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ABSTRACT

Buildings contribute 38% of emissions worldwide. Reduced buildings-
related emissions for use cases including building codes, policy

impacts, utility planning, building design, sizing HVAC, and con-
trolling building systems would benefit from relevant, standard-
ized, future weather files. A method based on IPCC-defined climate

change scenarios is described involving downscaling to regionally-
accurate, hourly meteorological variables. Multi-decadal variability

is then considered in generating future typical meteorological year

(fTMY) weather files to showcase quantified, climate-induced en-
ergy shifts for buildings in Maricopa County, Arizona.

CCS CONCEPTS

« Computing methodologies — Modeling and simulation; «
Applied computing — Engineering.
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1 INTRODUCTION

Buildings consume 35% percent of energy, 55% of electricity, and
contribute 38% of total emissions world-wide [8]. A sustainable and
adapted built environment may only be realizable by understand-
ing climate-induced weather impacts - including synergies and
tradeoffs among cost, energy, demand, emissions, and resilience
improvements. Maricopa County, Arizona is selected as one of
the fastest-growing US counties [16] to showcase building perfor-
mance impacts based on future Typical Meteorological Year (fTMY)
weather files covering all ASHRAE climate zones.

Models in this study were generated and simulated using Au-
tomatic Building Energy Modeling (AutoBEM) [11] software suite.
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AutoBEM has been used for city, county, utility, and nation-scale
building energy modeling analyses considering electricity-saving
technologies, peak-demand reduction techniques, climate projec-
tions, and other uses [10] [1] [3] [2]. AutoBEM utilizes OpenStudio
[18] to generate building energy models and EnergyPlus [5] to
simulate the models.

The simulated models of every building for this study leverages
physical characteristics of each building provided in partnership
with LightBox. LightBox has a long history collecting, unifying,
and maintaining property data across the United States, includ-
ing tax assessor records, parcel boundaries, and building footprint
boundaries. This data feed from LightBox is important for scaling
the building energy model because it would otherwise be a mon-
umental data engineering effort to acquire the data and ensure a
normalized schema and standardized fields. With over 300 property
characteristics and the important geospatial boundaries pre-linked,
the LightBox data truly enabled this scaled effort.

Future weather data for this analysis was gathered from Global
Climate Models (GCMs). The Intergovernmental Panel on Climate
Change (IPCC) created Representative Concentration Pathways
(RCPs) to standardize the work of climate researchers and to explore
how different levels of emissions would affect the global climate.
These pathways were defined by the amount of radiative forcing
(W/m?) expected in a scenario through 2100. Four scenarios were
created range from a low-emission scenario (2.6) to a high-emission
scenario (8.5). Shared Socioeconomic Pathways (SSPs) build upon
these RCP pathways to include socioeconomic variables to bet-
ter understand how these factors will impact the global climate.
These narratives provide baseline possibilities of different future
socioeconomic pathways that allow researchers to understand what
variables affect climate and how climate change mitigation can be
achieved in these possible future scenarios. The RCPs combine with
the SSPs to create a baseline future socioeconomic scenario based
on the SSP with climate policies imposed by the RCPs to gather a
future overall scenario [12]. These scenarios consisting of underly-
ing economic and climate mitigation conditions are used in GCMs
to produce predictions of future weather across the globe. This data
can be extracted and used in many fields, including building energy
modeling.

The building energy models created using AutoBEM are simu-
lated with future weather data from IPCC scenarios to estimate
how climate change will impact building energy use in Maricopa
County.

2 METHODOLOGY

Models for nearly 1.5 million buildings in Maricopa County were
simulated five times, with weather from different time periods, for
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a total of 7.35 million annual building simulations. For this analysis,
we assume number of buildings and building efficiency/technologies
remain the same in future years to clearly quantify energy use im-
pacts of climate change, rather than accurately forecast the county’s
energy use in future years.

2.1 Future Typical Meteorological Year
Weather

Future weather data was procured to be used in the building energy
simulations. While the spatial and temporal resolution of current
climate model data has improved over recent years, current resolu-
tions may not be suitable for city-based analysis for all locations. For
this reason, global climate model data was statistically downscaled
for this analysis. The methodology for downscaling is described by
Rastogi [13]. Future weather data from 2020 to 2100 was acquired
for SSP 5 and RCP 8.5, representing an aggregated scenario as will
be referred to in this document as SSP 5-8.5. SSP 5-8.5 represents
a scenario in which fossil fuels drive economic development in
the coming years, leading to increased emissions. This scenario
illustrates an upper bound for climate change impacts. Six differ-
ent climate models projecting this scenario that were used in this
analysis are shown below:

Table 1: Reliable weather files are generated using six IPCC
models were used to capture temporal and model variability.

ACCESS-CM2 [4]
MPI-ESM1-2-HR [7]

BCC-CSM2-MR [24]
MRI-ESM2-0 [6]

CNRM-ESM2-1 [15]
NorESM2-MM [14]

In building simulation, a Typical Meteorological Year (TMY) is
used to represent the weather at a location over a period of time.
Is contains a year of hourly weather data consisting of the most
representative months over the time period of interest. These rep-
resentative months are concatenated to represent a typical year of
weather for a given location, eliminating months and years that are
considered to be outliers. There is a public methodology for devel-
oping TMY weather data [23]. This same process may be applied
to future weather data to develop Future Typical Meteorological
Year (fTMY) weather data. The methodology retains the same ad-
vantages of reducing individual year variability; in this case, from
the climate model output. In addition to selecting the most repre-
sentative month over a time period for an individual climate model,
one may also select the most representative month over several
climate models. For this analysis, each month from each available
climate model was considered with the most representative month
from the total being selected. The resulting future weather data
is considered typical of a future time period and eliminates both
individual month, year, and model extreme variability. The time
length of the f TMY was chosen to be 20 years to be able to illustrate
changes in weather patterns over time while limiting the number
of building simulations necessary. This resulted in the development
of four fTMY files with the classic TMY for Phoenix also being
considered.
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Table 2: Typical meteorological weather files usually require
18 years of statistically-significant data for reliable base-
lines. Rather than highly-variable, individual-year weather
projections, this study’s fTMY files capture weather in 20-
year increments.

TMY fTMY 2020-2040 fTMY 2040-2060
fTMY 2060-2080 {TMY 2080-2100

2.2 Building Data Aggregation

AutoBEM requires several building characteristics as an input to
develop a building energy model. At a minimum, the building foot-
print, height, type, and age are needed. Other more specific building
data such as number of floors, heating and cooling type, window-
to-wall ratio, etc. may be used if available but are generally difficult
to acquire for large numbers of buildings. Data for this analysis
was provided by LightBox in the form of building and parcel data.

LightBox procures its data using a variety of methods. Most
property attribution and parcel boundaries are obtained through
county tax assessor departments. Building footprints are collected
from authoritative local government sources in many cases, oth-
erwise are created from either LiDAR, aerial, or satellite imagery
using computer vision techniques. LightBox has developed meth-
ods to merge these datasets and maintain property records over
time, making it easy to link data across systems.

This building and parcel data needed to be converted to a format
that could be used as an input to AutoBEM. The building data
was joined to the parcel data. This was done with a many-to-one
match of buildings to parcels, potentially joining many buildings
to each parcel. A unique building identifier (UBID) was assigned to
each building [22]. The building footprints were directly available
and were converted into a format usable by AutoBEM. A mapping
was developed between the parcel use code and Department of
Energy (DOE) prototype buildings [17]. DOE prototype building
energy models were developed to represent common buildings
in the US and are used to estimate building characteristics such
as occupancy, equipment, and many other building properties in
AutoBEM. As DOE prototype buildings only currently cover 75%
of the built environment, several parcel use codes did not have
a direct match. For these buildings, the nearest reasonable DOE
prototype was used. The height of the building was assigned or
calculated based on several LightBox parameters: height, number
of stories, and the ratio of building footprint area to total building
area. If the building height was available, it was used directly. If
the height was not available, the number of stories and floor-to-
floor height of the was used to calculate the height. The floor-to-
floor height of each building was estimated using typical values
for each building type. If neither the height nor the number of
stories were available, the number of stories was calculated using
the total area estimate for the building and the building footprint
area. The height was similarly calculated using the typical floor-to-
floor height of the building type and the calculated number of floors.
The year built was available in the parcel data and was grouped
into a building standard. These buildings standards based on the
time a building was constructed impact the materials and other
physical characteristics of the building.
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3 RESULTS

The average annual dry bulb temperature for each of the weather
files used is shown in Table 3. Under SSP 5-8.5, the dry bulb tem-
perature is projected to increased subtly in the near future then
drastically closer to 2100. Dry bulb temperature is the most im-
portant weather-based variable of building energy use as building
conditioning typically dominates the building end-uses. In a lo-
cation like Maricopa County that already uses lots of energy for
building cooling, one would expect the further deviation of outdoor
dry bulb temperature from indoor ambient setpoint to increase
building energy use in this location.

Table 3: The average temperature is projected to increase in
the future with the largest increase coming towards the end
of the century under SSP 5-8.5.

Scenario Average Dry Bulb Temperature (°F)
T™Y 23.8
fTMY 2020-2040 24.1
fTMY 2040-2060 25.8
fTMY 2060-2080 26.6
fTMY 2080-2100 29.1

The building energy use from each building energy simulation
and each future year range was aggregated. The total energy, elec-
tricity, and natural gas for the TMY weather simulation and the
percent difference compared to the TMY simulation is shown in
Table 4. Even though a range of years is shown in the Table, only
one year (a typical year) is used for the analysis, making all of the
values in the tables annual values.

While no measured data is directly available, a Maricopa County
greenhouse gas inventory report from 2018 shared that the elec-
tricity usage was about 0.16 quads (calculated from greenhouse gas
conversion) [9]. The simulation estimate of 0.20 quads from 2022
data used in this analysis is an overestimation of electricity use
but the rapid growth rate of of population within the county likely
accounts for a significant part of the difference.

In Maricopa County, electricity dominates the building energy
use as cooling is mostly used for building conditioning. One would
expect that as global emissions and temperatures increase under SSP
5-8.5, the need for cooling will increase while the need for heating
will decrease. As heating needs are low in Maricopa County, the
cooling increase should dominate the change into future years,
increasing the total energy usage. This is illustrated in 4 where the
percent increase in total energy from current conditions (TMY) to
2080-2100 is close to 12%. The largest increase in energy usage is
from 2060-2080 to 2080-2100. This shows that according to these
climate models, the most drastic of the impact of climate change
will be felt towards the end of the century. There is a decrease in
total energy use from TMY to 2020-2040. This difference is small
and can likely be attributed to the way the TMY weather data is
measured vs how the climate model predicts.

These electricity and natural gas values may be used to estimate
future costs and emissions. Energy costs were divided by sector
and taken from the US Energy Information Administration tables
for the state of Arizona [19]. Emissions rates were obtained from
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Table 4: The total energy use for all of the buildings in Mari-
copa County is shown for TMY weather. The percent differ-
ence of each of the scenarios is compared to TMY.

Scenario Total Energy Electricity — Natural Gas
T™Y 0.24 Quads 0.20 Quads  0.04 Quads
fTMY 2020-2040 -1.0% -1.0% -1.1%
fTMY 2040-2060 3.4% 4.6% -3.2%
fTMY 2060-2080 4.6% 6.9% -8.1%
fTMY 2080-2100 11.6% 15.9% -12.3%

the US Environmental Protection Agency tables, also for the state
of Arizona [20] [21]. The annual costs and emissions for each of the
scenarios is shown in Table 5. By 2100, under SSP 5-8.5 the annual
building costs are projected to increase by $ 1.2 billion while the
annual emissions are projected to rise by 3 million tons of CO2
compared to the TMY baseline.

Table 5: The total costs and emissions use for all of the build-
ings in Maricopa County is shown for TMY weather. The per-
cent difference of each of the scenarios is compared to TMY.

Scenario Total Costs Total Emissions
TMY $ 8.5 Billion 26 Million Tons CO2
fTMY 2020-2040 -1.0% -1.0%

fTMY 2040-2060 4.0% 3.4%

fTMY 2060-2080 5.85% 4.6%

fTMY 2080-2100 14.0% 11.6%

One would expect the rising temperatures of SSP 5-8.5 to have a
larger impact on the summer months in Maricopa County when
more cooling is required. The total building energy use for Maricopa
County for the month of July is shown for each of the scenarios
in Table 6. These massive future increases in summer energy will
require significant investment in electricity generation resources
to be able to meet peak demand loads.

Table 6: The total energy use for all of the buildings in Mari-
copa County is shown for TMY weather for the month of
July. The percent difference of each of the scenarios is com-
pared to TMY.

Scenario July Total Energy
T™MY 0.02 Quads
fTMY 2020-2040 1.9%
fTMY 2040-2060 11.1%
fTMY 2060-2080 14.3%
fTMY 2080-2100 23.0%

4 CONCLUSION

Nearly 1.5 million buildings in Maricopa County were modeled
using AutoBEM, a urban-scale building energy modeling software.
The building characteristics required to develop the building energy
models were supplied by LightBox in the form of parcel data. This
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data included footprints, physical building properties such as height
and number of floors, parcel use type, and year built. This data was
used as an input to AutoBEM to generate the buildings for Maricopa
County. The building energy models were then simulated using
TMY weather files representing current weather conditions as well
as fTMY weather files representing future weather conditions to
the year 2100. These files were developed using an ensemble of
climate models and year combinations for SSP 5-8.5. SSP 5-8.5 is a
climate scenario in which future economic development is driven
by fossil fuels, leading to increased future emissions. The resulting
simulation outputs were compared in terms of building electricity
and natural gas use as well as cost and emissions to understand how
the projected climate changes will impact use energy consumption
behavior in the future.

The results showed that annual building energy use would rise
in the future years under SSP 5-8.5, driven by the increase in dry
bulb temperature in an already hot climate. The largest increase in
building energy consumption comes near the end of the century,
with energy increases more than double the increases of previous
time periods. The summer month of July was also considered to
estimate the impact the projected increase in energy use would
have on the grid. The total energy in July is projected to increase
by about 23% compared to TMY conditions. Meeting this increased
summer demand will be a challenge and require investment in
additional electricity generation capability.
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