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Abstract

Buildings in the United States used 40% of total energy
use in the United States in 2020, providing a significant
opportunity to reduce energy use and the carbon foot-
print of the US. Modeling large numbers of buildings
in a particular region maximizes this impact, allowing
cities, utilities, or other stakeholders to determine the op-
timal solutions to reduce energy consumption in build-
ings based on modeling simulations. Building type is a
critical input variable from which many significant build-
ing characteristics such as occupancy, equipment, light-
ing, etc., can be inferred if this data is not directly avail-
able. Aggregating the building type in a non-intrusive
manner for large scale analyses can be difficult as there
is no public database with the function of each build-
ing. For this reason, another method of assigning build-
ing type using measured building energy use was devel-
oped. Measured building energy use was compared to
Department of Energy (DOE) prototype building energy
models for about 46 thousand buildings from the Elec-
tric Power Board (EPB) of Chattanooga service area to
determine which prototype building was most represen-
tative of each individual building. Two methods of com-
paring the energy usage to the prototype building energy
models at two different temporal resolutions were com-
pared, with the building type assignments used to gen-
erate building energy models. Simulation results were
compared to measured data to determine which method
had the highest accuracy. It was determined that Eu-
clidean distance was the optimal comparison metric and
reduction of temporal resolution from hourly to monthly
did not result in a major reduction in simulation quality.

Introduction

Buildings in the United States used 40% of total energy
use in the United States in 2020. While individual build-
ing energy modeling is a critical piece of carbon reduc-
tion in the US, modeling large numbers of buildings al-
lows stakeholders such as utilities to optimize their ser-
vice area and grid by understanding how their buildings
will perform under various conditions and with differ-
ent technologies. This large scale building analysis, of-

ten called urban building energy modeling (UBEM) re-
quires aggregation of a significant amount of metadata
describing each building to develop models. Building
type and building vintage are crucial input variables in
most UBEM analyses as they may be used to infer heat-
ing ventilation and air conditioning (HVAC) type, oc-
cupancy, lighting, equipment, and other energy related
building characteristics. While physical properties de-
scribing the building such as building footprint may be
publicly available, properties describing the performance
of the building such as building type or age are less
readily available and there is no publicly available na-
tional database that can be used to determine building
type. Obtaining the building type is typically done us-
ing public databases such as tax-assessor’s data or other
relevant databases. This can be difficult at a scale be-
yond an individual municipality as databases for differ-
ent cities or counties can be difficult to aggregate due to
formatting differences. Even if the building type data is
available, the function of the building may not match the
energy performance of the building. For this reason, a
method was developed to assign building types without
these databases and will capture the energy performance
of the building.

Measured sub-hourly meter data used in this analysis
was provided for more than 80 thousand meters for the
year 2019. These meters correspond to about 46 thou-
sand buildings. Measured building energy use can be
compared to DOE prototype building energy models to
determine which prototype is closest to the measured
data with this measured data often being available when
working with utilities. DOE prototype building energy
models are a set of energy models developed which rep-
resent common buildings in the US (US Department
of Energy 2019). Each of these prototype buildings
has a set of vintages that represent various construction
years and contains different levels of technology and effi-
ciency. The commercial prototype buildings cover 75%
of commercial building floor area in the US across all
climate zones. Various methods of comparison can be
used to compare the measured energy time series data
and the DOE prototype simulation energy time series



data at different temporal resolutions. The building en-
ergy models can be generated with the assigned building
type as determined by which DOE prototype building
is closest to the measured energy use. AutoBEM (Au-
tomatic Building Energy Modeling), a software UBEM
software developed at Oak Ridge National Laboratory,
then uses the assigned prototype building and vintage as
well as other physical characteristics about the building
to generate building energy models (New et al. 2020).
These buildings can then be simulated and compared to
the measured data to determine simulation accuracy and
understand which of the comparison methods is most ef-
fective in assigning building type.

Assigning correct input data to each building is a criti-
cal piece of generating a representative building energy
model and building type is one of the most impactful
variables. This is illustrated in Figure [T] below where
a single building geometry was generated and simulated
using each building type and vintage combination. The
difference in simulated annual energy use is significant
across building types for the same area.

400,000~ Q
=
=

300,000~

8 B e

Annual Electricity + Natural Gas (k

College

FullServiceRestaurant”

Hospital

Laboratory -

Outpatient”
PrimarySchoo

LargeOffice
QuickServiceRestaurant”

MediumOffice ~

MidriseApartment”
SmallOffice

HighriseApartment”
LargeHotel”
Residential”

RetailStandalone -
RetailStripmall”
SecondarySchool”
SmallHotel”
SuperMarket”
Warehouse

Building Type

Figure 1: The impact of building type can be seen as
the building geometry remained constant for each sim-
ulation. Some building types such as restaurants used
more than 10x the amount of energy as buildings such as
warehouses for the same building geometry.

Building vintage is also an important variable as the age
of the building affects several building properties such
as efficiencies, infiltration, insulation, etc. As expected,
older buildings tend to use significantly more energy than
newer buildings which utilize the latest technology and
are up to code. The energy use differences for a building

with the same geometry and different vintages is shown
in Figure
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Figure 2: The impact of building vintage can be seen as
the building geometry remained constant for each simu-
lation. Older vintages tend to use more energy.

It is important to develop a representative baseline build-
ing energy model so that any modification made to the
building simulation environment will be representative
of the actual outcome. There are multiple examples of
simulation perturbations that can be explored in UBEM.
One example of this is the energy, emissions, and cost
savings estimates of various building technologies or
retrofits. A representative building energy model should
provide representative savings estimates of the technol-
ogy and allow a stakeholder to estimate if implementa-
tion is worthwhile. Another example is simulation of
the building energy models under different weather con-
ditions. This could include future weather taken from
climate models or estimation of the impact of extreme
weather events such as heat waves or draughts allowing
stakeholders to understand the projected energy use and
demand under varying conditions.

This 46 thousand building analysis for the year 2019
builds upon previous exploratory work of 100 buildings
from the EPB service area for the year 2015 (Bass et al. ).
In addition to the scale of the previous analysis, another
limitation was the use of sub-hourly (15-minute) data
which is not widely available. This analysis investigates
that shortcoming by using more common resolutions of
hourly and monthly. The building type of the 100 build-
ings from the previous study was classified by hand in
the in an effort to both a quantitatively (correct building
energy usage) and qualitatively (correct building func-
tion) evaluate the assignment methods. It found that dif-



ferent building type assignment methods were better for
different methods of evaluation. For this study, it was not
possible to qualitatively label each building type, but the
quantitative results are typically more valuable in large
scale analyses.

Methodology

Measured electric meter data for the year 2019 was pro-
vided for 80,017 meters that were a part of the EPB ser-
vice area. Each electric meter was aggregated with any
other meters that share the same building and compared
to each DOE building type and vintage combination to
determine which was most similar. To ensure the closest
comparison of measured meter data and simulated proto-
type data, weather data from the same year was used. For
this reason, each prototype building and vintage combi-
nation (110 models) was simulated using a Chattanooga
weather file for the year 2019. For the comparison, me-
ters were aggregated per building and compared to pro-
totype building energy models using two different com-
parisons at two different temporal resolutions. The com-
parison process was a multi-step process: (1) the electri-
cal meters for each building were aggregated into a sin-
gle time series; (2) the energy use was divided by the
area to obtain the building energy use intensity (EUI);
(3) the building was removed if it did not contain the
proper number of hours in a year (8760 hours); (4) the
measured aggregated time series EUI was compared to
each prototype building and vintage combination simu-
lated time series EUI for the same year (110 combina-
tions) for each method; (5) the building type and vintage
combination with the minimum distance (or highest cor-
relation) was assigned to the building. The comparison
metrics and temporal resolutions are shown in Table[I]

Table 1: Two different methods of comparison were eval-
uated in comparing the measured data to the prototype
simulation data. These methods were evaluated at two
different temporal resolutions.

Comparison Method Temporal Resolutions

Euclidean Distance Hourly
Dynamic Time Warping Monthly

It is important to note that only electrical utility data was
shared and compared (no natural gas or other energy use
data was available). While this is a limitation, only an
estimated 33% of residential buildings use natural gas
in the south (US Energy Information Administration |),
minimizing the number of buildings this applies. Still,
an attempt was made to filter these buildings out of the

dataset by removing buildings that used less than 20%
of their annual energy use in the winter months (January,
February, December). Buildings that used less than 2%
of their annual energy in a single month were also not in-
cluded in the final dataset. This filtered out 12,432 from
the dataset for a remaining total of 34,303 left for evalu-
ation.

Euclidean distance is a straightforward metric from the
the distance between each point in the measured data
is compared to each point in the prototype simulation
data. Euclidean Distance assumes each energy measure-
ment corresponds directly to the simulated energy use
at the same time, not allowing for offsets. As the same
weather data from the year 2019 was used, this may be
a positive as the simulated energy use should be simi-
lar during the equal weather conditions. While this is
true, individual buildings do not all perform consistently
as a prototype simulation would. For this reason, dy-
namic time warping (DTW) was also considered (Sakoe
and Chiba 1978). DTW allows for non-linearity in the
time dimension, meaning each measured point is com-
pared to points at different times in the simulation data,
allowing for time shifts. Specifically, we use a FastDTW
implementatin of DTW (Salvador and Chan 2004). The
building type and vintage combination with the smallest
distance was assigned.

Once the most similar building type and vintage was as-
signed for each method, the building energy models were
generated using AutoBEM (Automatic Building Energy
Modeling) (New et al. 2020). AutoBEM is a UBEM soft-
ware which takes a set of input data about a building and
develops a building energy model. The most coarse set of
input data necessary to develop a model include 2D foot-
print, height, building type, standard, and climate zone.
More specific data about the building (such as number
of floors, lighting, HVAC, etc.) may be used if available
but this data may be inferred using these general charac-
teristics. These inferences are made using the estimates
from each of the DOE prototype building values, further
increasing the impact building type and vintage have on
the simulation output.

The generated buildings are then simulated using a
weather file from Chattanooga in 2019 and compared to
the measured data to evaluate quality of each simulation
with the assigned building type and vintage. Results are
adjusted so the sum of the simulation data is equal to the
sum of the measured data. While more complex ways
of adjusting or calibrating the building energy simula-
tions are possible, this simple and consistent method for
eliminating scalar bias allows for equal comparison of
the classification methods. (It could be useful to con-



sider unadjusted values and that could be considered for
future work)

Results

The computing time of the two methods is a major fac-
tor when considering a large number of buildings. The
average time to classify a single building by comparing
aggregating measured EUI to simulated prototype EUI
of the same year is shown in[2] The massive difference
between the time to classify a building using DTW is a
major drawback of the method. DTW takes more than
100x longer to classify a building than the other methods
mentioned. This weakness is amplified when considered
thousands of buildings for UBEM analyses.

Table 2: The computing time to classify a single building
is orders of magnitude larger for the dynamic time warp-
ing method and should be considered when choosing a
comparison method.

Comparison Method Time To Classify Building
Euclidean Distance 0.117s
Dynamic Time Warping 133.5s

The building type and vintage classifications of each
method provide a preliminary glimpse into each method.
The building type classifications for each method are
shown in Figure 3] In the visualization, building sub-
types are grouped together for easier visualization (i.e.
“small”, “medium” and “large” offices are all grouped
together as “office”). One would expect a typical build-
ing type distribution in the United States to contain
mostly residential buildings, followed by offices, re-
tail, and warehouses though it is important to remember
the assigned building type may not be the same as the
functional building type due to differences in individual
building energy use patterns. Though classification by
building energy performance rather than function may
provide a better baseline model, it is important to con-
sider that the properties (equipment, materials, etc.) are
more likely to be different to the actual building than if
classified using the function of the building. If a high
energy intensity house is classified as a restaurant, the
equipment of the building is more likely to be different
and could lead to discrepancies when considering sav-
ings and other analyses. However, these buildings that
perform differently than their function are inherently out-
liers and are only a small number of the total buildings.

An interesting observation about the Eucldiean and
DTW is the number of buildings classified as ware-
houses. The amount of warehouses in these classifica-

tion methodologies warrants further investigation. It is
possible that lack of information derived from the mea-
sured and building data may be the cause of these classi-
fications. Lack of measured natural gas data (estimated
to be in 33% of residential buildings in the south (US
Energy Information Administration ))), over-estimation
of conditioned floor area, or missing data could lead to
lower measured EUI values and warehouse classifica-
tions, as the warehouses have the lowest prototype EUL
While this is a limitation of the available data, it could be
remedied with additional energy data or more descriptive
building data.
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Figure 3: A majority of residential buildings would be
expected for this sample. The distance based metrics
(DTW, Euclidean) has large numbers of warehouse likely
caused by low measured EUI values.

When considering vintage classifications, it should be
noted that every building type does not have a model for
every vintage. Residential buildings, laboratories, and



high-rise apartments, for example, do not have pre-2004
vintages. This skews the vintage distributions for some
classifications methods that classify many buildings as
one of these types. According to the Commercial Build-
ings Energy Consumption Survey (CBECS) 2018, 55%
of commercial buildings were constructed before 1980
while 82% were constructed before 2000 (US Energy In-
formation Administration 2018)). According to the Resi-
dential Energy Consumption Survey (RECS) 2015, 46%
of residential buildings were constructed before 1980
while 75% were constructed before 2000 (US Energy
Information Administration 2015)). Considering all US
buildings, 54% were constructed before 1980 while 82%
were constructed before 2000. These US building age
distributions are interesting to note as the assigned dis-
tributions are tend to be newer. This is not caused by the
lack of pre-2004 residential prototype models as for the
Euclidean hourly classification schema, only 2% of the
18,096 buildings were classified as 2004 while only 4%
were classified in the 2007 vintage while 62% were clas-
sified in the newest vintage (2019). It is again possible
that the inherent issues with the measured energy data
such as lack of measured natural gas or over-estimation
of conditioned floor area could lead to lower measured
EUI values and newer vintage classifications. Another
possibility is that building age distribution may not nec-
essarily represent the standard performance of a build-
ing of that age if renovations or updates have occurred,
which is possible based on these vintage assignments.

The vintage with the most buildings for these methods is
2013. For the Euclidean hourly classification, 85% of the
buildings classified as 2013 were warehouses. 2013 was
by far the most common of the vintages for warehouses
for the Euclidean hourly classification with 94% of the
warehouses classified as 2013. The same trend was true
for the Euclidean monthly assignment. This is the build-
ing type and vintage combination with the lowest overall
EUI This further attributes the low measured EUI val-
ues to this classification. Even though these buildings
may not actually be warehouses or the newest vintage,
the energy performance of these buildings may be better
represented by the warehouse model.

Measuring the quality of the simulation compared to the
measured data is the important factor in the analysis.
In building energy modeling, coefficient of variation of
root-mean squared error (CVRMSE) is a common met-
ric used to determine the quality of a baseline simula-
tion compared to measured data. The CVRMSE values
shown in this document are base AutoBEM models and
have no further modifications. This is because the evalu-
ation of different methods is most important for work. If
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Figure 4: The large amount of 2013 vintages are likely
caused by the high number of warehouses. The newest
vintage of warehouses used for this analysis was 2013.
This vintage had the lowest EUI of any prototype and
was likely classified for low energy intensity buildings.

other UBEM analysis was being done with these models,
additional adjustments (electrification, insulation, COP,
etc.) would be taken based on the area of interest to fur-
ther improve the models. This leads to lower than typical
hourly and monthly CVRMSE values.

The American Society of Heating, Refrigerating and Air-
Conditioning Engineers (ASHRAE) Guideline 14 states
that <15% monthly or <30% hourly CVRMSE are of-
ten considered “investment grade” (ASHRAE 2014).
The equation for CVRMSE is in Equation [T, Though
ASHRAE guideline 14 is used as a benchmark, it was
created as a benchmark for evaluating individual build-
ing energy models that were developed by hand. It is
much more difficult to attain these benchmarks for indi-



vidual buildings when modeling thousands and less de-
scriptive building data is available. For typical large-
scale workflows, the models can be further improved
with building or location specific data, but no further im-
provement was explored for equal comparison of each
method.
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The CVRMSE values for each method are ultimately
most important metric as it measures the quality of the
baseline model. The hourly and monthly CVRMSE
values for Euclidean and DTW at hourly and monthly
comparison resolution are shown in Figure 5} Monthly
CVRMSE values are naturally lower than hourly as the
comparison is between 12 points rather than the 8760
point hourly comparison and thus has less variance.
The monthly classification resolution has lower monthly
CVRMSE rates while the hourly classification resolution
has lower hourly CVRMSE rates. This makes sense as
some variance is lost during monthly aggregation. It
is interesting to note that similar monthly and hourly
CVRMSE rates can be achieved by comparing monthly
data as hourly data. This implies that building type and
vintage may be assigned when only low resolution data
is available. It may even be possible that an annual EUI
value may be sufficient for a rough estimation for certain
use cases.

The DTW and Euclidean distributions are very close for
monthly CVRMSE but the Hourly Euclidean classifi-
cation has the lowest hourly CVRMSE. This is impor-
tant as the Hourly Euclidean classification captures the
higher resolution signal of the measured data best out of
these methods.

Viewing CVRMSE values separated by building type
and vintage provide insight into the quality of the classi-
fications for each method and resolution. The hourly and
monthly CVRMSE values for each method and resolu-
tion separated by building type and vintage are shown in
Figure 6]

There are not many significant differences between Eu-
clidean and DTW at hourly and monthly resolution in
terms of CVRMSE. The building type with the largest
CVRMSE is the warehouse, indicating that the is-
sues mentioned previously with the warehouse could
be grounded. It also could be that this is the building
type with the highest number of classifications and is
most susceptible to individual building variance. Ho-
tels, medical, and restaurants have the best overall hourly
CVRMSE and apartments and restaurants have the best
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Figure 5: The hourly classification resolutions have
lower hourly CVRMSE values while the monthly classifi-
cation resolutions have lower monthly CVRMSE values.
The Hourly Euclidean method has the best overall hourly
CVRMSE by a significant margin.

overall monthly CVRMSE. It is interesting to consider
differences in monthly and hourly CVRMSE. Though
building types such as offices and retail have some of
the better monthly CVRMSE metrics, the higher fidelity
signal of the measured data is not being captured as they
have some of the higher aggregate hourly CVMRSE val-
ues.

The other major difference is low hourly CVRMSE val-
ues for the offices and retail classified by the Hourly Eu-
clidean method compared to the other methods. Offices
and retail only make up a combined 0.6% of the clas-
sifications for the Hourly Euclidean method and there-
fore do not tell the full story as to why this method
has the best hourly CVRMSE in Figure [5] The Hourly
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Figure 6: Warehouses have the highest CVRMSE but this may be caused by the large amount of buildings classified
as warehouses. Medical and offices have the lowest. The Hourly Euclidean has the lowest hourly CVRMSE for most
vintages.

Euclidean classification has the best hourly CVRMSE Conclusion
for all vintages 2010 and before by a significant mar-
gin. This shows why the hourly CVRMSE metric qual-
ity from Figure[5] This method seems to be the best at
properly identifying the vintage of the building.

This work highlights the importance of assigning proper
building type and vintage in UBEM. Measured building
energy data can be used to infer building type and vin-
tage by comparing the measured energy data to proto-



type building energy model simulations. Two compari-
son methods are evaluated including Euclidean distance
and DTW. These methods are evaluated at hourly and
monthly temporal resolution as high resolution data may
not be available for all cases. This analysis utilized a
sample of 46 thousand buildings that were filtered to
34 thousand buildings that were determined to have a
full year of electricity data. These buildings were from
the EPB service area in Chattanooga, TN. These build-
ings were generated as building energy models using the
assigned building type and vintage from each method
and temporal resolution and simulated to be compared
to measured data to better understand their performance.
The building type and vintage assignments were consid-
ered for each method. The Euclidean and DTW meth-
ods classified a large number of buildings as warehouses.
This is likely due to a combination of three primary fac-
tors: (1) Lack of natural gas data; (2) over-estimation of
conditioned floor area; (3) missing or faulty data. This
issue could be remedied using scaling or with additional
data and could be addressed in future work.

CVRMSE was used as the evaluation metric for evaluat-
ing the quality of the simulation compared to the mea-
sured data. CVRMSE can be evaluated at an hourly or
monthly level. The hourly classification resolution had
better hourly CVRMSE values while the monthly classi-
fication resolution had better monthly CVRMSE values
for each method. Euclidean and DTW had similar over-
all CVRMSE but the Euclidean comparison at hourly
resolution was the best overall method. Adding that
classification using DTW took about 100x longer than
Euclidean, Euclidean distance was the best comparison
method used in this analysis. As the temporal resolu-
tion of the measured data decreases, the hourly quality of
simulation fit decreases. Still, the increase in CVRMSE
from hourly classification resolution to monthly is low
enough that it could be used in analyses. In fact, the
difference is small enough that it is possible the annual
measured EUI value may be compared directly to annual
simulation data for classification data if only aggregated
annual values are available. This is fully dependent on
the type and level of granularity of a particular analysis.
This could be considered in future work.
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