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Abstract

Domain scientists hope to address grand scientific challenges by explaiaguhdance of data generated and made available through modern high-throughput
techniques. However, the impact of this large volume of data is limitédss researchers can effectively assimilate the entirety of this complex inforraation
integrate it into their daily research; interactive visualization tools are calletb fsupport the effort. Specifically, typical scientific investigations canenale
of novel visualization tools that enable the dynamic formulation and finexuof hypotheses to aid the process of evaluating sensitivity of kegnpeters and
achieving data reduction. These general tools should be applicable to nsaiplides: allowing biologists to develop an intuitive understagadif the structure of
coexpression networks and discover genes that reside in critical positiordagfital pathways, intelligence analysts to decompose social networks)iarade
scientists to model and extrapolate future climate conditions. By ugingpn as a universal data representation of correlation, our novel visualizatiemtploys
several techniques that when used in an integrated manner provide innovatj&ahedpabilities. Our tool integrates techniques such as graph layoutatjueli
subgraph extraction through a novel 2D user interface, quantitative subgxarphtien using graph-theoretic algorithms or by querying an optimized B-tree,
dynamic level-of-detail graph abstraction, and template-based fuzzy classificatigmesiral networks. We demonstrate our system using real-world workflows
from a couple large-scale systems.

Keywords: Parallel coordinates, large data visualization, information visualizatianysfecontext techniques, visualization in physical
sciences, life sciences and engineering, graph and network visualizaitinformatics visualization, focus+context techniques

Index Terms: 1.3.6 [Computer Graphics]: Methodology and Techniques—Interadechniques.

1 INTRODUCTION

Today's scientific research frequently generates large amountanfitaiive data that is specific to the domain being studied. At the bleeding
edge of science, specialists often seek out new ways to torture theimdéiaaonfesses to some new property, gives rise to process insight,
or points toward a paradigm shift. While domain-specific analytic technigerainly have their use, there exist mature bodies of general
mathematical analysis in statistics, graph algorithms, and artificial intellighateontinue to invade a broad range of scientific disciplines.

Perhaps the most common data framework for scientific data is the ideditsés with properties, often referred to as multivariate data,
which obviates the rise of the spreadsheet and database storagasehigmdistinct entities in rows and a list of properties (aka. features or
attributes) in columns. To list only a few examples:

1) Climate data - rows of latitude/longitude grid locations and columns of leaisdsf environmental variables over centuries

2) Systems genetics data - microarray probe sets with correspondiogngeposition information for a given strain, RNA transcript
abundance for different tissues, genotype from the genetic progemitantitative trait locus mapping information, correlation cluster to co-
operative probe sets (gene clusters), genetic pathway informatidnekation to some observable characteristic or behavior of the individual
contributing the sample

3) Physical systems - individual grid points or (sub)particles with apoading position, velocity, acceleration, jerk, or other (possibly
simulated) measurements

4) Social networks - individuals with specific relation types and strengitiisother individuals, organizations, locations, or materials

Multivariate data can straightforwardly be analyzed using statistics, gafghithms, and artificial intelligence. In fact, a particular
analytic process can be wholly or partially automated by chaining togetheratgechniques in each of these domains. However, the
quality and accuracy of such a process is a complex tradeoff due &taimty both innate to the data as well as inherent in its method
of representation. For example, which method of normalization is apptegdor a specific type of statistical analysis, which threshold is
appropriate for a certain complexity of graph analysis, and how do yapitext and missing features to representations amenable for artificial
intelligence methods? The expert user's domain knowledge plays aalgghrbalancing tradeoffs adequately for the scientific question at
hand. It is common for such investigations to leverage human-in-tigdontrol over an iterative process of data visualization, user input,
and computer operations on the data. The unique capabilities of real-timacintiy using modern, hardware-accelerated graphics to take
advantage of the human eyes broadband pathway to the brain and &itifielliigence to quickly process human-intuitive, semantically
rich inputs are called for to facilitate the process. To facilitate this procgs®plose an interactive graph visualization system which uses
correlation calculated from a database to generate a weighted, undigeamd This graph can be displayed in several ways, undergo
processing from graph-theoretic algorithms, and has a myriad of dateiated with each vertex which can subsequently undergo complex
analysis. | propose to integrate several well-known and novel metbodecomposing the correlation matrix in order to discover structure
and relationships within the data. In the remainder of this proposal, lidesetevant domain-specific background work in section 2, relevant
technical background in section 3, and propose several new teesnégua extensions to existing systems that assist interactive exploration
in section 4, example results from a couple areas in section 5, and outleqgaoximate schedule of milestones | aim to achieve in my
dissertation work in section 6.

2 APPLICATION DOMAINS BACKGROUND

We will apply the graph-based visual analytics framework to sevegicgtion-specific domains. While the proposed framework should be
general enough for application to nearly any domain, | provide backgt information on several that are relevant to ongoing collaborative
research between The University of Tennessee and Oak Ridge Natarmaatory.
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2.1 Systems Genetics Data

“Making sense of genomics is risky,

But with database builders so frisky

Gene expression in brains

May one day explain

A mouse’s obsession with whiskey.”

-Poet Laureate of the Neuroscience Program, University of lllindigrbana-Champaign, November 27, 2006

Let us consider an analogy familiar to the field of computer science:iablarstored at a location in the main memory of a computer.
In genomics, one can consider the entire memory space roughlyspon@ing to the genome, a location-specific variable as a gene, and
the value stored in each variable as the genotype at that location. Theo¥agenotype is transmitted by each parent. The fact that each
location can take on different genotypes is termed polymorphism, siecgathhe genome location for different individuals may hold (parts
of) different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetigno@lem organism, while a phenotype defines the actual physical
properties, or traits, of the organism. Although genetic makeup is nobtedagtor influencing an organism’s phenotype, it is often a strong
causative predictor of the trait. Consider common traits relating to physg@arances as an example. Having exactly the same genotypes,
identical twins have strikingly similar appearances (phenotypes), yetadenvironmental influences they may not look exactly the same.

It is of great interest to unravel the inner workings of how genotypfisance molecular networks to affect a phenotype such as agility,
seizures, and even drug addiction, to name a few. Geneticists haveysdiFdaeved great success in associating a genotype and phenatype fo
a trait determined by one gene (i.e. monogenic traits), but much pratention is now focused on traits that are determined by many genes
(i.e. complex traits). These traits are continuously distributed randoimbkes and thus referred to as quantitative traits. Linear modeling
is used to identify genotypes that predict phenotype values. The locdtibase genotypes are quantitative trait loci (QTLs) [3]. Detected
via statistical methods [9], QTLs are stretches of DNA highly associatedangihecific phenotype, analogous to genetic landmarks which
roughly indicate the position of the active gene. QTLs are not definedrptfine granularity; they usually correspond to areas large enough
to hold several genes. The genetic polymorphism (genotypes) in rgigglareas of a set of loci, as a group, influence structure and fanctio
on both molecular and organismic scales.

For decades, scientists have systematically randomized and then stapdizetic variation in groups of mice to effectively create a
population of clones. These mice, called “recombinant inbred” (R8irstr function as a reference population which is used by groups
worldwide in order to allow a basis of comparison and integration acrofselit experiments [8]. This is very important from a statistical
standpoint as it implies that the potential size of the combined datasets isttbelty unbounded, resulting in extremely high dimensional
data. Sufficient confidence is currently allowing integration of diveislbical data across levels of scale in an approach related to systems
biology, “systems genetics.” This integrative approach for multiscadenamtiorgan phenotypic datasets has only become feasible in recent
years and relies heavily on statistical techniques, complex algorithmsphigitrmance computing and visualization.

Let us consider an analogy familiar to the field of computer science:iablarstored at a location in the main memory of a computer.
In genomics, one can consider the entire memory space roughlysponging to the genome, a location-specific variable as a gene, and
the value stored in each variable as the genotype at that location. Theofagenotype is transmitted by each parent. The fact that each
location can take on different genotypes is termed polymorphism, siecgatihe genome location for different individuals may hold (parts
of) different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetignoélem organism, while a phenotype defines the actual physical
properties, or traits, of the organism. Although genetic makeup is nobtadactor influencing an organism’s phenotype, it is often a strong
causative predictor of the trait. Consider common traits relating to physg@arances as an example. Having exactly the same genotypes,
identical twins have strikingly similar appearances (phenotypes), yetadenvironmental influences they may not look exactly the same.

It is of great interest to unravel the inner workings of how genotypfisance molecular networks to affect a phenotype such as agility,
seizures, and even drug addiction, to name a few. Geneticists haveyaediFdaeved great success in associating a genotype and phenatype fo
a trait determined by one gene (i.e. monogenic traits), but much pratention is now focused on traits that are determined by many genes
(i.e. complex traits). These traits are continuously distributed randoiabkas and thus referred to as quantitative traits. Linear modeling
is used to identify genotypes that predict phenotype values. The locdtibase genotypes are quantitative trait loci (QTLs) [3]. Detected
via statistical methods [9], QTLs are stretches of DNA highly associatedangihecific phenotype, analogous to genetic landmarks which
roughly indicate the position of the active gene. QTLs are not definedrptfine granularity; they usually correspond to areas large enough
to hold several genes. The genetic polymorphism (genotypes) in rgigglareas of a set of loci, as a group, influence structure and fanctio
on both molecular and organismic scales.

For decades, scientists have systematically randomized and then stapdizetic variation in groups of mice to effectively create a
population of clones. These mice, called “recombinant inbred” (Rgirstr function as a reference population which is used by groups
worldwide in order to allow a basis of comparison and integration acrofs it experiments [8]. This is very important from a statistical
standpoint as it implies that the potential size of the combined datasets isttbalty unbounded, resulting in extremely high dimensional
data. Sufficient confidence is currently allowing integration of diveislobical data across levels of scale in an approach related to systems
biology, “systems genetics.” This integrative approach for multiscadenamtiorgan phenotypic datasets has only become feasible in recent
years and relies heavily on statistical techniques, complex algorithmspbkigrmance computing and visualization.

2.2 Climate Data

“Prediction is very difficult, especially if it's about the future.”
-Niels Bohr, Nobel laureate in Physics

Climate scientists have very large and ever-growing datasets usingdgnaih data from centuries of measurements. However, these
datasets have many problems that hinder their effective analysisnganeasurement times, irregular grid locations, quality of measure-
ments (occasionally dependent upon untrained individuals or faulfpmgumnt), inaccurate bookkeeping, differing number of climatological



variables over time, a plethora of missing values, and changing stanafanteasurement over time. These are but a few of the sources of
uncertainty inherent in climate data.

To be sure, scientists are always working on ways to remove this uimtgrtollect more accurate measurements with greater certainty,
and continue to improve as more advanced technology becomes dapldylavertheless, climatologists have been tasked with extrapolating
to predict the future of our planet’s climate. This is often approachedgffirareating statistical models from the collected data for individual
variables to determine the relationships among the variables and incimgdteese into complex, number-crunching simulations which can
carry the current state of the climate into the future.

Recent work at Oak Ridge National Lab has focused on the quantitatiyeentation of the global climate into ecoregions, also known
as climate regimes [19]. These areas which have been spatio-temptuatgred based on similar environmental factors can have many uses
in management, legislation, ecological triage, and comparison of sthaiaunlation models [22].

Oak Ridge National Lab has several high performance computingnasothat are leveraged to keep them on the cutting edge of research
and innovation. In the relevant climate work, supercomputers aretased parallel k-means clustering for ecoregion identification as well
as for model-fitting routines to predict one variable in terms of others. fifisess creates a multitude of data which can be difficult for even
an expert in the field to look through efficiently or effectively during thegaiss of knowledge discovery. Visual analytics tools are called for
to aid this process.

Building on much related work from statistical plots, we propose the usea@lpl coordinates to allow intuitive visualization and
interaction with data across any number of dimensions. We also plan tmerantomated trend detection algorithms to highlight potential
inter- and intra-variable relationships of interest. These trends andealatdisns are then projected onto a geo- registered map which is the
typical method of presentation for climate scientists.

3 TECHNICAL BACKGROUND

A graph is a universal concept used to represent many differebtgms. While more restrictive layouts, such as trees, should be ussd w
possible, this work will address the general case of graph interactiorldtion to this work, we categorize methods to comprehend graph
properties as: (i) those solely depending on algorithms, i.e. the algoritppimach, and (ii) those incorporating human input as an integral
component, i.e. the interactive approach. Let us review both appeséc turn.

3.1 The Algorithmic Approach

Algorithmic research to automatically compute graph properties of vakiods has been extensively studied. Well known examples include
clique, strongly connected components, induced subgraph, shoatest and k-connected subgraph. Let us use clique analysis aza rep
sentative example. By filtering out edges with weights below a certain thiceshgene network with high co-regulation should appear as a
complete subgraph, or a cliqgue. Hence, it is natural to consider clicalgsiin gene expression data analysis.

However, clique analysis is an NP-complete problem. Even though rffiemt fixed-parameter methods [35] are currently being used,
it is still a very time consuming procedure to compute. It is also hard to édgs with negative weights in the context of clique analysis,
so common approaches typically preprocess the graph to convedgallveeights to absolute values. The impact of information loss due
to thresholding is hard to evaluate and is further complicated by the peesénoise. While partially resolved by paraclique [35] methods
in which a few missing edges are acceptable, additional problems ardup&o such as the meaning of paraclique overlap which may be
handled differently depending on the working hypothesis.

Such shortcomings apply to different graph algorithms in varying @sgrbut are generally inherent with graph theoretic analysis.
However, this should in no way prevent graph algorithms from beind fmresuitable problems. From this perspective, it would be greatly
advantageous to develop a visual, effective and efficient feediankefvork. In this framework, a human expert is enabled to quickly
identify imperfect portions and details of the data, and not only remogaguitarities but also to significantly reduce the dataset’s complexity
by interactively constructing various levels of abstraction. The resultiolglem space would be more appropriate for graph theoretic analysis
to be applied. In fact, some undertakings in visualization research haaglypadopted similar approaches [44].

Here we note that our goal is neither to accelerate all computation in a stsewtiskflow nor replace computation solely with visu-
alization. We hope to develop a visualization framework which allows navigdtimugh gene expression data and segmentation of the
appropriate data for further study. In this way, s/he can flexibly chandeapply the right computational tool on the right kind of problem.

3.2 The Interactive Approach

Much related work in visualization follows the Information Seeking Mant@ppsed by Shneiderman [51]. That is: overview first, zoom
and filter, and then details on demand. At each of the three stages, ther@amber of alternative approaches, many of which are highly
optimized for a specific application. A key driving application in this arealdegen visualization of social networks [43].

To provide an overview, the graph can be rendered in the traditiona&-lad setting or adjacency matrix [1], and more recently as a
self-organizing map [33]. When using the common node-link model, ivistgl to develop a sufficient hierarchy of abstraction to deal with
even moderately sized graphs. Solely relying on force directed methedspring embedding [39]) for graph layout cannot resolve Visua
clutter and may still significantly hamper visual comprehension.

Structural abstraction can be computed either bottom-up or top-dovimotiom-up approaches, one can cluster strongly connected com-
ponents [34], or by distance among nodes in the layout produced foyre £mbedder [56]. Top-down approaches are often used falt sm
scale or largely sparse graphs in which hierarchical clusters areedrg recursively dropping the weakest link [4]. More comprehensi
systems employ clustering algorithms that consider a number of diffecele-edge properties [2].

Semantic-based abstraction is a more powerful mechanism for prg\adioverview, zooming, or giving details. This approach is tied
to its intended application since it requires specific domain knowledge ofetihargic information [52]. When combined, structural and
semantic abstraction can prove to be very effective [49]. Also in [@#8],shown that overview and level-of-detail (LoD) enabled browsing
can be based on induced subgraphs of different sizes.

There are many well-known packages that have evolved over timediisply address visualization of gene correlation data using node-
link diagrams such as Cytoscape [47] and VisANT [23]. These toolbuiteto be web accessible and thus render node-link diagrams using
2D layouts. While 2D layouts are accepted by the community, such paskeggect modern 3D acceleration hardware, rarely scale well



beyond hundreds of nodes, and do not leverage 3D operationsatf@ploven to be the preferred representation and navigation technique
for our users. Due to the common 2d framework, and in contrast tei@éman’s principle, biologists are typically forced into a workflow
in which filtering must be first applied and a global overview of the entitasd simply isn’t possible. Our software leverages both OpenGL
and efficient C compilation to facilitate interaction with tens of thousands oésiadhile maintaining interactive performance with complex
visual analytics tools not currently available in these packages. Cumathtinvolves integration with a lightweight API [48] to allow
web-based interaction and data-sharing so our software may beymssdistically with such well-developed packages.

In contrast to the node-link model, an adjacency matrix is a clutter fredanter While an adjacency matrix interface for large data
is limited by the resolution of the display, it is still ideal for a bird's eye view. [§ome patterns such as clique and bipartite subgraphs
could be very distinctive when examined in an adjacency matrix. Howavyeoper order of vertices is critical. The community has studied
this problem at length. In [21], a comprehensive survey on automeattex/order is included. In general, binary, undirected graphs are the
most straightforward. While weighted graphs needed more compliclfedtams, graphs with negative weights are less studied. Based on
adjacency matrices, LoD type of browsing is often supported as well [1]

Due to the complexity involved in computing a high quality overview of a grapéearchers have also attempted to use self-organizing
maps [33]. Self-organizing maps are a dimension-reduction techmitjigh adjusts weights in a manner similar to neural networks to
discretize the input space in a way that preserves its topology. The sultlise(usually) a 2D field that can be conveniently rendered as a
terrain.

By creating a spatial layout for a graph, it can be interactively visualid@te preserving the data’s underlying topological relationships.
Typical interaction methods include focus+context methods (i.e. zauahfitter), graph queries using language-based methods [50], and
filtering databases of graphs using graph similarity metrics, typically basedn-trivial graph theoretic algorithms [44].

Social networks are currently a primary driving application of interaatiethods for graph visualization. This has resulted in non-binary,
non-positive definite weights not being as thoroughly studied. Also, toolextracting highly connected subgraphs from this data in a way
that addresses the inherent uncertainty appear to be lacking. Whergasnetworks have already been used for volume segmentatipn [55
similar approaches have rarely been attempted in graph visualizations imdik, we propose several tools that allow traditional quantitative
drill-down as well as qualitative selection and filtering techniques to aid doexgierts with their analysis.

3.3 Parallel Coordinate Plots

Parallel coordinates, originally introduced by [26], have become asingly popular as a scalable technique for visualization and interaction
with large multivariate data. A parallel coordinate plot (PCP) is a genetializaf a Cartesian scatterplot in which axes are drawn parallel to
one another. This type of diagram highlights the more common casealfghiam, rather than orthogonality, present in higher-dimensional
geometry. PCPs also allow an arbitrarily large number of dimensionsIistaitively within the plane, whereas human perception degrades
quickly as dimensions higher than three are projected to a 2D display.

PCPs developed as a way to accurately visualize and thereby gain ins@htsfiltidimensional geometry. From their onset, several
mathematical properties were proven which enhanced their interprebstidefining analogues between parallel coordinate space and two-
dimensional Cartesian scatterplots [37]. These included the point-lims|dteon-rotation, and cusp-inflection point dualities [25, 26]. This
technique quickly found its way into Vis [24] and perceptual propertiet ss the importance of axis orderings were considered as early
as [60]. While [60] gives equations for selecting an order from a fakes, it in no way addresses optimality criteria such as those being
proposed in this paper.

There has been much research to alleviate some of the inherent wse&md PCPs such as visual clutter when dealing with large data.
Techniques for clutter reduction include clustering, subsampling, aisdredirection. In [13], the authors use a clustering algorithm to
create a hierarchical representation for PCPs and render a gradhaete to visually encode variance within a cluster. In [30], the authors
use K-means clustering, a high precision texture to reveal specific tfmhssters, multiple transfer functions, and an animation of cluster
variance to accurately convey the clustered data while minimizing cluttetOljp the authors provide a sampling lens and demonstrate that
random sampling of lines within the lens is the optimum choice in the tradeoffeesttheir accuracy metric and performance. In [59], the
authors use the grand tour algorithm to generate a d-space generabtagidn of coordinate axes which can be used to confirm separability
of clusters.

PCP implementations often operate on binned data and even uncluttersdoR&#® demonstrate data ambiguities. The traditional
straight-line rendering can be augmented by using energy-minimizati@mdter curved lines as in [62]. Likewise, the authors in [16] used
Gestalt principles of good continuation in order to address ambiguitioes line crossovers and shared values. Binning can cause outliers
to dominate data expression or be filtered out altogether which has lepib [dbre thoroughly analyze the preservation of outliers while
capturing the major trends in PCPs.

In additional to use solely as a visualization technique, PCPs can be usedirsiivite navigation and query methodology. Recent
research has demonstrated the ability to interactively alter axis orderiegadtively brush range queries, and use axis scaling to refine
those queries [53]. The introduction of a navigation element to the vistializeeads naturally to more complex data mining techniques.
In [11], the authors use parallel coordinates, and its circular variantpdtidimensional visualization elements in a taxonomy of other
techniques. They also highlight user interface and analysis condeghdighting the strengths and weaknesses of PCPs in the context of
other visualization methods.

There are also several variants of the traditional parallel coordinatéering. These include the circular variant in which axes are drawn
as spokes of a wheel [11]. This approach was extended by [29tvaated three-dimensional parallel coordinate renderings by plaxésy a
like tent pegs in a circle around a central axis. PCPs were also extrudethiee-dimensional rendererings by treating each line as a plane
that could arbitrarily be transformed [58].

4 PROPOSED CAPABILITIES

The information age has resulted in an explosion in the quantity of data, doitd and scientific. Such voluminous data easily overcomes
the limits of human cognition and perception. The proposed graph anghgatsage has a wealth of algorithmic capabilities which help

in the process of drilling down through large, complex data and aid (on@aitty) the process of knowledge discovery. This necessitates
new data management, filtering mechanisms, and visualization tools thatdewefficient data storage, retrieval, and analysis to facilitate



actionable knowledge discovery. My proposed work provides skwenaputational tools which is applicable to nearly any domain and will
showcase results in a few of the hottest. Some of my work has beenabedvat several events (ACM, KBRIN, SCIDAC, Gaggle), resulted
in a publication [40], and more are currently in progress.

4.1 Proposed Data Management System

The only required data is a matrix containing gene-gene correlation valieige all of our testing data use Pearson’s correlation, different
metrics of correlation are treated no differently in our system. In additienhandle a database of information corresponding to each gene
as can be seen using three relational tables. Specific information aleoolbjiTt of interest is stored in the Gene table while information
relating to computed gene networks is stored in the Paraclique table. Singeuving application is to identify the genes that cause variation
in complex traits, it is necessary to show the relationship or distance begeees and QTLs. For that, we need an additional relational table
describing the exact location of QTLs in the unit of megabases.

Graph theoretic algorithms provide valuable information that is otherwisktbaliscern about the data. However, many such algorithms
incur long compute times and are far from being interactive. For thoseithims, it is then necessary to pre-compute and store their results
for visualization at run-time. In this work, for example, we pre-computd store each gene’s membership in any of the paracliques. The
resulting data can easily be stored in a relational table.

We treat all data in the relational tables as attributes of individual vertioeishe correlation values as an attribute specific to each edge.
This is a very generic model that is applicable to a variety of application ohsnaad is a boon to scientists typically involved in spreadsheet
science. Based on these data, it is then the job of the visualization systedilitatéainteractive, hypothesis-driven study by the user.

4.2 Graph Representation

A graph is defined as an ordered pair G=(V,E) where V is a set of eltsnaalled vertices (or nodes) and E is a multiset of unordered pairs of
vertices called edges. Graphs are a very general dataset thabdratgepresenting many kinds of entities and relationships. Moreoeee, th

is a wealth of information on algorithms for analyzing and determining potgntiseful properties about a graph. Due to the constraints of
our targeted application domains, we were able to speed up many of thighatgoby supporting only weighted, undirected graphs. There
are many ways to represent graphs, each with their own advantagielisadvantages. Two of the most common graph representations are
as an adjacency matrix (better for dense graphs) or as an adjacdnetier for sparse graphs). We support either format as file input,
but store the graph internally as an adjacency matrix for better cachifgrmpance and hashing construction. We have found that storing
a weighted, undirected graph with 1e-4 precision in a lower triangular matskort integers gives storage overhead low enough to store
on one computer while also providing a boost to algorithm interactivity. Tisis makes it amenable to adaptation and display on current
PDAs which only support fixed-precision arithmetic and OpenGL ES. Weighted-edge adjacency matrix of short integers is stored as
mat2d inside a graph struct which contains all other data loaded, compuigdeady for display. We maintain data-handling efficiency and
expandability by only passing pointers of a graph struct between vaalgosthms.

4.3 Data Support

We support several data types and formats for many kinds of datagrBiph interaction package is written such that, given the filename of
one of the files, it will check and load the other data files. If a data file is rewetnd must exist for the program to run, it will generate
the required file which will be loaded on the next run. Below is a list of infation that can be used by the application and the file format
expected:

Weighted Edge Lisf *. wel ] - currently the one and only file that's required (all others can be cordgtden this file) containing edge
weight information.

NumVerts NumEdges

VertexIName VertexJName WeightVitoVj...

Lower Triangular MatriX{ *. | t n] - can be used instead of a .wel file.
NumVerts NumEdges

WeightV,toVy

WeightV3toVy WeightVstoVs...

Graph Vertex Layouf . gvl ] - file which contains a 3D position (as a short[int32k, 32k] ), will be computed from input file if it
doesn't already exist.

Comment line (parameters used to compute the layout)

NumVerts NumEdges

Vertexl Vi Vly Vi1, ...

Database Featurg¢s . t xt ] - floating point data associated with each of the vertices. If not availabéyqvill be for vertex degree or ID
if fully connected.

NumRows NumCols
Row; Coly Row;Col, ... RowColy...
Row,Coly Row,Col, ... RowColy...

Feature Mag *. map] - database index file which provides a mapping from vertex names in gidilsvto the data order in a .txt file. If
not available, query will be for either vertex degree or ID if fully corteec

Vertex Name

Vertex;Name...



Vertex Labelqd = _| abel s. map] - vertex names displayed on the graph when desired in same order.awsfhéle. If not available,
vertices will be named according to the .wel file.

Vertex _DisplayName

Vertex; _DisplayName...

Block TriDiagonalization (BTD) Vectof *. bt v] - used to compress the adjacency matrix along the diagonal for dispiapt@naction.
Entire array is processed in which all rows are permuted and then athosluf not available, no BTD belt will be shown along the bottom.
NumVerts

RowCol RowColy RowCok

4.4 Force-directed Layout

The software has been designed to easily incorporate other graph &gorithms, such as the fast multipole multilevel method #F8]

or LinLog [41]. Such layout algorithms have different strengths aedkmesses in conveying specific properties in the resulting topology.
Custom algorithms can be easily incorporated in our application eithergumal®y or by simply loading a graph layout file. By default,

a single layout is computed for a graph and its appearance is modifiesh-dire but the user may also switch interactively between
multiple layouts. Additionally, the user may dynamically swap between the masyo2D view and the 3D view which tends to convey more
relationship information.

It is also noteworthy that clustering is another term often used by biologisitginresearch. Although in our work “cluster” and “dense
subgraph” have similar meanings, the goal of our approach is quiteliff from the basic goal of popular clustering algorithms. Our goal
is to adequately handle uncertainty in the pursuit of co-regulated (puyatiweperating) genes forming a network, and the nature of the
interconnections among those networks. We use BTD belt, queries aral network to computationally assist the discovery and realtime
fine-tuning of those dense subgraphs of interest. We do not solelynayaph layout algorithms to reveal dense clusters.

4.5 Rendering

Vertices are rendered after the edges without the depth buffer torprediges from occluding data points. We support the option of rendering
vertices as splats (also known as hillboards or impostors) or quadrich wan take arbitrary shape (usually spherical). The splatting

implementation is the typical geometry-based primitive scheme usindgssiication and thus results in slightly blurry vertices but has the

advantage that it is typically fast. While both options render in realtime on siegle computers, framerate tests were conducted for the
7,443-node graph at several resolutions on a powerwall usingn@hne. This resulted in 16 fps quads vs. 246 fps splats on an 800x600
viewport, and 5 fps quads vs 17 fps splats at 3840x3072 (9 monitors).

There are many interactive rendering options such as color tableagiemeand weight-mapping mechanisms for coloring edges. A
default set of these has been provided to express differentiation éretsadely positive and negative edges (up and down regulation) or to
enhance contrast between edges with similar weights. The renderifgnign is adaptive and can optionally adjust properties such as the
number of subdivisions in the quadrics based upon the current fraieSemi-transparent vertex halos [54] are rendered using spfaftting
enhanced depth perception. Intuitive click-and-drag interaction amiihcmus rotation during manipulation circumvents problems with 3D
occlusion and aids perceptual reconstruction of the topology througjbmmarallax. The system also has dozens of minor utilities including
the ability to change the color table used by all elements of the program, tateenshot, create video, print statistical information for the
current graph, and output gene lists.

4.6 Compound Range Queries

Information contained in relational tables needs to be studied in an integtabh with gene networks. A common comprehensive tool for
accessing information in those formats is compound boolean rangesjuéinfortunately, it is a difficult process to efficiently integrate a
commercial database management system with realtime visualization sy$tenthis application, we have extended the functionality of a
recent visualization data server to provide essential data managametiohalities. The core of that data server is a simplified B-tree that
is optimized assuming no run-time insertion or deletion in the B-tree [15]. dJiis B-tree, the database in our system, with compound
boolean range queries over 8 features, can be queriedag @Ytime at a rate of 10 million vertices per second on a 2.2Ghz Athlon64. This
results in interactive, sub-millisecond response to sets of dynamic geeéa for large graphs.

The effect of querying is data filtering and thereby complexity reductiire of the most common data filtering operations for biologists
is thresholding. With visualization, this threshold choice can be applied tgh greeractively and result in both visual and statistical testing
for proper threshold selection. Besides thresholding, we also prowvide power by also allowing multiple, dynamic, quantitative queries
over any computable attributes of a vertex or edge. Sample querieseralligkénes within a 100-megabases distance to a target QTL, or all
genes in the current subgraph that are significantly related to a pamckiduterest.

The queried genes also form a subgraph, no different from thaa@atively selected via the BTD belt interface. Our querying system
attains realtime performance, making it feasible to visually evaluate thetefie sensitivity of key parameters, such as what threshold value
to use.

4.7 Graph Operations

Many graph algorithms are simple and can shed much light on a graphemijtiitle computational overhead. We allow several to be invoked
at any point. Others are NP-complete and must be pre-computed aed stdéhe database information (for later query) in order to maintain
interactive performance. Several integrated graph propertiesrémhgsimilarity classification we plan to include are degree of vertex,
transitive closure, connected components, edge expansion, amelssipath. Each of these properties has a unique biological interpretation
Degree is one of the simplest useful metrics that can be calculated ang aliologists to determine statistical correlation between genes
and gene networks as there are often many loosely connected gehfesvenighly related genes. Transitive closure minimizes the longest
distance to all other nodes and can be used to find the core of a genattargtrilConnected components allow biologists to visualize only
related data within a given subgraph. Edge expansion shows relatiengittifin a given subgraph without regard to threshold. Shortest path
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Figure 1: lllustration of a permuted adjacency matrix with common graph patterns (left), and extraction of the BTD belt for qualitative selection
(right).

allows biologists to see how specific genes most directly regulate one anidtteuld also be used to further investigate a favorite location
in the graph and gather only the local correlates view of the specific gjemeder study. These properties may be used as extra variables in
the feature vector used for training a neural network. By adding thabe telational data that are queried, we provide more information to
be leveraged for fuzzy classification.

4.8 Block Tridiagonalization

A major difficulty with graph visualization is the visual clutter caused by theshemplexity of the data. An adjacency matrix provides a
concise interface for overviewing the data in a way that is free from Vidutier. However, the 3D space is still a natural domain for user
cognition. The added dimension can be used to convey additional datinglloavigation through node-link rendering and full appreciation
of structural cues in the data. For our application, we have designedrerork where an overview is provided through a 2D adjacency
matrix. Users can arbitrarily select subsets of interesting vertices aateabstractions for further interactions in 3D.

Unlike popular datasets studied in most previous works, the range efweeights in our data is- 1. 0, 1. 0] . In addition, to let users
decide about uncertainty issues, we would like to avoid taking a threshtigsatage of processing due to possible information loss. This
makes it hard to directly leverage existing vertex reordering algorithmsHidee surveyed by Mueller [38] or Henry et al. [21].

Block tridiagonalization (BTD) is a mature numerical algorithm that permrdesand column elements of a matrix in such a way as
to cluster nonzero elements in blocks along the diagonal [5]. This algositivays preserves the eigenvalues of the original matrix within
a specified error tolerance. It iterates until the following criteria are ndgtthe final matrix has small bandwidth relative to the size of the
matrix, and (2) any off-diagonal blocks in the final matrix have eitherdawension or are close to a low-rank matrix.

The BTD algorithm was developed to improve both performance andgg@fficiency for solving eigen problems. The smaller a block
is in a matrix, the lower the corresponding rank in most cases. Thusptimization goal of BTD is to minimize block sizes on the diagonal,
and correspondingly reduce block sizes off-diagonal as well.

The result of BTD is often characterized as minimization of bandwidthalmee non-zero entries are clustered around the diagonal. It is
very significant to our research. In our application, the minimization gjatial block sizes through global optimization provides a reliable
means to abstract a large graph into a set of minimal basic “building blaeksh of which represents a densely correlated subgraph. The
vertices in these subgraphs appear in contiguous segments along theeadlididne off-diagonal blocks determine how these “building block”
subgraphs are interconnected. In this way, we can convenientlerebisthe original graph using the minimized diagonal blocks, and show
more appreciable structures with significantly less clutter.

Let us consider the illustration in Figure 1 from a biological perspectinethis example, we show four graph patterns that are often
of interest to geneticists. Since every data entry in an adjacency matresets an edge, selections made in adjacency matrices are on
edges and only indirectly on vertices. The green subgraph is a cliqugtdy lcorrelated genes that potentially operate as a unit. The orange
subgraph is a bipartite graph, used in gene-phenotype mapping, in thittait is correlated with a number of related genes which would
be of experimental interest. The blue subgraph is a perfect matchapg grhich functions as bridges between subgraphs. The red shbgrap
is a star containing a “hub” gene which could be targeted for knocksuibéfect expression in many structures.

For our real world datasets, BTD has been able to consistently generateitptions that compress the majority of non-zero to the
diagonal. This enabled us to crop a stripe along the diagonal and rotagtripatto a horizontal position, as shown in Figure 1, bottom. We
refer to the horizontal stripe as the BTD belt.

BTD belt is a more efficient use of precious screen resources. &asets typically contain several thousand genes so the adjacency
matrix is typically very large. Although it is possible to downsample the matrixfascreen viewing, the essential high frequency details in
the matrix could be hard to distinguish.

From the BTD belt interface, a user can select diagonal blocks thaiesioeived to be “highly correlated”. Letting a human expert
decide what can be considered as “highly correlated” is our way aflimandata uncertainty. We note that the functionality of detecting high
correlation in a general setting is a hard problem, particularly when theptatae tolerances of error can only be qualitatively determined in
a subjective manner. In this regard, BTD can be considered as autatiopal tool for creating data abstraction.

Since the BTD-belt is a permuted and rotated adjacency matrix, muclmafion is visible along the diagonals which correspond to an
individual vertex. Therefore, the BTD belt immediately shows the majaplg structures in which each vertex participates. These properties



can be used to quickly determine the role of specific genes in varyingensmaid types of networks.

To allow further data abstraction, users are able to dynamically genevatefedetail (LoD) representations that facilitate simultaneous
operation across multiple levels of scale. At any point in our system, thierduvorking graph can be saved and is rendered, along with
all other saved subgraphs, in the background of the current woddagh. The LoD graph can be generated by taking all user-defined
subgraphs and treating them as supernodes. By default, the edgetiogriwo supernodes has a weight defined as the average of all edge
weights between vertices within the two corresponding subgraphs. Olptideature vectors of topological metrics can be calculated on
each subgraph for querying and graph pattern matching to find simdphgstructures rather than similar data items. This LoD graph can
subsequently be treated as a normal graph and all provided analytEsitoar system can be used to perform increasingly complex analysis
at higher levels of abstraction.

4.9 Neural Networks

When interacting with complex data, it is often useful to provide an autonzatetlator between the user and the data so that repetitive tasks
are off-loaded from the human user. One such important task is tagtely search for genes that match a certain pattern and classify the
data accordingly while handling the innate uncertainty. A key motivation is teiateeusers from the need to manually browse through the
entire dataset and thus specifying the feature they think they are seeingwedy rigorous manner. It is desirable to have a proper level of
fuzziness into this iterative feedback loop. While elaborate agents caia fakeg time to develop and are too complex to train in realtime,
we have implemented a simpler Al system which users can train at run-time.

In our system, we use a feedforward, multilayer, back-propagatomah network capable of quickly learning items of interest and
displaying similar items to the user. From this perspective, qualitative seledt@vs users to visually perceive uncertainties and decide how
to best guide the computational process, while quantitative queries pramidxact means to request a subset of data. With all datasets, the
neural network classifier can be trained with subsecond efficiency.

We use a multilayer, feedforward, back-propagation, online neetalork for realtime classification which is able to learn while in use
by employing stochastic gradient descent. Our implementation closely fotlwwlescription in [45]. Results are given for a neural network
with the number of input nodes corresponding to the number of prowattebutes, 30 hidden nodes, 2 output nodes, a learning rate of 0.4,
a sigmoid threshold function, and a hard max used to simply select thelikegtoutput. The unusually large number of hidden nodes
provides sufficient degrees of freedom for any problem domaircanttl be reduced if training speed or overfitting become issues. Each of
the two output nodes corresponds to the likelihood that the user does®ndbwant to see the object.

Neural network interaction involves only a few easy steps. The usecliefis on an arbitrary number of vertices to select them as
examples. Similarly, right clicking on a vertex adds the vertex as a coaréanple. The user may use any filtering or processing techniques
previously mentioned to aid the process of defining the training set. Oneraatiples and counter-examples have been selected, the entire
dataset is processed to only show items like the examples or to segmeatahesohg color. Training the neural network and classifying all
other data items is in the order of dozens of milliseconds and is transpartéetuser.

Deciding the proper training set is critical when attempting to achieve aecualassification for multivariate data due to the high-
dimensional decision space. In our system, we provide two alterngijw@aches for the user definition of large training sets. First, we
allow selection of the training set using supernodes in the LoD graph. gtgmrnode represents a network of genes, typically segmented
through BTD selections or database queries, such that a few exanpglmedes can correspond to hundreds of individual data points. In
this way, users can visually interact with the data while quickly selecting entingog of vertices as examples or counterexamples. Second,
the application allows the import/export of vertex data for the current iwgrgraph using ASCII files. This can be used to analyze the
corresponding data with much more sophisticated statistical packageas@tatistical Analysis Software (SAS) or statistics programming
languages such as R. These analytics tools or their batch programs calidal during run-time to either fully segment or partially classify
the data. The result can be stored in a vertex list file and then utilized asiagraét.

4.10 Hierarchical Representation

The true power of the package is in the way all these tools can be arbitranibined by an expert user to investigate or discover specific
patterns in the data. Similar to the power-of-ten paradigm, we allow the uspetate on multiple levels of abstraction simultaneously. This
is done by allowing the representation of an entire graph as a single vekas(pernode), possibly within the context of another graph.
By computing the weight between supernodes and other super/notles agerage normalized weight or a measure of connectivity, users
can see relationships among entire clusters of objects. Each of the toalsitigtés section operate on supernodes as simply as they do
on normal vertices. For most tools this is achieved by keeping a list ofahiiewIDs that each supernode encodes. For example, selected
supernode(s) for neural network training behave as a template-baaech for similar data items in the original database. Possible uses of
the level-of-detail capabilities in our application domains include seeing theeotivity between paracliques of genes in systems genetics
data, relationship of variables across multiple disparate ecoregions irtelitata, or relationships between organizations of individuals and
materials in social networking data.

4,11 Parallel Coordinates

Visualization and computational tools are necessary for the analysigefraultivariate data. Parallel coordinates rendering has proven very
useful in this area as it allows intuitive visualization of a multidimensional ateilspace. It is very natural to visually “chain together” a
sequence of variables in a linear layout. Ideally, a parallel coordinatierimg should provide a preview containing sufficient information to
guide users to the most interesting parts of the underlying data.

This goal is quite achievable when the data at hand is manageably smalin betms of total size as well as total number of variables
that must be considered at any particular time. However, without mrfficomputational tools at our assistance, this task is quite daunting,
particularly when we increasingly need to handle datasets with hundredsutatids of variables.

From a practical point of view, often a parallel coordinates rendermganly effectively a few axes in one setting. Among @g?)
bi-variate relationships ini-variable dataset, to choose the right handful of those relationshipwjotmmal fashion is still an open problem,
as is the question of how to best order the axes in a computational way.



The novelty of our work stems from our taking an optimization drivengectve to explore the full potential of using parallel coordinates
to visualize datasets with a large number of concurrent variables. Quisvalso novel due to our way of characterizing trends in the context
of parallel coordinates, and the resulting new possibilities of clutter reduckmally, we also devise a novel rendering method to better
reveal trenads visually in parallel coordinates.

Our goal is to develop a general system which generates a near-opkimairdering to obviate key trends for a given dataset. The only
required data is a matrix containing axis-axis correlation values whichhiputgnote the importance or strength of a trend between two
attributes based upon a user-selected or computationally defined metric.

Once given aNxN matrix corresponding to all pairwise metric computations, the problem eawolved in the domain of graph algo-
rithms by treating it as an adjacency matrix. In this framework, there isphgofN vertices and\N? edges from which we want to extract
what we shall refer to as an “optimized k-walk” wheeés the number of axes desired in the parallel coordinate plot. This carebeasea
generalization of the TSP problem in which the salesperson muskvisNi cities and reduces to the classical problemkfer N. Similarly,
the problem can be rephrased in terms of the 0/1 knapsack problemlas\aesystem of linear equations for solution by methods such as
the simplex method.

The brute force method for solving an “optimized k-walk” is to simply takergypossibleN choose lsubsets and permute every subset’s
k variables to find the maximum sum of edge weights between consecuiiige Pais method i©((N choose ks k!) or O(=" ) and can

(n—K)!
be used to find a subset bfalues which maximizes:
Weighti,i — 1) )

While this method is guaranteed to find a globally optimum axis ordering, it isdtfplete and therefore computationally intractable
for all but the smallest datasets. Even for a dataset with only 63 variabt3 axes, if calculating the optimum layout from 7! took only
1 millisecond, the entire calculation would still take approximately 6.5 daysthi®reason, we developed some simple alternatives to this
brute force approach that typically calculate a layout so near to optintahindifference is neglible.

The greedy algorithm simply finds the largest weight in the graph, repteshe two corresponding variables as axes, and then greedily
adds a vertex to one of the end vertices until the requested numbetioésés reached. This algorithm@{(|V|? + 2k|V|), incrediby simple
to code, and obtains surprisingly high performance.

When we calculate an axis layout, it would make sense to keep the pairs witlgthest value next to one another. In this pairwise
greedy-based algorithm, we begin by finding thirgest weights in the graph. Since each weight has two associatedeagespair is
permuted to find the pairwise ordering which maximizes the sum of weightsthe firstk consecutive axes. This algorithmQgk|V |2+ k!)
and typically outperforms the pure greedy approach slightly.

It is useful to constrain the axis ordering to maintain an intuitive interpretaticdhe final rendering. In the results presented, we do
require that axes are non-repeating. This was necessary sinde gariables, such as latitude and longitude which exist at every point on
the axis, often have high image-space metric evaluations which would leagttieaving of these axes throughout the PCP. While latitude
and longitude could be removed as potential variables, we found theykegraxes at identifying equatorial trends resulting from the sun’s
direct rays.

In the context of time-dependent data, a constraint on the tempo@spévariable axes may be appropriate. In order to demonstrate
our technique in the context of thousands of variables, we take 61 lemipbr monthly timestep of climate simulation data and treat each
subsequent timestep as another set of variables. Multiple variablesoff@ntimesteps may be treated independently. However, climate
scientists typically think of trends across time rather than across varialtles the same timestep. Furthermore, most people are accustomed
to visual representations temporal trends unfolding from left to righthigncontext, we can limit the axis algorithm to only show axes whose
temporal distance between each axis is the same. This creates the abiliyseasenal trends throughout the year as well as how hot the
summers get throughout a decade.

While we present only one example for PCP renderings of time-depedd&, there are many contexts in which algorithmic constraints
should be imposed. It should be noted that such restrictions can sigtlifipaune the search space for the presented algorithms and can lead
to tractability for larger problems.

The system allows multiple ways to determine a set of axes to be used in & layonumber of dimensions to visualize, threshold for
the most important trends, or graph-based methods. There aredditiorzal parameters which may be modulated to allow for repeats of the
same axis or trend.

4.12 Procedural Karyotyping

Throughout this work, we attempt to implement only techniques, algorijtamd visualizations that are general enough to apply across
practically any domain while also making the APl open enough to allow integratith domain-specific codes. While much if this is
discussed in the section below, we felt it appropriate to showcase theagriategration of a domain-specific visualization. Context-specific
requirements of visualization types are sometimes needed to convesation to users in a format that are native to them. For systems
genetics data, a karyotype is a common way to display information whicHystofors individual genes of interest based on some property
within the view of the chromosomes in which those genes reside. In thishigdggists can quickly determine the precise locations that may
require further study. In one day we were able to integrate procekianabtyping based on database data of chromosomal position for any
working graph. In this way, one can easily determine how clusters afgyare correlated with one another across genes.

4.13 Synergy

There are many mature graph interaction packages, standardsphimtits tools, statistical programming languages and other such work-
bench platforms that one might consider superior to the developeth grtgraction package. While many of the functions listed in this
section are exclusive to or can be carried out faster than any othgmrapnpmy dissertation is in no way competing with them but makes
substantial effort to work synergistically with such packages. My cti@pplication has several built-in handles and exposes API to several
other tools including Cytoscape, R, and Gaggle bioinformatics tools. Ttleagea can call scripts for the statistical programming language
R to operate or perform statistical analysis on any working graph dyélgnas requested by the user. Other graph visualization packages



Il UTK Seelab - SeeGraph <www.cs.utk.edu/~seelab> - |E||1|
Current Threshold: | 0.80 | Murnber of Vertices: 2124 Murnber of Edges: 255783

WET=[ 1 ,778][ -1, 43 ][-111,200][-1 ,2700][ -1 , 36 ][0.00,0.75] o
WEZ=[ 1 ,778][ -1, 43 ][-111,200][-1 ,2700][ -1 , 36 ][0.00,0.75]

WEI =] 1 ,??8]‘ -1, 43 ]I[—11‘I,ZDD][—1 LETOON[ -1, 36 ][000,0.76]

Click on the arguments and move the mouse to modify values.

“ertices: 572 Eclges: 52396

Wertices: 560 Edges: 116033
Wertices: 468 Edges: 21581

Figure 2: BTD selections (bottom) qualitatively extract gene networks (sides), are rendered using dynamic level-of-detail (center left), and used
for template-based classification of entire subgraphs in the original data (center right) for other regulatory mechanisms.

such as Cytoscape can communicate with my application (and vice verget®ach application can be used for the tasks at which it is most
adequate. Minor revisions would be necessary for converting myhgegpesentation to a format recognizable by the Boost Graph Library
(BGL) in order to leverage its mature base of efficient graph- praogsdgorithms. | have created a Java-based “interpreter” goose which
acts as a translator between other Gaggle geese and my application. gdie,@aveloped by the Institute for Systems Biology, is essentially
a Java interface which, when implemented by a given application, allotastalée broadcast/receive to/from any other such applications
(known as geese). In this way, mature software packages canilyamagrated into the “Gaggle” of geese with relatively few lines of code.
My interpreter goose is able to accept the data types required by the Gdgjgdad send those to my graph interaction package. In this way,
my application can easily and interactively share data with other (mostly broiaftics) applications.

4.14 Scripting

In using the graph visualization package to develop scientifically meaniregults, it was often the case that it was difficult to remember,
after several complex steps of iterative refinement, how one argivéingd current meaningful result. Also, entire corpuses of previoalysis

or experiments had to be painstakingly recreated as new data becalablavén order to alleviate the burden on the user, we introduced a
scripting capability which can automate experiments or portions of a pipélhie script is capable of recreating users mouse movements and
key commands to emulate any setting or procedure invoked by the useindividual operations to be carried out can be easily inspected
from the ASCII file which the application will then automatically or interactivedgneate on screen with a customizable time delay for
quickly generating the requested results or actually seeing results o$tegcbn-screen for demo purposes.

5 RESULTS
5.1 Exemplary Application Areas and Preliminary Results

My initial results have already been published in the IEEE Transactionssaialzation and Computer Graphics, 2008 [40] and several more
are currently being written. In the published paper, | have severahgbes using systems genetics information from gene expression data
from mouse cerebellum. In the other papers | am using various datba@®tslifferent application areas, including climate data and other
bioinformatics data, to demonstrate the capabilities of my system. Belowfaneexamples of the plethora of results already generated.

5.2 Bioinformatics Data Sets
5.2.1 Overview: Data and Workflow

While early microarray studies emphasized differential expressioe@mgarative analyses, modern applications [27] emphasize correlatio
of gene expression across large sets of conditions, including enwrsntime points and tissues. Increasingly, this data is being collected
in a context of natural genetic variation [7], where it can be integratedmiittiple data sources such as genome sequencing, QTL analysis,
and disease relevant phenotypic data. For this application we focusnenegpression analysis conducted with a particular emphasis on
those traits related to brain and behavior in the laboratory mouse.



A primary source of covariation in gene expression are single nucleptienorphisms (SNPs). Studies in genetical genomics [27]
attribute variation and covariation in gene expression to the influence & tifésrences in DNA sequence. The use of recombinant inbred
strains allows biologists to study replicate populations of mice with identicalrgeao These populations allow indefinite aggregation of
data across studies as new technologies for characterization of mmeéewailable. When traits are assessed across genetically identical
individuals, the correlations among traits are assumed to be due to cogametic regulation. By finding and analyzing statistical correlations
between genotypes and phenotypes, geneticists hope to discover apceirttee network of causal genotype-phenotype relationships that
determine a trait of interest.

Systems genetics research often follows a workflow of finding a getweorie finding regulators of that network, and then performing
a focused gene perturbation experiment to determine the role of thaatssionetwork on gene expression or function. To begin, a “large”
gene correlation graph must be sifted through, to find a highly conneategtaph which corresponds biologically to a gene network in which
genes are expressed together, presumably to regulate or subsenvenan function. They must then find a small set of causative genes,
highly correlated with the subgraph and likely to regulate co-expressidme tsed as targets of focused investigation. By manipulating
the expression of these genes, the function of the gene network catdsenthed through observation of expressed phenotypes. Proof of
causality occurs when the gene manipulations recapitulate network relalicsi®uld be noted that while standards of “large” are highly
application dependent, even graphs with less than 10k vertices exhihitlgiratorial space that is overwhelming and, indeed, presents a
rather large and unique problem unlike dealing with volume datasets.

In this section, we showcase results for publicly available biological datehwias been the subject of several previous studies. Whole
brain mMRNA gene expression data was obtained using the Affymetrix WdAcroarray for each of the strains in the BXD mouse population
and subsequently processed using Robust Multi-Array (RMA) norat#diz [7]. Throughout the paper, we use Pearson’s correlation over
7,443 genes of this dataset as our driving application. The assocetegdubde in our system is used for querying, interactive neural network
training, and constructing dynamic level-of-detail (LoD) graph featuitecontains information relating to typical systems genetic analyses
for each gene such as: the chromosome, position (in megabases)iqae membership and connectivity, broad-sense heritability indices,
and QTL mapping [57] locations with p-values from QTL Reaper (sdorge.net/projects/qtireaper).

5.2.2 Discovery of Novel Networks

Typical biologists bring a large amount of domain-specific knowledge é@r thvestigative process, for which many tools exist but are
usually challenged by purely data driven investigation of networks. @peoach to discovery of novel systems genetics networks is the use
of computational tools which allow extraction of highly connected subgraiph qualitative fashion. By providing block tridiagonalization

in which clusters around the diagonal constitute highly related genes, isislagn easily select potentially novel gene networks. Indeed, this
O(|V|?) algorithm quickly extracts dense subgraphs and can be treated aghaagproximation to the NP-complete problem of paraclique
enumeration in this context.

In Figure 2, the user has selected four BTD regions and dynamicalbratal a level-of-detail graph. As is expected, the selection 1
is most unrelated to the rightmost selections and therefore placed farfemathe other selections with a negative correlation to selection
3. By selecting LoD vertices 2-4 as examples and 1 as a counterexameplal network training on entire subgraphs is used to perform
template-based search for similar genes in the original data. The restliggification from the database information is the graph in the
right center which has been extracted through the application of dorpaaifis knowledge in combination with several computational tools
(BTD selection, LoD graphs, and NN template matching). This highly-eoted subgraph contains genes which are similar to cliques 2 and
3 and bipartite structure 4 selected from the BTD and gives biologists atjadienovel network of two highly-related dense subgraphs to
inspect for related function(s). This is currently being applied to creatngprehensive bipartite graph of gene networks (represented by
LoD vertices) on one side and all network regulators (network interf@res) on the other. The ability to interactively and qualitatively
search across multiple levels of detail has given biologists several tvalhfch they can not only solve current problems but also find new
ways to address more difficult problems.

The central motivation of our system is to enable more in-depth and flesplert-driven analysis by providing a diverse set of com-
putational tools. However, there are other more established algorithniés saigh as graph analysis, that are of value to scientific research.
Those tools can be leveraged from within our system through our intBrtrake based data structure which allows queries from algorithmic
solutions at a rate that facilitates realtime rendering and interaction. Inc¢tiersbelow, we present a significant use case that demonstrates
parts of our system to discover network interface genes.

5.2.3 Use Case: Discovery of Network Interface Genes

We now demonstrate our application with a biologically significant use casee @ene networks have been extracted, it is of primary interest
to determine the identity of the gene products that regulate these netwosksy éither qualitative BTD selection or algorithmic network
extraction, the total decomposition of a genetic correlation matrix into disjoingrsphs can be achieved. With each disjoint subgraph
treated as a structure, finding mRNA transcripts with strong correlationsuttipie structures would lead to the discovery of “interface
genes”. These mRNA transcripts regulate expression of genes in shrostures, and thereby couple multiple networks and biological
processes. The detection of these transcripts and the analysis of thes gegulatory polymorphisms could lead to the discovery of major
genetic modifiers of large biological networks.

Our domain experts have found paraclique extraction to be the mosil asef general algorithmic technique. Although choosing the
proper threshold is a hard problem in general, by way of repetitivererpatation, statistical and combinatorial analysis, 0.85 is a preferred
threshold for extracting paraclique in the dataset at hand [6]. Parasligith more than ten vertices were extracted, resulting in thirty-seven
dense subgraphs, and stored in the systems database. We showestedladgthird largest paracliques corresponding to gene networks rea
for further study in Figure 3.

In this use case, the challenge is to identify candidate genes that may lerthen regulators of expression for a large number of other
genes, and to determine which functional biological characteristics easksrelated traits the network may be involved with. Some facts are
known about this situation: 1) each gene’s physical location within thergef®near the location of one of the genotype markers associated
with the gene expression level; 2) the interface gene may be a membee @f the dense subgraphs, but it must be highly connected to
members of both dense subgraphs; and 3) the biological regulatorljstikee in the same pathway as the genes it regulates.
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Figure 3: In this screenshot, two gene networks (bottom left and right) have been discovered with a single putatively co-regulating gene as a
potential target of knock-out study (center) with proximity information for other potential regulatory genes (top left) undergoing further study. This
illustrates the discovery of candidate genes which can affect expression of several genes throughout the genome that play a role in the locomotor
response of mice exposed to methamphetamine and cocaine.

By creating a level-of-detail graph in which the edge weight for suptgaads defined as the percent of connectivity to the adjacent
gene or supernode, we can use the hot-cold coloring scheme to vislailyage the correlation between multiple structures. This allows
for an intuitive representation of network distance which can allow biologisidentify functional modules and their relationship to each
other in forming the pathways underlying specific biological proces$gs. data is then filtered via threshold to retain only the strongest
correlations between individual transcripts and entire networks. Quadea network is constructed, additional queries may be posed that
relate to additional candidate genes and their association to the genetic guitysnas that regulate the network.

In this use case, the technique described above was applied to visuatlfyidespecific gene of interest whose transcript is connected to
over 99% of both the largest and third largest paracliques as shownureR3g The gene of interest, Prl or Tmem37 (Affymetric probe set ID
95464at), has thus been implicated as part of the regulatory pathway thagjotates the two large networks. This gene encodes a voltage-
dependent calcium channel gamma subunit-like protein which moduletsi@l properties of neuronal cells. It can be hypothesized that
the paracliques are related to neuronal activity. Further testing wast¢bemplished through data export and communication capabilities to
specialized bioinformatic pathway analysis tools. By further analysis pfession for the gene of interest, using GeneNetwork.org, it was
revealed that its transcript abundance is correlated with stereotypeddtmobehavior induced in BXD mice by drugs such as cocaine [31]
or methamphetamine [17].

The next stage in the workflow is to enumerate candidate genes whicle @sathromosomal locations nearby the gene of interest's
regulatory QTLs. To do this, we must first run an analysis of genotgpeaations to the expression of interface gene Prl in order to identify
QTLs that regulate its expression. This analysis, which we have pextbusing GeneNetwork.org and linear modeling in SAS v9.1, reveals
putative regulatory loci at specific locations on chromosomes 1, 2d6l4n By using our tool’s integrated data query capability, we can
then highlight co-expressed genes that reside in regions providecethier tools. The candidate genes may help regulate the networks
since they are located in close physical proximity to one another, theictiptssare highly correlated to many paraclique members, and the
QTL that regulates them also regulates many members of both paraclithisseads to the identification of a limited number of candidate
regulators including Pax3, Lama5, Mkrn2, and Dhrs4.

We have now derived testable hypotheses regarding the mechanismigdbythe networks are co-regulated and can validate this new
knowledge with in vivo experimentation. It follows from the analysis ofexpression that these two paracliques are controlled by a com-
mon genetic regulator. A high genetic correlation implies that the biomolecegpeesented by the connected vertices have values that are
determined by the same genotype. Expression of the interface gemarPelso be correlated with biological function and traced back to
a regulatory QTL. Prl and the two dense subgraphs have been éasdatith specific traits measured in BXD mice. A small number of
candidate regulators from positions near the regulatory QTL has alsadetified. The resulting visualization reveals networks which go
from locomotor responses to specific drugs down to the connected utai@athways which underly them.

While Figure 3 represents only a few steps from a typical workflow, tealtef this finding captures overwhelming complexity. As
early forays into systems genetic analysis have demonstrated, biolpgicalsses such as mammalian behavior involve a complex interplay
of expression from many hundreds of genes across multiple chmomessand biological systems. For this reason, we expect similar linked
views of multiple tools to be the norm for systems genetic visualization. Thepteskented herein allows users to retain networks and their
relationships as well as rapidly isolate genes and subgraphs basedracotitectivity. The tools demonstrated represent a flexible and
dynamic approach which allows users to scale up from single genestsofranterest found in web based tools to results of global analyses
such as clustering and high-performance combinatorial analyses.

5.3 Climate Research Data Set

The climate research data set used to evaluate my system consists ofablegecoutput from a global land surface model running within a
general circulation model performing a projection of Earths climate tiwaryear 2000 to 2099. The data set contains monthly averaged data



Figure 4: Parallel coordinate plot showcasing intuitive behavior of variables who are most highly inversely correlations (left) and evenly-spaced
time-series of variables which exhibit the most highly correlated behavior (right).

Figure 5: Color-coded areas of the 32 distinct ecoregions extracted using k-means clustering over temperature, precipitation, and soil moisture.

with 12 time steps per year, comprising 1200 time steps in total on a grid 025&g 128. For each grid point, we create a polyline in a set
of parallel coordinates and use the variable covariance matrix to pidkeumost correlated or anti-correlated variables and render them as
a parallel coordinate plot using code developed by Chris Johnson.

Figure 4 shows six inversely correlated variables/timepoints detectedrbgystem. This inverse correlation of RSSUN (sunlit leaf
stomatal resistance) and RSSHA (shaded leaf stomatal resistancejtiganitLthat it tells the tales of two sides of the same leaf. It should
be pointed out that while these relationships are well- known, our systenalla to pick these trends out of the data with no prior training
or direction. There are several parallel coordinate plots with trendsitbaurrently undergoing investigation in order to determine the likely
cause of unusual trends picked out by the system.

Figure 4 shows examples of correlated variables. The system detectmtingon-sense correlation of a variable with itself for the same
month across evenly-spaced consecutive years (exhibits tempoalityp Such detections are common and useful in determining temporal
tracking of a variable over time in relations such as global warming.

Based on [22], we use the 3 most common variables of temperatu@T)T Brecipitation (RAIN), and soil moisture (SOILLIQ) across
all 12 months for 100 years to create a 3600-element feature veaachtgrid point. Many of these points have missing values which we
estimate based on similar vectors. We then use a parallel k-means clysigonthm to separate the earth’s climate in 32 distinct ecoregions
as color-coded in Figure 5.

The meaning of each extracted ecoregion is denoted by the centroid f@céach cluster. Above, we show a graph for each of the 3
variables used to denote the color-coded clusters. In this way, interes@sgnal trends can be visually assessed and further queried. For
example, one cluster demonstrates an excessively high soil liquidity hjghens to correspond to a cluster present only in Antarctica.

Since the data for all 100 years of a given ecoregion can fit in memuogel-fitting is greatly facilitated. We have used the super-
computers at Oak Ridge National Lab to create models for dozensiabiles using hundreds of thousands of models for several different
model types and is currently undergoing efforts to visualize the acgaratappropriateness of specific climate models from the space of all
possible models.



6 MILESTONES
DATE | TASK
Fall 2008 Conclude work on parallel coordinates axis ordering automation andisti IEEE Transactions on Visualization and
Computer Graphics. Perform literature review in application sciencespiete a joint paper with climate scientists from
Oak Ridge National Laboratory for a journal submission in the field of ¢dkmnaodeling research.
Spring 2009| Finalize research results for dissertation. Prepare final dissertatiomtgtit to defend in April 2008.
April 2009 Defend dissertation. Submit final copy of dissertation to Graduate $choo

ACKNOWLEDGMENTS

The author wishes to thank PhD advisor Dr. Jian Huang as well as Draiisssler, Dr. Michael Langston, and Dr. Lynne Parker for their
direction on various aspects of this dissertation.

REFERENCES

[1] J. Abello and J. Korn. Mgv: A system for visualizing massmultidigraphsIEEE Trans. Visualization and Computer Graphig¢l):21-38, Jan.-Mar.
2002.

[2] J. Abello, F. van Ham, and N. Krishnan. Ask-graphview: Aglascale graph visualization systelBREE Trans. Visualization and Computer Graphics
12(5):669-677, Sep.-Oct. 2006.

[3] O. Abiola, J. M. Angel, P. Avner, A. A. Bachmanov, and J. KelBnap et al. The nature and identification of quantitatiaé toci: a community’s view.
Nature Reviews Genetic$(11):911-916, 2003.

[4] D. Auber, Y. Chiricota, F. Jourdan, and G. Melancon. Nagale visualization of small world networks. IBEE Syposium on Information Visualization
pages 75-81, 2003.

[5] Y. Bai, W. N. Gansterer, and R. C. Ward. Block tridiagamation of effectively sparse symmetric matric8CM Trans. Math. Softw30(3):326-352,
2004.

[6] E.J.Chesler and M. A. Langston. Combinatorial genetjutatory network analysis tools for high throughput traiomic data. IIRECOMB Satellite
Workshop on Systems Biology and Regulatory Genomécges 150-165, 2005.

[7] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C.,HsiD. Mountz, N. E. Baldwin, M. A. Langston, J. B. HogenesbhW. Threadgill,
K. F. Manly, and R. W. Williams. Complex trait analysis of genx@ression uncovers polygenic and pleiotropic networksniadulate nervous system
function. Nature Genetics37(3):233-242, 2005.

[8] E.J. Chesler, J. Wang, L. Lu, Y. Qu, K. F. Manly, and R. WIl&ms. Genetic correlates of gene expression in recombinantd strains: a relational
model system to explore neurobehavioral phenotypesiroinformatics1(4):343-357, 2003.

[9] R.W. Doerge. Mapping and analysis of quantitative ti@gi in experimental populationdNature Reviews Genetic3(1):43-52, 2002.

[10] G. Ellis and A. Dix. Enabling automatic clutter reductian parallel coordinate plotslEEE Transactions on Visualization and Computer Graphics
12(5):717-724, 2006.

[11] M. C. Ferreira and H. Levkowitz. From visual data exgliion to visual data mining: A surveylEEE Transactions on Visualization and Computer
Graphics 09(3):378-394, 2003.

[12] T. M. J. Fruchterman and E. M. Reingold. Graph drawingdrgé-directed placemenBoftware - Practice and Experienc&l(11):1129-1164, 1991.

[13] Y. H.Fua, M. O. Ward, and E. A. Rundensteiner. Hierazehparallel coordinates for exploration of large dataset®roceedings of IEEE Visualization
'99, pages 43-50, 1999.

[14] D. H. Geschwind. Mice, microarrays, and the genetic diitg of the brain.Proc. National Academy of Scienc@3(20):10676—-10678, 2000.

[15] M. Glatter, C. Mollenhour, J. Huang, and J. Gao. Sc&atata servers for large multivariate volume visualizatitEEE Trans. on Visualization and
Computer Graphicsl2(5):1291-1298, 2006.

[16] M. Graham and J. Kennedy. Using curves to enhance pacalbrdinate visualisations. I '03: Proceedings of the Seventh International Confeesnc
on Information Visualizationpages 10-16, 2003.

[17] J.E. Grisel, J. K. Belknap, L. A. O'Toole, and M. L. Helmisaé. Quantitative trait loci affecting methamphetamine res@s in bxd recombinant inbred
mouse strainsJournal of Neurosciencé. 7(2):745-754, 1997.

[18] S. Hachul and M. Junger. The fast multipole multilevel noethGD '04: Proceedings of the Symposium on Graph Drawijreges 286—293, 2004.

[19] W. Hargrove and F. Hoffman. Potential of multivariate gtitive methods for delineation and visualization of eghons.Environmental Management
34(5):39-60, 2004.

[20] N. Henry, J. Fekete, and M. J. McGuffin. Nodetrix: a hgbvisualization of social networks|IEEE Transactions on Visualization and Computer
Graphics 13(6):1302-1309, 2007.

[21] N. Henry and J. D. Fekete. Matrixexplorer: a dual-reprgation system to explore social networlsEE Trans. Visualization and Computer Graphics
12(5):677-685, Sep.-Oct. 2006.

[22] F. Hoffman, W. Hargrove, D. Erickson, and R. Oglesby.ndstlustered climate regimes to analyze and compare predidtiom fully coupled general
circulation modelsEarth Interactions9(10):1-27, 2005.

[23] Z.Hu, J. Mellor, J. Wu, and C. Delisi. Visant: an onlinewalization and analysis tool for biological interactideta.BMC Bioinformaticspages 5-17,
2004.

[24] A. Inselberg and B. Dimsdale. Parallel coordinates:a for visualizing multi-dimensional geometry. Proceedings of IEEE Visualization’9fages
361-378, 1990.

[25] A. Inselberg and B. Dimsdale. Multidimensional lines efresentationSIAM J. Appl. Math.54(2):559-577, 1994.

[26] Alfred Inselberg. The plane with parallel coordinat&se Visual Computetl (2):69-91, 1985.

[27] R. C.Jansen and J. P. Nap. Genetical genomics: the addiezifvom segregatiorlrends in Geneticsl7(7):388-391, 2001.

[28] J. Johansson. Perceiving patterns in parallel coatds determining thresholds for identification of relasioips. 2008.

[29] J. Johansson, M. Cooper, and M. Jern. 3-dimensionalagidpr clustered multi-relational parallel coordinates. IV '05: Proceedings of the Ninth
International Conference on Information Visualisatigrages 188-193, 2005.

[30] J.Johansson, P. Ljung, M. Jern, and M. Cooper. Rewgaliucture within clustered parallel coordinates displdyp INFOVIS '05: Proceedings of the
Proceedings of the 2005 IEEE Symposium on Information \eaien, page 17, 2005.

[31] B. C. Jones, L. M. Tarantino, L. A. Rodriguez, and C. LeRest al. Quantitative-trait loci analysis of cocaine-tetibehaviours and neurochemistry.
Pharmacogenetic®(5):607—617, 1999.

[32] T. Kamada and S. Kawai. An algorithm for drawing generaditected graphdnf. Process. Lett.31(1):7-15, 1989.



(33]
(34]
(35]
(36]

[37]
(38]

[39]
[40]

[41]
[42]

[43]
[44]

[45]
[46]

[47]
(48]
[49]
[50]
[51]

[52]
(53]

[54]
[55]

[56]
[57]
(58]

[59]
[60]
[61]
(62]

M. Kreuseler and H. Schumann. A flexible approach for aiglata mining.IEEE Trans. Visualization and Computer Graphig¢1):39-51, Jan.-Mar.
2002.

S. R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkinswlihg emerging cyber-communities automatically. Aroc. 8th Intl World Wide Web
Conf, 1999.

M. A. Langston, A. D. Perkins, A. M. Saxton, J. A. Schadhd B. H. Voy. Innovative computational methods for transornic data analysis. In
SAC’06: Proceedings of the 2006 ACM Symposium on AppliechGing, pages 190-194, New York, NY, USA, 2006. ACM Press.

L. Linsen, J. Locherbach, M. Berth, Jorg Bernhardt, &watte Becher. Differential protein expression analysis Mjuid-chromatography/mass-
spectrometry data visualization. IEEE Conference Visualizatip2005.

R. E. A. Moustafa and E. J. Wegman. On some generalizatibparallel coordinate plots. I8eeing a Million: A Data Visualization Worksha?002.

C. Mueller, B. Martin, and A. Lumsdaine. A comparison oftex ordering algorithms for large graph visualizatitmernational Asia-Pacific Symposium
on Visualizationpages 141-148, 2007.

P. Mutton and P. Rodgers. Spring embedder preprocegsingvw visualization.|[EEE Syposium on Information Visualizatidi0:744—749, 2002.

J. New, W. Kendall, J. Huang, and E. Chesler. Dynamicaligation of coexpression in systems genetics ddEEE Trans. on Visualization and
Computer Graphicsl4(5):1081-1094, 2008.

A. Noack. An energy model for visual graph clusterii@D '04: Proceedings of the Symposium on Graph Drawimeges 425-436, 2004.

M. Novotny. Outlier-preserving focus+context visization in parallel coordinatesIEEE Transactions on Visualization and Computer Graphics
12(5):893-900, 2006.

A. Perer and B. Shneiderman. Balancing systematic anibRegxploration of social network§EEE Trans. on Visualization and Computer Graphics
12(5):693-700, 2006.

J. Raymond, E. Gardiner, and P. Willett. Rascal: Calémtaof graph similarity using maximum common edge subgrapfise Computer Journal
45(6):631-644, 2002.

S. Russell and P. NorvidArtificial Intelligence: A Modern Approach (2nd Edprentice Hall, 2002.

P. Saraiya, Chris North, and Karen Duca. An evaluatibmiroarray visualization tools for biological insight. IEEE Symposium on Information
Visualization pages 1-8, 2004.

P. T. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T.ifaD. Ramage, N. Amin, B. Schwikowski, and T. Ideker. Cytoscapsoftware environment
for integrated models of biomolecular interaction netwo®snome Researcth1:2498-504, 2003.

P. T. Shannon, D. J. Reiss, R. Bonneau, and N. S. Balipa.ghggle: an open-source software system for integratoigformatics software and data
sourcesBMC Bioinformatics7:176, 2006.

Z. Shen, K. L. Ma, and T. Eliassi-Rad. Visual analysidasfe heterogeneous social networks by semantic and steu¢BEEE Trans. on Visualization
and Computer Graphicd.2(6):1427-1439, November/December 2006.

L. Sheng, Z. M. Ozsoyoglu, and G. Ozsoyoglu. A graph guanguage and its query processing.Pimceedings of the 15th International Conference
on Data Engineering, 23-26 March 1999, Sydney, Austrjaleges 572-581. IEEE Computer Society, 1999.

B. Shneiderman. The eyes have it: A task by data type @xgnfor information visualizations. IHEEE Visual Languageshumber UMCP-CSD
CS-TR-3665, pages 336—-343, College Park, Maryland 207482 A 1996.

B. Shneiderman. Network visualization by semantic saibss.|IEEE Trans. Visualization and Computer Graphit&(5):733—741, Sep.-Oct. 2006.

C. A. Steed, P. J. Fitzpatrick, T. J. Jankun-Kelly, andM\ Yancey. Practical application of parallel coordinateshurricane trend analysisy. In
Proceedings of IEEE Visualization’02007.

M. Tarini, P. Cignoni, and C. Montani. Ambient occlusiand edge cueing for enhancing real time molecular visuatizatiEEE Transactions on
Visualization and Computer Graphic2(5):1237-1244, 2006.

F. Y. Tzeng, E. B. Lum, and K. L. Ma. A novel interface foghier-dimensional classification of volume dataPhoceedings of IEEE Visualization '03
pages 505-512, 2003.

F. van Ham and J. van Wijk. Interactive visualizatiorsafall world graphs. IhEEE Syposium on Information Visualizatiggages 199-206, 2004.

J. Wang, R. W. Williams, and K. F. Manly. Webqtl: web-bds®mplex trait analysigNeuroinformatics1(4):299-308, 2003.

R. Wegenkittl, H. Loffelmann, and E. Groller. Visualigj the behavior of higher dimensional dynamical system®rbteedings of IEEE Visualization
‘97, pages 119-126, 1997.

E. J. Wegman and Q. Luo. High dimensional clustering upm@llel coordinates and the grand tour. Technical Repitt 1996.

J. E. Wegman. Hyperdimensional data analysis using lphcalordinatesJ. Am. Stat. Assi85(411):664—675, 1990.

B. Zhang, S. Kirov, J. Snoddy, and S. Ericson. Genet&igene network visualization system. UT-ORNL-KBRIN Bioinformatics Summz005.

H. Zhou, X. Yuan, B. Chen, and H. Qu. Visual clusteringarallel coordinates. IRroceedings of IEEE Visualization’02007.



