building retrofitting (e.g. new HVAC unit, upgraded

windows, etc.) have the highest potential to reduce energy
consumption and emissions. This can inform policies and
building codes, and hopefully reduce the overall U.S. energy
use and carbon footprint. Furthermore, while a couple of
factors contributing to long building processing times are
known, a reliable prediction of processing times based on
input parameters has not been possible. Finally, it would be
interesting to compare the simulated data to measured energy
use in areas in which such data is available.
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Contrasting the capabilities of building energy performance simulation
programs. Building and environment, 43(4):661–673, 2008.

[13] Drury B Crawley, Linda K Lawrie, Frederick C Winkelmann, Walter F
Buhl, Y Joe Huang, Curtis O Pedersen, Richard K Strand, Richard J
Liesen, Daniel E Fisher, Michael J Witte, et al. Energyplus: creating
a new-generation building energy simulation program. Energy and
buildings, 33(4):319–331, 2001.

[14] DOE Office of Energy Efficiency & Renewable Energy. Energy
efficiency trends in residential and commercial buildings.

[15] Nosayba El-Sayed and Bianca Schroeder. To checkpoint or not
to checkpoint: Understanding energy-performance-i/o tradeoffs in hpc
checkpointing. In 2014 IEEE International Conference on Cluster
Computing (CLUSTER), pages 93–102, 2014.

[16] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Fer-
reira, and Christian Engelmann. Combining partial redundancy and
checkpointing for hpc. In 2012 IEEE 32nd International Conference
on Distributed Computing Systems, pages 615–626, 2012.

[17] Enerdata. Global energy statistical yearbook, 2021.
[18] Sandro Fiore, Mohamed Bakhouya, and Waleed W. Smari. On the road

to exascale: Advances in high performance computing and simulationsan
overview and editorial. Future Generation Computer Systems, 82:450–
458, 2018.

[19] Geoffrey Fox, Judy Qiu, Shantenu Jha, Saliya Ekanayake, and Supun
Kamburugamuve. Big data, simulations and HPC convergence. In Big
Data Benchmarking, pages 3–17. Springer, 2015.

[20] Eric Garrison, Joshua New, and Mark Adams. Accuracy of a crude
approach to urban multi-scale building energy models compared to
15-min electricity use (at-2019-c002). In 2019 Winter Conference.
ASHRAE, 2019.

[21] Ian Hamilton and Oliver Rapf. Executive summary of the 2020 global
status report for buildings and construction, 2020.

[22] Tianzhen Hong, Yixing Chen, Xuan Luo, Na Luo, and Sang Hoon
Lee. Ten questions on urban building energy modeling. Building and
Environment, 168:106508, 2020.

[23] Kuldeep Kurte, Jibonananda Sanyal, A. Berres, Dalton Lunga, Mark
Coletti, Hsuihan L. Lexie Yang, Daniel Graves, Benjamin Liebersohn,
and Amy Rose. Performance analysis and optimization for scalable de-
ployment of deep learning models for country-scale settlement mapping
on titan supercomputer. volume 31, page e5305. Wiley Online Library,
2019. e5305 cpe.5305.

[24] Zhiling Lan and Yawei Li. Adaptive fault management of parallel
applications for high-performance computing. IEEE Transactions on
Computers, 57(12):1647–1660, 2008.

[25] Jialin Liu, Yu Zhuang, and Yong Chen. Hierarchical collective i/o
scheduling for high-performance computing. Big Data Research,
2(3):117–126, 2015.

[26] Thomas Marrinan, Silvio Rizzi, Joseph Insley, Brian Toonen, William
Allcock, and Michael E. Papka. Transferring data from high-
performance simulations to extreme scale analysis applications in real-
time. In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pages 1214–1220, 2018.

[27] Jacob J McKee, Amy N Rose, Edward A Bright, Timmy Huynh, and
Budhendra L Bhaduri. Locally adaptive, spatially explicit projection of
us population for 2030 and 2050. Proceedings of the National Academy
of Sciences, 112(5):1344–1349, 2015.

[28] Microsoft. Microsoft building footprints, December 2020. https://www.
microsoft.com/en-us/maps/building-footprints.

[29] Joshua New, Mark Adams, A. Berres, Brett Bass, and Nicholas Clinton.
Model America data and models of every U.S. building, April 2021.
Automatic Building Energy Modeling (AutoBEM).

[30] Joshua New, Brett Bass, Mark Adams, and A. Berres. Model America
- Clark County (Vegas) extract from ORNL’s AutoBEM, February
2021. Integrated Multisector Multiscale Modeling (IM3) project -
https://im3.pnnl.gov/.

[31] Joshua New, Brett Bass, Mark Adams, A. Berres, and Xuan Luo.
Los Angeles County Archetypes in Weather Research and Forecasting
(WRF) Region from ORNL’s AutoBEM, April 2021. Integrated Multi-
sector Multiscale Modeling (IM3) project - https://im3.pnnl.gov/.

[32] Joshua R New, Mark B Adams, Piljae Im, Hsiuhan Lexie Yang, Joshua C
Hambrick, William E Copeland, Lilian B Bruce, and James A Ingraham.
Automatic building energy model creation (AutoBEM) for urban-scale
energy modeling and assessment of value propositions for electric
utilities. Technical report, Oak Ridge National Laboratory, Oak Ridge,
TN (United States), 2018.

[33] Adrian E Raftery, Nan Li, Hana Ševčı́ková, Patrick Gerland, and
Gerhard K Heilig. Bayesian probabilistic population projections for
all countries. Proceedings of the National Academy of Sciences,
109(35):13915–13921, 2012.

[34] Deeksha Rastogi, James Scott Holladay, Katherine J Evans, Ben L
Preston, and Moetasim Ashfaq. Shift in seasonal climate patterns
likely to impact residential energy consumption in the united states.
Environmental Research Letters, 14(7):074006, 2019.

[35] Christoph F. Reinhart and Carlos Cerezo Davila. Urban building energy
modeling a review of a nascent field. Building and Environment,
97:196–202, 2016.

[36] Jibonananda Sanyal and Joshua New. Simulation and big data challenges
in tuning building energy models. In 2013 Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1–6,
2013.

[37] Jibonananda Sanyal, Joshua New, Richard E Edwards, and Lynne
Parker. Calibrating building energy models using supercomputer trained
machine learning agents. Concurrency and Computation: Practice and
Experience, 26(13):2122–2133, 2014.

[38] Nemanja Trifunovic, Veljko Milutinovic, Jakob Salom, and Anton Kos.
Paradigm shift in big data supercomputing: dataflow vs. controlflow.
Journal of Big Data, 2(1):1–9, 2015.

[39] U.S. Department of Energy. EnergyPlus, 2021. https://energyplus.net/
(retr. 2021-09-03).

[40] U.S. Department of Energy. OpenStudio, 2021. https://www.openstudio.
net/ (retr. 2021-09-03).

[41] Chao Wang, Frank Mueller, Christian Engelmann, and Stephen L.
Scott. Hybrid Checkpointing for MPI Jobs in HPC Environments. In
2010 IEEE 16th International Conference on Parallel and Distributed
Systems, pages 524–533, 2010.


