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Abstract— Interactive learning systems have long been used for directed knowledge discovery, volume segmentation, and transfer
function design. Such systems are traditionally treated as black boxes in which a concise summary of the information encoded is
not readily available, forcing professionals to leverage visualization of system weights. The inability of a user to understand learned
patterns inhibits the ability to make sense of an agent’s exhibited behavior. In this paper, we present an online learning system
based upon Adaptive Resonance Theory which exhibits several practical strengths over traditional learning systems as well as a new
mechanism to translate trained networks into intuitive compound boolean range queries. These queries can subsequently be used in
combination with parallel coordinate plots to facilitate sense-making of the learned multivariate patterns. We showcase the efficacy
of the system by demonstrating it on multivariate jet combustion data as well as tumor segmentation from MRI.

Index Terms—Learning systems, compound boolean range queries, large multivariate data visualization.
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1 INTRODUCTION

As the size of modern datasets continues to grow, the problems of
knowledge discovery, feature specification and tracking, as well as hy-
pothesis testing becomes increasingly intractable. Fully automated fil-
tering and computational tools are useful to aid in the process, but
can rarely be used holistically within a given domain-specific context.
Indeed, visualization rests upon the assumption that no matter how
good pattern recognition and automation is, the best it can be is semi-
automatic within the context of the entire scientific process; there is no
magic to jump from fuzzy concepts to fully substantiated and verifi-
able specifications. In this paper, we seek to leverage visualization and
cognitive processing to train the computer which patterns are deemed
interesting. Furthermore, we seek to translate a traditionally black
box learning system into a series of intuitive representations that can
be then be used to facilitate understanding and promote scientific ad-
vances.

There are a wealth of learning systems which have been used within
the visualization community for everything from autonomous pattern
detection to transfer function design. While every system has its own
strengths and weaknesses, we have elected to use a fuzzy learning
system based upon Adaptive Resonance Theory (ART) due to sev-
eral technical strengths and few weaknesses outlined in Section 3.2.
ART is a mathematical model designed to address the “stability-
plasticity” dilemma in which learning systems must be stable enough
to avoid castastrophic forgetting but plastic enough to continuously
learn. ART-based learning systems accomplish this by growing in size
as new experiences are introduced but also retains perfect memory of
past experiences. In this paper, we present an interactive segmenta-
tion system in which a user can succesively refine segmentation re-
sults from a heterogeneous network of learning systems using intuitive
brushing of interesting image locations.

While codifying human knowledge into autonomous agents can be
very useful, it has often been the case that extracting learned knowl-
edge from an agent has been notoriously difficult. ART-based systems,
like most learning systems, are often treated as black boxes in which
the learned properties are encoded in a nearly-indecipherable series of
edge weights. Several attempts have been made at visualizing neural
nets in order to comprehend the reasons for exhibited behavior. In this
paper, we present a method for converting SFAM networks into a rep-
resentation as compound boolean range queries which can be used to
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intuitively and precisely identify learned categories and also presented
in the context of multivariate relationships using parallel coordinate
plots.

In the remainder of this paper, we first give a summary of related
works in Section 2. In Section 3 we introduce the technical details of
our contributions. Finally, our results and discussion are provided in
Section 4, and then concluded in Section 5.

2 BACKGROUND

2.1 Segmentation with Learning Systems

Segmentation is defined as the act or process of dividing into seg-
ments. In image segmentation, there is a feature vector per pixel lo-
cation which contains multiple features corresponding to the values
for each of the variables available for that pixel location. Volume seg-
mentation can effectively be extruded from image segmentation over
multiple slices.

Machine learning is defined as the ability of a machine to improve
its performance based on previous results. Machine learning sys-
tems allow automatic segmentation through “clustering” feature vec-
tors into categories/classes. Machine learning systems come in three
flavors; in increasing order of capability they are unsupervised, rein-
forced, and supervised. An unsupervised system is provided no hintto
the correct classification, a reinforced system is provided a good/bad
hint to the correct classification, and a supervised system is given the
correct answer.

There are several common techniques and problems with segment-
ing data. Segmentation techniques can be broken into two general
categories: manual, semi-automatic, and automatic. In manual seg-
mentation, users must draw the desired borders onto the raw im-
age. While manual segmentation is often highly accurate, this process
takes much time, can be highly fatiguing, prone to errors, and ob-
fuscate reproducibility. Automatic segmentation promises to address
many of these issues. A short list of automatic segmentation meth-
ods includes Active Shape/Contour Models, Adaptive Segmentation,
Bayesian Grouping, probabilistic neural networks, and Fuzzy cluster-
ing techniques. An analysis of these automatic segmentation meth-
ods and related problems is beyond the scope of this work, but the
interested reader is referred to [6] showcased in the domain of brain
segmentation from MRI. All known automatic segmentation methods
suffer in varying degrees from problems such as variable imaging or
simulation parameters, signal noise, overlapping intensities for contin-
uous data points mapping to an implicit grid, partial voluming effects,
gradients from discontinuities between successive slices or timesteps,
and many other domain-specific concerns exist which make segmen-
tation a “confidence”-related task. For this reason, semi-automatic
methods are often used in which a human expert can leverage com-



putational tools to negotiate the tradeoffs between conflicting effects
to mark up data with a much-reduced workload over a fully manual
segmentation.

2.2 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is a mathematical framework
based upon models of the hippocampus and neocortex developed by
Carpenter and Grossberg in the 70s [7]. Many connectionist networks
at the time suffered from the Stability-Plasticity Dilemma, which
states the trade-off between a learning system stable enough to pre-
serve learned patterns and yet plastic enough to learn new ones [8].
Adaptive Resonance Theory was developed to overcome this dilemma
and has since served as a host for a plethora of neural network archi-
tectures, each demonstrating varying capabilities.

The ART1 class of architectures, developed in 1983, established
the first ART-based neural network and performs unsupervised learn-
ing for binary input patterns [4]. The ART2 class of architectures,
developed in 1987, included the ability to recognize analog vectors in
which features are codified to a floating point between 0 and 1 [2].
ART3 [3] and ARTMAP [5], developed ART3 and ARTMAP, devel-
oped in 1987 and 1991 respectively, are members of the ART2 class of
architectures along with dozens of other modern variants. The ART2
architecture variant known as Simplified Fuzzy ARTMAP is the one
that was utilized in this study due to its computational efficiency, in-
teractive performance, and many other properties that will be detailed
later.

Simplified Fuzzy ARTMAP (SFAM) [12] is a fast, on-
line/interactive, incremental, supervised learning system for analog
signals. Fuzzy means that SFAM utilizes fuzzy learning rules for ac-
tivation and selection of simulated neurons. SFAM can learn at a cus-
tom rate, but the fast learning rule is used because the simple fuzzy
learning rules minimize the computation required for learning. SFAM
is essentially a two-layer neural network that is specialized for pattern
recognition, capable of learning every training pattern with very few
iterations. The network starts with no connection weights, grows in
size to suit the problem, uses simple learning equations, and has only
one user-selectable parameter. In this system, the input vectors corre-
spond to multiple metrics which defines the relationship for each pair
of attributes from a set of multivariate data. SFAM is particularly well
suited to this problem and we circumvent the dependence on an ad-
justable “vigilance” parameter and the dependence on the order of the
input by using a voting scheme of heterogeneous networks.

3 SYSTEM COMPONENTS

As the resolution and number of variables increases in modern multi-
variate datasets, the ability to precisely identify interesting patterns in
the dataset becomes increasingly intractable. This is exacerbated by
the fact that one could compute a large number of derivative variables.
Human cognitive ability could be overloaded in regard to remember-
ing and using various combinations of metrics for a plethora of rele-
vant scenarios. As is common with initial investigation of new data,
experts may not even know what is important until they see it.

To address these situations, we have developed an intuitive user in-
terface for data analysis and present the system diagram in Figure 2. It
includes a learning system which takes inputs from the user brushing
on a rendered slice of data to define which data points are interesting
based upon the scientific question under investigation. The learning
system then discovers which combinations of variables are useful in
finding those relationships. The user is then presented with an overlay
of the learned patterns based on the user selections for further refining
the segmentation. The final trained networks can then be saved and
reloaded when similar investigation is necessary in potentially new
data. The networks can also be converted for use in many traditional
visualization schemes such as: compound boolean range queries to
quantify learned categories, parallel coordinate plots for qualitative as-
sessment of multivariate trends, and transfer function design.

Fig. 1. Shader combination of 5 variables of jet combustion data.

Fig. 2. Learning system determines areas of interest via user-in-the-
loop interaction.

3.1 Shader-enhanced Visualization

Users of scientific visualization tools often do not know precisely what
is novel, or what specific combination of variables constitute a par-
ticular feature of interest until it is seen. One of the most important
elements for effective multivariate visualization is appropriate trans-
fer function design. However, this can be difficult as the number of
variables in common datasets grows. In this paper, we use a custom
shader to blend 5 variables of the jet combustion dataset to create a
single RGB image.

3.2 Effective SFAM Utilization

While there are an abundant number of various learning systems, we
felt that the SFAM system provided several key advantages that make
it particularly suited for this task. First, it is an online/interactive and
incremental learning system meaning that it can both learn and classify
user selections as a user successively refines the system’s performance.
This circumvents the laborious training time and scrapping/retraining
necessary to incorporate constantly changing training datasets com-
mon for approaches such as backpropagation neural networks. Sec-
ond, it is fast meaning it is able to learn in 5 epochs what takes most
learning systems 1000s of epochs to learn. This can be used to provide
real-time feedback as a user drills down on a specific pattern of inter-
est. Third, it is a supervised network based upon analog processing
which incorporates fuzzy learning rules to model uncertainty. Fourth,
in order to speed computation, SFAM compliment-codes the incoming
feature vector which doubles the feature vector length by subtracting
each incoming feature from unity. This is a strength as it directly en-
codes the fact that users may be as interested in the absence of data
than its presence.

There are also a couple disadvantages of SFAM which need to be
addressed. First, there is a “vigilance parameter” which can be set



Fig. 3. Structure of an ARTMAP network.

from 0 to 1 and is typically set to 0.7 (but varies widely depending on
the application). Vigilance corresponds to the “generality” of the clas-
sification, where a value near 0 means very general and a value near 1
means very specific. For example, the same object may be classified
as a human at a vigilance of 0.3, a male at 0.5, and John Smith at 0.8.
Second, we use fast learning which keeps the learning rate at 1 without
sacrificing any recognition ability. However, this does introduce insta-
bility in that the learning system is sensitive to the order of the input
vectors. To ameliorate these problems, we introduce a voting scheme
utilizing 5 heterogeneous networks to establish a level of confidence.
For our voting system, we use three SFAMs [12] with vigilances of
0.75, 0.675, and 0.825 that are trained on the same sequence of in-
put data while a fourth and fifth network with vigilances of 0.75 are
trained on different input sequences.

3.3 SFAM Learning
In order to understand this paper’s contribution in converting a trained
SFAM network to intuitive representations, some technical details of
how SFAM learns is necessary. SFAM takes as input a series of K ob-
jects each codified by an N-element, compliment-coded floating point
vector. SFAM’s structure is such that it has an input layer, an output
layer, and a mapfield which connects output layers to the specified su-
pervisory signal. To learn, SFAM alternates between three phases for
each input: output node activation, top-down pattern matching, and
categorical mapping.

First, SFAM calculates output node activation. There are as many
nodes in the input layer as there are features in the final, compliment-
coded feature vector. The number of nodes in the output layer grows
as inputs are classified. The nodes in the input layer and output layer
are fully connected by weight-based connections initialized to 1. The
manipulation of these weights is what allows feature classification.
The activation function for the jth output node is defined byA j (i) =
|I ∧w j |/(α + |w j |) whereα is typically 0.0000001 and the∧ operator
is the “fuzzy AND”, simply corresponding to the minimum such that
(I ∧w j ) = min(I ,w j). The winning node is defined as the one with the
highest activation.

Second, SFAM calculates the top-down pattern matching. Once
the winning node has been established, a match function is used to
determine if the activated category classifies the feature vector suf-
ficiently (if learning should occur). The match function is defined
by M = |I ∧Wj |/N. If M ≥ ρ , where rho is the vigilance param-
eter, then the system is said to be in a “state of resonance”; that
is, the output node j is good enough to encode input I and node
j’s weights are updated by adjusting the top-down weight vector to
w j = β ∗ (I ∧ w j ) + (1− β ) ∗ w j where β is the learning rate. In
this paper, we use the “fast learning” rule in whichβ = 1 and thus
w j = I ∧w j . If M < ρ , a “mismatch reset” occurs, vigilance is in-
creased toρ = M + ε, whereε = 0.0001 and the second-highest acti-
vated output node is matched against the new vigilance. If this second
output node meets the new vigilance requirement, its weights are ad-
justed to codify the current input. If it fails, a new output node is
created with top-down weights equal to the compliment-coded feature
vector. This secondary mismatch reset is what makes the SFAM sys-
tem grow to recognize genuinely new input features.

Third, SFAM performs categorical mapping from output nodes to
meaningful classifications specified by the supervisory signal. The
system has taken inputs and learned to classify all of them as output
nodes, but there can be several output nodes which constitute a sin-
gle categorical idea which introduces the necessity of a “MAP field”.
Let us use the context of a typical training problem in which SFAM
must determine from a Cartesian coordinate pair whether it is inside
or outside a circle. If SFAM has already learned that one given coor-
dinate is inside the circle, a very close coordinate that lies outside the
circle might “match” the first coordinate. However, the supervisory
signal provided notifies the system that this vector is outside the cir-
cle. This forces a “category mismatch”, which triggers a “mismatch
reset”, forcing the creation of a new output node which is mapped to
the “outside the circle” category. As may be gleaned by this exam-
ple, SFAM output node weights correspond to centroids for clusters
whose range is a function of the activation weights that serve to carve
out hypercubes in the potential solution space which can be mapped to
compound boolean range queries. However, we discuss a more general
data-driven method in the section below.

3.4 Data-Driven Query Extraction

While deriving the mathematics for converting an SFAM network to a
set of compound boolean range queries, we developed a more general
mechanism that could apply to any classification system by adopting
a purely data-driven approach. For example, a single SFAM network
can perform learning and subsequent classification on every pixel ofan
image resulting in the classification of every pixel based on a specific
output node ID as shown in Figure 6 and Figure 7. These classification
results are PGM files colored by SFAM output node but could just as
easily be constructed using SFAM “MAP field” categories, another
clustering technique or learning system, or even combined results of
multiple heterogeneous networks. We then use these clustered images
to construct compound boolean range queries in a purely data-driven
way that is classification system agnostic.

We have written a pgm2brq converter that takes as input a PGM im-
age of classification values and the original data. The algorithm simply
finds the min and max for each of the attributes of each location and
outputs a single compound boolean range query for each classification
ID. This method is simple, SFAM-agnostic, and runs inO(N) time
whereN is the number of classified data values.

There are a couple assumptions and properties to this approach
that are worth mentioning. First, it assumes that there is a unique
classification at each position and therefore is amenable primarily to
winner-take-all classification schemes. Second, compound boolean
range queries innately carve out hypercubes in the dataspace; there-
fore, any clustering or learning system which partitions the space in
another way will result in compound boolean range queries that will
overlap in dataspace for multiple categories. There are many methods
to address each of these concerns, but is considered beyond the scope
of this paper.

4 RESULTS AND DISCUSSIONS

4.1 Datasets

The first dataset we utilize is a simulation of turbulent combustion
from a jet engine created by Sandia National Lab and made avail-
able through the SciDAC Institute for Ultra-Scale Visualization. This
dataset consists of a 480x720x120 volume with 122 timesteps of 5
variables: OH (hydroxy radical), chi is scalar dissipation rate, hr, mix-
ture fraction of air to fuel, and vorticity of . A custom transfer function
and shader, as described in section 3.1, was used to combine all 5 vari-
ables into the color image used for segmentation. The database used
for machine learning is simply the 5 normalized variables from the
original dataset. One of the domain-specific goals of this dataset is
to determine the location of flame boundaries along which extinction
and reignition of the jet flame occurs based on underlying physics of
chemical reactions.

The second dataset includes medical imagery, mostly consisting of
MRIs of the brain, obtained from the Whole Brain Atlas web site [11].



Fig. 4. Segmentation of flame boundaries in the jet combustion dataset.

This dataset consists of 256x256 image slices from the brain of a pa-
tient suffering from metastatic bronchogenic carcinoma. To gener-
ate the database of information for the SFAM-based segmentation, we
took the spatially registered PD, T1, T2, and SPECT imaging modali-
ties and used image processing with the 3D shunt operator [1] to create
16 opponency values for each pixel location. A sample of 3 of these
opponencies was used as YIQ channels and then mapped to RGB chro-
matic space for display of multiple modalities simultaneously. One of
the domain-specific goals is to segment the unhealthy brain tissue for
planning of decompressive surgery.

4.2 Segmentation

The segmentation GUI is intuitive to use and capable of robustly delin-
eating features in the data with only a few swipes of the mouse. In this
interface, we use green to denote examples and red to denote coun-
terexamples. Based upon these markings, the SFAM networks ana-
lyze the database information and report a gray-scale image recording
the confidence of the heterogeneous collection of learning systems of
other points similar to those selected by the user.

As can be seen in Figure 4, successful segmentation of flame bound-
aries is displayed. For this segmentation task, an unusually large num-
ber of disjoint points, consisting of 17 examples and 32 counterexam-
ples, was utilized in order to highlight the strength of both the SFAM
networks as well as the subsequent extraction of quantitative queries.
Although 49 points were used, the SFAM networks created an average
of only 7 output nodes per network to encode the diffent material types
in the dataset. This results in data reduction and a filtered clustering of
the dataset to aid in comprehension and attention direction.

Figure 5 showcases successful segmentation of metastatic bron-
chogenic carcinoma. This segmentation task involved only 3 swipes of
the mouse and transparent network training despite 68 training points
encoded using an average of 40 output nodes over 32 complement-
coded features. The heterogeous set of trained agents is saved and can
subsequently be utilized on a database of patients to scan for images
which exhibit similar risk of this disease or for use in prescreening
to direct radiologist’s attention to the most likely locations of various
disease types.

Fig. 5. Segmentation of tumor in MRI dataset.

4.3 Transfer Function Design

Segmentation and other classification schemes can be used to create
effective transfer function designs of structure within the data. In Fig-
ure 4 and Figure 5, we simply show a segmentation confidence overlay.
This segmentation overlay could instead be used to modulate opacity
for different structures depending on the task at hand. Indeed, assum-
ing that the learning system used provides robust segmentation across
slices, this method could be applied to multiple slices of a volumetric
dataset for identification of isosurfaces or interval volumes that could
be made transparent or highlighted for feature tracking.

In order to learn more about the dataset, we color the datasets by
output node of an SFAM networks trained to recognize flame bound-
aries and carcinoma in Figure 6 and Figure 7. This classification
clearly shows very coherent structures in the data in a method very
similar to the non-photorealistic technique of toonification. This same
technique could be applied to SFAM output nodes for material types,
SFAM Map field categories to reduce this knowledge down to the seg-
mentation results, multiple heterogeneous networks trained for a com-
mon task as in Figure 4 and Figure 5, or even multiple clustering or
classification systems trained for different tasks (such as toonified re-
sults for various types of diseases visible to multiple image modali-
ties).

4.4 Query Representation

While autonomous learning systems are useful in many circumstances,
domain scientists are often trying to determine precisely which inter-
play of variables is giving rise to a specific, visual effect. In order to
open the black box and allow the user to understand what the system
has learned, we have developed a data-driven mechanism for mapping
a set of classifications to a set of compound boolean range queries. For
the result in Figure 4, we show the data-space centroid corresponding
to each grayscale level in Table 1.

In these 10 complement-coded data centroids from the output nodes
of an SFAM network, we have a strong delineation of specific types of
chemical concentrations and their corresponding location within the
dataset. There are 2 example classes which codify somewhat similar
chemical properties of the flame boundaries. There are 3 counterex-
ample nodes in which the first cluster consists only of data points in-
side the flame boundaries near the center of the simulation, the second



Table 1. Cluster centroids for different chemical concentrations in the jet combustion data

Boundary:
Y OH chi hr mixfrac vort !YOH !chi !hr !mixfrac !vort
0.269 0.620 0.632 0.432 0.126 0.731 0.380 0.368 0.568 0.874
0.254 0.125 0.476 0.268 0.073 0.371 0.576 0.311 0.362 0.673

Other:
Y OH chi hr mixfrac vort !YOH !chi !hr !mixfrac !vort
0.308 0.001 0.262 0.411 0.050 0.425 0.980 0.324 0.326 0.703
0.033 0.001 0.155 0.520 0.045 0.067 0.993 0.561 0.127 0.877
0.000 0.000 0.000 0.000 0.000 0.904 0.994 0.945 0.0198 0.767

Fig. 6. SFAM network output node clustering of jet combustion data.

Fig. 7. SFAM network output node clustering of MRI data showing accu-
rate classification of the tumor (black) as well as the surrounding edema.



Fig. 8. High proton density and low amounts of blood flow is the sin-
gle most important database factor in delineating a tumor caused from
metastatic bronchogenic carcinoma.

Fig. 9. Parallel coordinate plot of 10 complement-coded features for the
jet combustion dataset showing in red all datapoints corresponding to
flame boundaries based upon a set of 4 extracted compound boolean
range queries.

cluster is outside the flame boundaries, and the third cluster is the black
area near the edges of the simulation grid.

When applied to the material types codified by the output nodes
of an SFAM network, we also have direct quantitative specifications
of those types. For example, the segmented tumor in Figure 5 corre-
sponds to only one output node and thus only one compound boolean
range query as shown in Table 2. The tightest range, and therefore the
single variable which most concisely represents the area segmented as
tumor is the 13th variable with a normalized range of 0.21 corresponds
to a 3D shunt operator using functional MR-PD (proton density) in the
“on center” channel and metabolic SPECT modality in the “off sur-
round” channel. As can be seen in Figure 8, the tumor has been traced
to an area of high proton density but inhibited bloodflow. Upon further
inspection, this pattern was confirmed by radiologists from the case
details. Use of other variables are necessary to improve segmentation
by removing competing regions such as that of the skull.

4.5 Multivariate Representation

In an effort to not only convey qualitative segmentation results or pre-
cise quantitative ranges, we also use parallel coordinate plots for re-
laying multivariate trends in the data. This is important because while
the quantitative queries can relay specific features that are of primary
importantance for the current segmentation task, it is often difficult for
a user to understand the inter-variable dependencies present for a seg-
mentation task. This property becomes readily apparent in the case of
the jet combustion dataset in which there is a rich microphysics inter-
play among all variables to determine areas of the flame boundary.

In Section 4.4, we were able to use the extracted queries to quanti-
tatively define the range for the most important factor in determining
which region(s) constitute the tumor. By representing this data in par-
allel coordinate space, we are able to see that the range could be cut
in half by dropping only 5 datapoints. Therefore, this mechanism can
be used in a linked-viewport format in which radiologists can interac-
tively continue to refine the segmentation results via brushing.

Fig. 10. Parallel coordinate plot of a subset of the variables in the MRI
dataset showing in red all datapoints corresponding to tumor.

5 CONCLUSION

In conclusion, we have provided a heterogenous learning system ca-
pable of interactive performance on large data capable of determining
which metrics are of interest based upon trends identified by the user.
The classification of these networks has been demonstrated for trans-
fer function design of large, real-world datasets. A mechanism has
been developed for translating SFAM-based learning systems to an in-
tuitive representation of the patterns learned. Parallel coordinate plots
are used to convey these patterns to the user during the interactive pro-
cess for enhanced hypothesis testing. The results demonstrated clearly
show the recognition and summary capabilities of the system for mul-
tivariate data.
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Table 2. Extracted 32-feature query for tumor in MRI data corresponding to the black region of Figure 8.

[0.245,0.990] [0.100,1.000] [0.405,0.998] [0.000,0.326] [0.114,0.991] [0.145,0.916] [0.560,1.000] [0.161,0.880]
[0.154,0.505] [0.208,1.000] [0.103,0.998] [0.137,0.992] [0.789,1.000] [0.000,0.405] [0.000,0.376] [0.000,0.358]
[0.010,0.755] [0.000,0.900] [0.002,0.595] [0.674,1.000] [0.009,0.886] [0.084,0.855] [0.000,0.440] [0.120,0.839]
[0.495,0.846] [0.000,0.792] [0.002,0.897] [0.008,0.863] [0.000,0.210] [0.595,1.000] [0.624,1.000] [0.642,1.000]


