
City-scale Building Occupancy Prediction Using Geographic

Information System Data

Jing Wang1, Yunyang Ye2, Wangda Zuo1, Joshua New3, Amy Rose3

1 University of Colorado Boulder, Department of Civil, Environmental, and Architectural

Engineering, Boulder, CO, USA;

2 Pacific Northwest National Laboratory, Richland, WA, USAa;

3 Oak Ridge National Laboratory, Oak Ridge, TN, USA.

Disclaimer

This documentation is a joint project report developed by CU Boulder and Oak Ridge National

Laboratory. It is undergoing the transformation to be turned into a conference paper.

1 Introduction

The goal of this research is to assist in quantifying the impact of enhanced occupancy information

on the accuracy of building energy models compared to actual 15-minute data. Through gridded

population data extraction and cross-reference with building location and area information,

daytime and nighttime occupant density data that could be leveraged to modify the occupancy

schedules are generated. This work will improve the ability to quantitatively estimate and

empirically validate reductions in energy use intensity of individual buildings within a large area.

Further, this work will test the value for sources of occupancy data to improve utility-scale models

and create measures to assess the energy, demand, emissions, and cost-saving opportunities for a

utility. This paper provides the methodology and detailed techniques that are used to achieve this

aim.

2 Technology and Workflow

The raw data include daytime and nighttime population data in the format of raster datasets, as

well as building footprint and conditioned area data in the format of csv file. In order to finally

obtain the daytime and nighttime population data in each provided building, we followed the

workflow below:

1. Extracting population data from the raster datasets: In this part, we first used a

geographical software ArcGIS to visualize the grid and population data and get an overall

impression of the data. Also, we transferred the format of the image to TIFF so that it can

be further processed with python. Then, we used python package rasterio to extract the

data points embedded in each pixel of the TIFF image. The extracted information includes

a PNNL is Yunyang Ye’s current affiliation whereas this work was done when he was affiliated with University of

Colorado Boulder.

longitude and latitude of each grid center and daytime/nighttime population in each grid

cell.

2. Cleaning population and building data: Since the raw population data includes

datapoints that have no population information (represented by number -32,768), in this

part we deleted those datapoints to save unnecessary computing time. Further, in the

original building data (EPB_G2.csv), there exist repeated building records. Hence, we

deleted the repeated records and reduced the building number from 178,355 to 120,372.

This will also save extra computational time.

3. Finding intersected area between each building and the grids: In this part, we swept all

buildings over every grid cell to find the intersected area using python package shapely.

This helps distributing the building area into each cell that it has overlap with and thus

prepares for the next step. As required by the package, we also converted the longitude and

latitude of grid cells and building footprints into an x-y coordinate system. Due to the large

amount of data, we used parallel computing and the supercomputer to conduct the

computation.

4. Distributing population data into each building: Knowing the building area inside each

grid cell, in this part, we distributed the population in each cell into the buildings inside it.

The distribution is conducted based on the building conditioned floor area and the “people

spend 87 percent of time indoor” principle. Besides the results of daytime/nighttime

population, we also obtained the occupant density data by dividing the occupant number

by total floor area.

5. Building re-indexing and final results: In this final part, we correlated our results with

the originally provided building indices (178,355 buildings) so that the generated results

can be directly leveraged by the user.

The following is a diagram summarizing our entire workflow.

Figure 1 Diagram of the workflow

3 Technical Details

This section provides technical details in processing the population and building data to help better

understand the code and use them. Key equations and explanations of the codes (e.g., inputs and

outputs, sample of results) will be discussed. In the folder Task0b_submission, five python code

files are included:

1_population.py

2_clean_data.py

3_sweep.py

4_distribution.py

5_reindex.py

Each code relates to one corresponding subsection below. All coding is in python 2.7 with

comment explanations. They can be run in either Linux or Windows system given that the required

python packages are installed. All intermediate result files are all put in the same folder.

3.1 Extract population data

• Visualization

Using the software ArcGIS, we visualized the population raster datasets as follows.

Figure 2 Day population dataset visualization Figure 3 Night population dataset visualization

Each dataset consists of 725 columns and 717 rows (Figure 4). In total, there are 725*717=519,825

cells. Each cell has the size of 0.000833333x0.000833333 (longitude x latitude). Both of the raster

datasets use the same global coordinate system: WGS_1984.

Figure 4 Raster dataset information

• Cell size check

To double check the grid cell size, we used Harversine formulab, which is a formula for calculating

great-circle distance between two points on a sphere, to convert the grid size from

longitude/latitude into meters (see code check_distance.py). The results show that the grid size is

92.66 * 92.66 = 8585.88 m2, close to the provided number of “90 meters”. The difference might

be caused by the fact that Harversine formula is for spheres and the earth is a spheroid.

Figure 5 Code: check_distance.py

• Information extraction

To extract the information from the raster datasets, we first converted them into TIFF image files

with ArcGIS (day.tif, night.tif). As the next step, we used the python package for dealing with

raster datasets: rasterioc. The function rasterio.transform returns the center coordinates of a pixel

at each row and column. The value embedded in each pixel represents the corresponding day/night

population. Using the following code, we managed to record the longitude, latitude, daytime

population and nighttime population of every grid cell. The results are exported in “total.csv”.

b https://en.wikipedia.org/wiki/Haversine_formula

c https://geohackweek.github.io/raster/04-workingwithrasters/

https://en.wikipedia.org/wiki/Haversine_formula
https://geohackweek.github.io/raster/04-workingwithrasters/

Figure 6 Code for extracting population data

• Sample results

The population data is in the following format.

Figure 7 Sample results of population data

3.2 Clean population and building data

As shown in Figure 7, some grid cells do not contain actual population data, which is represented

by the number -32768. To save unnecessary computational time, we removed those cells and

generated the cleaned population data file “population_new.csv”.

Similarly, in the original building data file “EPB_G2.csv”, there exist repeated building records

(buildings with the same footprint as well as area). To save extra computational time, we also

removed those repeated records and generated the new building data file “building_new.csv”. Also,

we converted the area unit from sqft to sq.m in this part.

• Sample results

The cleaned population and building data are in the following format.

Figure 8 Sample results of cleaned population data Figure 9 Sample results of cleaned building data

3.3 Find intersected area

This part deals with finding the intersected area of each building with each grid. We first converted

latitude and longitude of each vertex into the same x-y coordinate system and then used python

shapely.geomatry package to determine the intersected areas. Due to the high computational

demand, we used parallel computing on a supercomputer to conduct the computation process. The

results of this part are saved in the “gridcell.csv” file.

• Convert to x-y coordinate system

As required by the shapely package, the coordinates of building footprints and each grid cell should

be in the same two-dimensional coordinate system. Hence, we pointed the lower left corner of all

the grids as the origin of the x-y coordinate system and then projected all other points into this

system. The code is shown below.

Figure 10 Code of converting latitude and longitude into x-y coordinate system

• Use shapely to find intersections

After the conversion, we used shapely.geometry package to find the intersections. First, we create

Polygon 1 with the building footprints. Then, Polygon 2 is generated based on the coordinates of

the four corners of each grid cell. The intersects function determines if the two polygons have

intersections and if so, the index of the intersected grid cell will be recorded in a list, as well as the

corresponding intersected area.

The code for finding intersections is shown below.

Figure 11 Code of finding intersected grid cells and area

• Multiprocessing on supercomputer

The 120,372 buildings need to sweep the 220,637 grid cells and it takes approximately 50 days to

run the simulation with a normal workstation without multiprocessing. Hence, we used

multiprocessing and separated the simulation into 12 jobs to run on CU Boulder’s RMACC

Summit Supercomputerd. It took less than 10 hours to finish the computation.

The code for multiprocessing is shown below.

d https://www.colorado.edu/rc/resources/summit

Figure 12 Code of multiprocessing

• Sample results

The generated results are in the following format. The first column shows the building index. The

second column shows the grid cell indices that have intersections with this building. The third

column shows the distributed building area in each of the intersected area.

Figure 13 Sample results of “gridcell.csv”

3.4 Distribute population to buildings

Based on the intersected grid cells found in the last step, this part deals with proportioning

population into each building according to the total floor area. As shown in Figure 14, the whole

procedure consists of three steps:

1. Assign buildings to its intersected grids based on building footprint and distribute building

area into each grid (refer to Section 3.3). It is to note that, the total area calculated based

on footprint does not equal to the floor area given by ORNL as floor number is not

considered. Hence, we scaled the area and distributed the actual total floor area based on

the area distribution coefficients in each grid.

2. Proportion daytime/nighttime population to each building inside each grid according to

floor area. We adopted the number that “people spend 87% of their time in buildings”. The

equation used to proportion the population is as follows. Take Bldg 1 in Grid 1 in Figure

14 as an example. Assume only Bldg 1 and Bldg 2 have intersections with Grid 1.

𝑃𝑒𝑜𝑝𝑙𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑖𝑛 𝐵𝑙𝑑𝑔 1 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑒𝑜𝑝𝑙𝑒 𝑖𝑛 𝐺𝑟𝑖𝑑 1 ∗ 0.87

∑ 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐵𝑙𝑑𝑔 𝑖 𝑖𝑛 𝐺𝑟𝑖𝑑 12
𝑖=1

∗ 𝐹𝑙𝑜𝑜𝑟 𝑎𝑟𝑒𝑎 𝑜𝑓 𝐵𝑙𝑑𝑔 1 𝑖𝑛 𝐺𝑟𝑖𝑑 1

3. Add up the total population of each building inside its intersected grid cells. We also

calculated the building people density by dividing the population by the total floor area.

Figure 14 Diagram of the procedure to distribute population to buildings

The results of this part are put in the file “final.csv”. The unit of population density is people/sq.m.

Figure 15 Sample results of “final.csv”

3.5 Building re-index and final results

As we cleaned repeated building records in Section 3.2, in order to make the final results match

the original building indices in “EPB_G2” file, we re-indexed the buildings in “final.csv”. The re-

indexed building data is saved in “reindex.csv” and has the following format.

Figure 16 Sample results of “reindex.csv”

4 Conclusion

In this report, the methodology and detailed techniques of conducting Virtual EPB Task 0b:

Enhanced Occupancy are introduced. The final deliverables of this task include 5 main codes, 1

assistive code, 3 input files, 7 output csv files, 1 technical report, and 1 README file. The detailed

descriptions of the above files are available in the README file.

The final results are presented in a csv file (“reindex.csv”) and include the daytime/nighttime

occupant number, as well as occupant density of every provided building in the utility area. With

the generated results of this task, readers should be able to further input these data into their

building models and conduct quantitative analysis on the impact of occupancy-enhanced schedules

on building energy simulation results.

Author Contributions: Conceptualization, J.N., W.Z.; methodology, J.W., Y.Y., J.N.; software,

J.W., Y.Y.; validation, J.W., Y.Y.; resources, W.Z., J.N.; data curation, J.W., Y.Y., J.N., A.R.;

writing—original draft preparation, J.W.; writing—review and editing, J.W., Y.Y., W.Z., J.N.,

A.R.; visualization, J.W.; supervision, W.Z., J.N.; project administration, J.N.; funding

acquisition, J.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by field work proposal CEBT105 under US Department of

Energy Building Technology Office Activity Number BT0305000, as well as Office of Electricity

Activity Number TE1103000.

Acknowledgments: The authors would like to thank Amir Roth and Madeline Salzman for their

support and review of this project. The authors would also like to thank Mark Adams for his

contributions to the AutoBEM software for model generation.

Conflicts of Interest: Disclaimer: This manuscript was authored by UT-Battelle, LLC under

Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States

Government retains and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to

publish or reproduce the published form of this manuscript or allow others to do so, for United

States Government purposes. The Department of Energy will provide public access to these results

of federally sponsored research in accordance with the DOE Public Access Plan

(http://energy.gov/downloads/doe-public-access-plan).

