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Abstract

Domain scientists hope to address grand scientific challenges by exploring the abundance

of data generated and made available through modern high-throughput techniques. How-

ever, the impact of this large volume of data is limited unless researchers can effectively

assimilate the entirety of this complex information and integrate it into their daily research;

interactive visualization tools are called for to support the effort. Specifically, typical sci-

entific investigations can make use of novel visualization tools that enable the dynamic

formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of

key parameters and achieving data reduction. These general tools should be applicable to

many disciplines: allowing biologists to develop an intuitive understanding of the structure

of coexpression networks and discover genes that reside in critical positions of biological

pathways, intelligence analysts to decompose social networks, and climate scientists to

model and extrapolate future climate conditions. By using a graph as a universal data rep-

resentation of correlation, our novel visualization tool employs several techniques that when

used in an integrated manner provide innovative analytical capabilities. Our tool integrates

techniques such as graph layout, qualitative subgraph extraction through a novel 2D user

interface, quantitative subgraph extraction using graph-theoretic algorithms or by query-

ing an optimized B-tree, dynamic level-of-detail graph abstraction, and template-based

fuzzy classification using neural networks. We demonstrate our system using real-world

workflows from a couple large-scale systems.
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Chapter 1

Introduction

The amount of digital information created, captured, and replicated in the year 2006 alone

was 161 exabytes (billion gigabytes) which is equivalent to 12 stacks of books reaching from

the earth to the sun (30 million times more than have ever been written) and is expected

to increase six fold to 988 exabytes per year by 2010 [Gantz et al., 2007]. As the amount

of scientific data increases, computational tools are necessarily leveraged to traverse from

data to meaningful scientific results. The ability to identify interesting features in the

data while incorporating inherent uncertainty is a central research problem. This problem

incorporates several research avenues which must be addressed in an integrated manner

for maximum impact.

First, the role of interactive visualization is increasingly necessary for allowing experts

to make sense of large data. For example, the Department of Homeland Security has

established the National Visualization and Analytics Center (NVAC) with the purpose of

countering future terrorist attacks through the use of visual analytics, which it defines

as the science of analytical reasoning facilitated by interactive visual interfaces [Thomas

and Cook, 2005] and issued a call for computational tools that enable human-information

discourse. One common counter-argument to visualization is that particular analytical

processes can be wholly automated, so why the need for visualization? Visualization rests

upon the assumption that no matter how good pattern recognition and automation is, the

best it can be is semi-automatic within the context of the entire scientific process; there is no

magic to jump from fuzzy concepts to fully substantiated and verifiable specifications. The
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quality and accuracy of an analytic process is a complex tradeoff due to uncertainty innate

to the data, its use, as well as its method of representation. For example, which method

of normalization is appropriate for a specific type of statistical analysis, which threshold

is appropriate for a certain complexity of graph analysis, and how do you map text and

missing features to representations amenable for specific machine learning methods? The

expert user’s domain knowledge plays a vital role in balancing tradeoffs adequately for the

scientific question at hand. It is common for such investigations to leverage human-in-

the-loop control over an iterative process of data visualization, user input, and computer

operations on the data. The unique capabilities of real-time interactivity using modern,

hardware-accelerated graphics to take advantage of the human eyes broadband pathway

to the brain and widely applicable algorithmic tools are thus called upon to facilite the

process of knowledge discovery.

Second, general data structures must be utilized which can incorporate multiple types

of data items and uncertainty in the relationship between those items while concurrently

being optimized for common methods of interaction. The most common data framework

for scientific data is the idea of entities with properties, referred to as multivariate data,

which lead to the rise of the spreadsheet and database storage schemas with distinct enti-

ties in rows and a list of properties (aka. features or attributes) in columns. In addition

to entities with properties, there are often connections or relationships such as correlation

that is of interest to scientists. In this work, we use a weighted-edge graph and database as

universal data representations of large complex data. The graph is represented as a limited-

precision, lower- triangular adjacency matrix for efficient storage, cache performance, and

algorithmic simplicity. The database uses a proprietary B-tree format optimized for tradi-

tional boolean range queries, unlike traditional database formats. The database can also be

used to store and interactively query results from algorithms that are too computationally

intense to run in real-time. While domain experts are often familiar with a simulation or

experiment, they frequently do not have the proper tools for telling the visualization tools

what to show. These general, flexible, and performance-driven data structures thus func-

tion as a common basis for interdisciplinary discussion as well as for analytic techniques

during real-time visualization.
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Third, novel data-driven algorithms should be developed and integrated with existing

analytic techniques to exponentially increase data processing capabilities. To make sci-

entific advances, specialists seek out ways to analyze their data until it highlights some

new property, gives rise to process insight, or points toward a paradigm shift. Since the

ways scientists can alter their data is limited by the vocabulary of applicable algorithms,

it is important to leverage existing techniques while also developing more powerful or

applicable ones. Based upon our very general data structures, we have integrated several

known methods such as common graph-theoretic algorithms [Gross et al., 2004] and image-

processing techniques to the graph structure in combination with common techniques such

as database querying, statistics calculations, modeling/mining, and artificial intelligence

techniques on the database structure. Novel data-driven algorithms include dynamic level-

of-detail graph abstraction for operation over multiple scales such as relationships between

paracliques [Chesler and Langston, 2005], algorithms for addressing the unsolved problem

of optimized axis ranking in parallel coordinate plots [Inselberg, 1985], and a processing

method for opening the black box to understand properties learned by an autonomous

agent based upon Adaptive Resonance Theory [Carpenter and Grossberg, 1987]. These

data-driven algorithmic capabilities can be used synergistically with one another as well as

with visualization analytics algorithms.

Fourth, novel visualization and high-level input mechanisms are necessary to allow new

and diverse methods of human-computer interaction. In the software package which in-

tegrates most of the techniques in this dissertation, we typically represent the data items

and relationships as a common node-link graph. In order to do so, a meaningful position in

which similar/related items are close together is calculated for each vertex using existing

algorithms integrated with improvements in runtime, parameter settings, and generaliza-

tion to 2D as well as 3D layouts including GEM3D [Bru and Frick, 1996], Fruchterman-

Reingold [Fruchterman and Reingold, 1991], and energy barrier [Davidson et al., 2001]

graph layout algorithms. While this method of representation is intuitive and allows for

very precise viewing and detail control, scientists often need a high-level, birds-eye view

of their data. For this, a novel qualitative subgraph extraction technique using a novel

2D user interface based on block tridiagonalization [Bai et al., 2004] to maximize the data

displayed while minimizing the screen space required. In visualization, users often don’t
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know what’s interesting until they see their data. We incorporate this to quickly process in-

tuitive, semantically rich inputs for identifying objects of interest in combination with LoD

vertices for template-based fuzzy classification using neural networks. Domain-specific vi-

sualization has been added using image processing techniques for the automatic generation

of spectral karyotypes [Schrock et al., 1996].

The specific contributions in data structures, algorithms, and visual interaction con-

tained in this thesis demonstrate powerful ways of integrating algorithmic computation

and adaptive machine intelligence in innovative, uncertainty-tolerant visualizations that

powerful computers, meaningfully directed by qualitative concepts of human users, can

utilize to unravel intrinsic patterns in complex datasets. We demonstrate our integrated

system using real-world workflows from a large-scale systems genetics study of mammalian

gene coexpression as well as supercomputer-driven climate modeling of large, multivariate

data.

In the remainder of this dissertation, I describe relevant domain-specific and technical

background work in chapter 2, the application of novel analytic capabilities for systems

genetics data in chapter 3, advancements in the context of parallel coordinate plot axis

ranking in 4, a new method for understanding the learned capabilities of SFAM [Carpenter

et al., 1991] systems in chapter 5, and close with conclusions and future work in chapter 6.
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Chapter 2

Background

We will apply the graph-based visual analytics framework to several application-specific

domains. While the proposed framework should be general enough for application to

nearly any domain, I provide background information on several that are relevant to on-

going collaborative research between The University of Tennessee and Oak Ridge National

Laboratory.

2.1 Systems Genetics Data

“Making sense of genomics is risky,

But with database builders so frisky

Gene expression in brains

May one day explain

A mouse’s obsession with whiskey.”

-Poet Laureate of the Neuroscience Program, University of Illinois at Urbana-Champaign,

November 27, 2006

Let us consider an analogy familiar to the field of computer science: a variable stored

at a location in the main memory of a computer. In genomics, one can consider the entire

memory space roughly corresponding to the genome, a location-specific variable as a gene,

and the value stored in each variable as the genotype at that location. The value of a

genotype is transmitted by each parent. The fact that each location can take on different
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genotypes is termed polymorphism, since the same genome location for different individuals

may hold (parts of) different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetic makeup of an organ-

ism, while a phenotype defines the actual physical properties, or traits, of the organism.

Although genetic makeup is not the sole factor influencing an organism’s phenotype, it is

often a strong causative predictor of the trait. Consider common traits relating to physi-

cal appearances as an example. Having exactly the same genotypes, identical twins have

strikingly similar appearances (phenotypes), yet due to environmental influences they may

not look exactly the same.

It is of great interest to unravel the inner workings of how genotypes influence molec-

ular networks to affect a phenotype such as agility, seizures, and even drug addiction, to

name a few. Geneticists have already achieved great success in associating a genotype and

phenotype for a trait determined by one gene (i.e. monogenic traits), but much present

attention is now focused on traits that are determined by many genes (i.e. complex traits).

These traits are continuously distributed random variables and thus referred to as quanti-

tative traits. Linear modeling is used to identify genotypes that predict phenotype values.

The location of these genotypes are quantitative trait loci (QTLs) [Abiola et al., 2003].

Detected via statistical methods [Doerge, 2002], QTLs are stretches of DNA highly asso-

ciated with a specific phenotype, analogous to genetic landmarks which roughly indicate

the position of the active gene. QTLs are not defined at very fine granularity; they usually

correspond to areas large enough to hold several genes. The genetic polymorphism (geno-

types) in neighboring areas of a set of loci, as a group, influence structure and function on

both molecular and organismic scales.

For decades, scientists have systematically randomized and then stabilized genetic vari-

ation in groups of mice to effectively create a population of clones. These mice, called

“recombinant inbred” (RI) strains, function as a reference population which is used by

groups worldwide in order to allow a basis of comparison and integration across different

experiments [Chesler et al., 2003]. This is very important from a statistical standpoint

as it implies that the potential size of the combined datasets is theoretically unbounded,

resulting in extremely high dimensional data. Sufficient confidence is currently allowing

integration of diverse biological data across levels of scale in an approach related to systems
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biology, “systems genetics.” This integrative approach for multiscale and multiorgan phe-

notypic datasets has only become feasible in recent years and relies heavily on statistical

techniques, complex algorithms, high-performance computing and visualization.

Let us consider an analogy familiar to the field of computer science: a variable stored

at a location in the main memory of a computer. In genomics, one can consider the entire

memory space roughly corresponding to the genome, a location-specific variable as a gene,

and the value stored in each variable as the genotype at that location. The value of a

genotype is transmitted by each parent. The fact that each location can take on different

genotypes is termed polymorphism, since the same genome location for different individuals

may hold (parts of) different genes or non-gene DNA sequences.

The entire set of genotypes across the genome defines the genetic makeup of an organ-

ism, while a phenotype defines the actual physical properties, or traits, of the organism.

Although genetic makeup is not the sole factor influencing an organism’s phenotype, it is

often a strong causative predictor of the trait. Consider common traits relating to physi-

cal appearances as an example. Having exactly the same genotypes, identical twins have

strikingly similar appearances (phenotypes), yet due to environmental influences they may

not look exactly the same.

It is of great interest to unravel the inner workings of how genotypes influence molec-

ular networks to affect a phenotype such as agility, seizures, and even drug addiction, to

name a few. Geneticists have already achieved great success in associating a genotype and

phenotype for a trait determined by one gene (i.e. monogenic traits), but much present

attention is now focused on traits that are determined by many genes (i.e. complex traits).

These traits are continuously distributed random variables and thus referred to as quanti-

tative traits. Linear modeling is used to identify genotypes that predict phenotype values.

The location of these genotypes are quantitative trait loci (QTLs) [Abiola et al., 2003].

Detected via statistical methods [Doerge, 2002], QTLs are stretches of DNA highly asso-

ciated with a specific phenotype, analogous to genetic landmarks which roughly indicate

the position of the active gene. QTLs are not defined at very fine granularity; they usually

correspond to areas large enough to hold several genes. The genetic polymorphism (geno-

types) in neighboring areas of a set of loci, as a group, influence structure and function on

both molecular and organismic scales.
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For decades, scientists have systematically randomized and then stabilized genetic vari-

ation in groups of mice to effectively create a population of clones. These mice, called

“recombinant inbred” (RI) strains, function as a reference population which is used by

groups worldwide in order to allow a basis of comparison and integration across different

experiments [Chesler et al., 2003]. This is very important from a statistical standpoint

as it implies that the potential size of the combined datasets is theoretically unbounded,

resulting in extremely high dimensional data. Sufficient confidence is currently allowing

integration of diverse biological data across levels of scale in an approach related to systems

biology, “systems genetics.” This integrative approach for multiscale and multiorgan phe-

notypic datasets has only become feasible in recent years and relies heavily on statistical

techniques, complex algorithms, high-performance computing and visualization.

2.2 Climate Data

“Prediction is very difficult, especially if it’s about the future.”

-Niels Bohr, Nobel laureate in Physics

Climate scientists have very large and ever-growing datasets using ground-truth data

from centuries of measurements. However, these datasets have many problems that hinder

their effective analysis: varying measurement times, irregular grid locations, quality of

measurements (occasionally dependent upon untrained individuals or faulty equipment),

inaccurate bookkeeping, differing number of climatological variables over time, a plethora

of missing values, and changing standards of measurement over time. These are but a few

of the sources of uncertainty inherent in climate data.

To be sure, scientists are always working on ways to remove this uncertainty, collect

more accurate measurements with greater certainty, and continue to improve as more ad-

vanced technology becomes deployable. Nevertheless, climatologists have been tasked with

extrapolating to predict the future of our planet’s climate. This is often approached through

creating statistical models from the collected data for individual variables to determine the

relationships among the variables and incorporating these into complex, number-crunching

simulations which can carry the current state of the climate into the future.
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Recent work at Oak Ridge National Lab has focused on the quantitative segmentation

of the global climate into ecoregions, also known as climate regimes [Hargrove and Hoff-

man, 2004]. These areas which have been spatio-temporally clustered based on similar

environmental factors can have many uses in management, legislation, ecological triage,

and comparison of standard simulation models [Hoffman et al., 2005].

Oak Ridge National Lab has several high performance computing resources that are

leveraged to keep them on the cutting edge of research and innovation. In the relevant

climate work, supercomputers are used to run parallel k-means clustering for ecoregion

identification as well as for model-fitting routines to predict one variable in terms of others.

This process creates a multitude of data which can be difficult for even an expert in the

field to look through efficiently or effectively during the process of knowledge discovery.

Visual analytics tools are called for to aid this process.

Building on much related work from statistical plots, we propose the use of parallel

coordinates to allow intuitive visualization and interaction with data across any number

of dimensions. We also plan to provide automated trend detection algorithms to highlight

potential inter- and intra-variable relationships of interest. These trends and data selections

are then projected onto a geo- registered map which is the typical method of presentation

for climate scientists.

2.3 Graph Representation and Interaction

A graph is a universal concept used to represent many different problems with vertice rep-

resenting objects of interest and edges representing the relationship between those objects.

Visualization is a powerful tool to leverage for decomposing and understanding important

graph properties in a dataset. There are many ways to visualize graphs and the most

common way involves a layout algorithm which preserves the strenght of the topological

relationships in the positioning of the vertices. While more restrictive layouts, such as

trees, should be used when possible, this work will address the general case of graph inter-

action. In relation to this work, we categorize methods to comprehend graph properties

as: (i) those solely depending on algorithms, i.e. the algorithmic approach, and (ii) those

incorporating human input as an integral component, i.e. the interactive approach. Let us
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review both approaches in turn.

2.3.1 The Algorithmic Approach

Algorithmic research to automatically compute graph properties of various kinds has been

extensively studied. Well known examples include clique, strongly connected components,

induced subgraph, shortest paths, and k-connected subgraph. Let us use clique analysis as

a representative example. By filtering out edges with weights below a certain threshold, a

gene network with high co-regulation should appear as a complete subgraph, or a clique.

Hence, it is natural to consider clique analysis in gene expression data analysis.

However, clique analysis is an NP-complete problem. Even though more efficient fixed-

parameter methods [Langston et al., 2006] are currently being used, it is still a very time

consuming procedure to compute. It is also hard to treat edges with negative weights in the

context of clique analysis, so common approaches typically preprocess the graph to convert

all edge weights to absolute values. The impact of information loss due to thresholding

is hard to evaluate and is further complicated by the presence of noise. While partially

resolved by paraclique [Langston et al., 2006] methods in which a few missing edges are

acceptable, additional problems are introduced such as the meaning of paraclique overlap

which may be handled differently depending on the working hypothesis.

Such shortcomings apply to different graph algorithms in varying degrees, but are

generally inherent with graph theoretic analysis. However, this should in no way prevent

graph algorithms from being used for suitable problems. From this perspective, it would

be greatly advantageous to develop a visual, effective and efficient feedback framework.

In this framework, a human expert is enabled to quickly identify imperfect portions and

details of the data, and not only remove irregularities but also to significantly reduce

the dataset’s complexity by interactively constructing various levels of abstraction. The

resulting problem space would be more appropriate for graph theoretic analysis to be

applied. In fact, some undertakings in visualization research have already adopted similar

approaches [Raymond et al., 2002].

Here we note that our goal is neither to accelerate all computation in a scientist’s work-

flow nor replace computation solely with visualization. We hope to develop a visualization
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framework which allows navigation through gene expression data and segmentation of the

appropriate data for further study. In this way, s/he can flexibly choose and apply the

right computational tool on the right kind of problem.

2.3.2 The Interactive Approach

Much related work in visualization follows the Information Seeking Mantra proposed by

Shneiderman [Shneiderman, 1996]. That is: overview first, zoom and filter, and then details

on demand. At each of the three stages, there are a number of alternative approaches, many

of which are highly optimized for a specific application. A key driving application in this

area has been visualization of social networks [Perer and Shneiderman, 2006].

To provide an overview, the graph can be rendered in the traditional node-link set-

ting or adjacency matrix [Abello and Korn, 2002], and more recently as a self-organizing

map [Kreuseler and Schumann, 2002]. When using the common node-link model, it is

pivotal to develop a sufficient hierarchy of abstraction to deal with even moderately sized

graphs. Solely relying on force directed methods (i.e. spring embedding [Mutton and

Rodgers, 2002]) for graph layout cannot resolve visual clutter and may still significantly

hamper visual comprehension.

Structural abstraction can be computed either bottom-up or top-down. In bottom-up

approaches, one can cluster strongly connected components [Kumar et al., 1999], or by

distance among nodes in the layout produced by a spring embedder [van Ham and van

Wijk, 2004]. Top-down approaches are often used for small scale or largely sparse graphs

in which hierarchical clusters are created by recursively dropping the weakest link [Auber

et al., 2003]. More comprehensive systems employ clustering algorithms that consider a

number of different node-edge properties [Abello et al., 2006].

Semantic-based abstraction is a more powerful mechanism for providing an overview,

zooming, or giving details. This approach is tied to its intended application since it re-

quires specific domain knowledge of the semantic information [Shneiderman, 2006]. When

combined, structural and semantic abstraction can prove to be very effective [Shen et al.,

2006]. Also in [Shen et al., 2006], it is shown that overview and level-of-detail (LoD)

enabled browsing can be based on induced subgraphs of different sizes.
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There are many well-known packages that have evolved over time to specifically address

visualization of gene correlation data using node-link diagrams such as Cytoscape [Shan-

non et al., 2003] and VisANT [Hu et al., 2004]. These tools are built to be web accessible

and thus render node-link diagrams using 2D layouts. While 2D layouts are accepted by

the community, such packages neglect modern 3D acceleration hardware, rarely scale well

beyond hundreds of nodes, and do not leverage 3D operations that have proven to be the

preferred representation and navigation techniques for our users. Due to the common 2d

framework, and in contrast to Shneiderman’s principle, biologists are typically forced into a

workflow in which filtering must be first applied and a global overview of the entire dataset

simply isn’t possible. Our software leverages both OpenGL and efficient C compilation

to facilitate interaction with tens of thousands of nodes while maintaining interactive per-

formance with complex visual analytics tools not currently available in these packages.

Current work involves integration with a lightweight API [Shannon et al., 2006] to allow

web-based interaction and data-sharing so our software may be used synergistically with

such well-developed packages.

In contrast to the node-link model, an adjacency matrix is a clutter free interface. While

an adjacency matrix interface for large data is limited by the resolution of the display, it

is still ideal for a bird’s eye view [Abello and Korn, 2002]. Some patterns such as clique

and bipartite subgraphs could be very distinctive when examined in an adjacency matrix.

However, a proper order of vertices is critical. The community has studied this problem

at length. In [Henry and Fekete, 2006], a comprehensive survey on automatic vertex order

is included. In general, binary, undirected graphs are the most straightforward. While

weighted graphs needed more complicated algorithms, graphs with negative weights are

less studied. Based on adjacency matrices, LoD type of browsing is often supported as

well [Abello and Korn, 2002].

Due to the complexity involved in computing a high quality overview of a graph, re-

searchers have also attempted to use self-organizing maps [Kreuseler and Schumann, 2002].

Self-organizing maps are a dimension-reduction technique which adjusts weights in a man-

ner similar to neural networks to discretize the input space in a way that preserves its

topology. The end result is (usually) a 2D field that can be conveniently rendered as a

terrain.
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By creating a spatial layout for a graph, it can be interactively visualized while preserv-

ing the data’s underlying topological relationships. Typical interaction methods include

focus+context methods (i.e. zoom and filter), graph queries using language-based meth-

ods [Sheng et al., 1999], and filtering databases of graphs using graph similarity metrics,

typically based on non-trivial graph theoretic algorithms [Raymond et al., 2002].

Social networks are currently a primary driving application of interactive methods for

graph visualization. This has resulted in non-binary, non-positive definite weights not being

as thoroughly studied. Also, tools for extracting highly connected subgraphs from this data

in a way that addresses the inherent uncertainty appear to be lacking. Whereas neural

networks have already been used for volume segmentation [Tzeng et al., 2003], similar

approaches have rarely been attempted in graph visualization. In this work, we propose

several tools that allow traditional quantitative drill-down as well as qualitative selection

and filtering techniques to aid domain experts with their analysis.

2.4 Parallel Coordinate Plots

Parallel coordinates, popularized in large part by [Inselberg, 1985], have become increas-

ingly popular as a scalable technique for visualization and interaction with large multivari-

ate data. A parallel coordinate plot (PCP) is a generalization of a Cartesian scatterplot

in which axes are drawn parallel to one another. This type of diagram highlights the

more common case of parallelism, rather than orthogonality, present in higher-dimensional

geometry. PCPs also allow an arbitrarily large number of dimensions to scale intuitively

within the plane, whereas human perception degrades quickly as dimensions higher than

three are projected to a 2D display.

PCPs developed as a way to accurately visualize and thereby gain insights from multidi-

mensional geometry. From their onset, several mathematical properties were proven which

enhanced their interpretation by defining analogues between parallel coordinate space and

two-dimensional Cartesian scatterplots [Moustafa and Wegman, 2002]. These included the

point-line, translation-rotation, and cusp-inflection point dualities [Inselberg, 1985, Insel-

berg and Dimsdale, 1994]. This technique quickly found its way into Vis [Inselberg and

Dimsdale, 1990].
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There has been much research to alleviate some of the inherent weaknesses of PCPs

such as visual clutter when dealing with large data. Techniques for clutter reduction

include clustering, subsampling, and axis redirection. In [Fua et al., 1999], the authors

use a clustering algorithm to create a hierarchical representation for PCPs and render a

graduated band to visually encode variance within a cluster. In [Johansson et al., 2005b],

the authors use K-means clustering, a high precision texture to reveal specific types of

clusters, multiple transfer functions, and an animation of cluster variance to accurately

convey the clustered data while minimizing clutter. In [Ellis and Dix, 2006], the authors

provide a sampling lens and demonstrate that random sampling of lines within the lens

is the optimum choice in the tradeoff between their accuracy metric and performance.

In [Wegman and Luo, 1996], the authors use the grand tour algorithm to generate a d-

space general rigid rotation of coordinate axes which can be used to confirm separability

of clusters.

Perceptual properties such as the importance of axis orderings were considered as early

as [Wegman, 1990]. While [Wegman, 1990] gives equations for selecting an order from a

set of axes, he in no way addresses optimality criteria. The work most similar to this paper

is the work of [Peng et al., 2004] in which a dataspace clutter metric was introduced in

combination with heuristic algorithms for determining axis ordering. However, we more

systematically address the axis ordering problem with our introduction of customizable

metrics, globally optimal ranking, and near-optimal ranking algorithms with lower theo-

retical complexity.

PCP implementations often operate on binned data and even uncluttered PCPs often

demonstrate data ambiguities. The traditional straight-line rendering can be augmented

by using energy-minimization to render curved lines as in [Zhou et al., 2007]. Likewise,

the authors in [Graham and Kennedy, 2003] used Gestalt principles of good continuation

in order to address ambiguities from line crossovers and shared values. Binning can cause

outliers to dominate data expression or be filtered out altogether which has lead [Novotny,

2006] to more thoroughly analyze the preservation of outliers while capturing the major

patterns in PCPs.

In additional to use solely as a visualization technique, PCPs can be used as an intu-

itive navigation and query methodology. Recent research has demonstrated the ability to
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interactively alter axis ordering, interactively brush range queries, and use axis scaling to

refine those queries [Steed et al., 2007]. The introduction of a navigation element to the

visualization leads naturally to more complex data mining techniques. In [Ferreira and

Levkowitz, 2003], the authors use parallel coordinates, and its circular variant, as multidi-

mensional visualization elements in a taxonomy of other techniques. They also highlight

user interface and analysis concerns, highlighting the strengths and weaknesses of PCPs in

the context of other visualization methods.

There are also several variants of the traditional parallel coordinates rendering. These

include the circular variant in which axes are drawn as spokes of a wheel [Ferreira and

Levkowitz, 2003]. This approach was extended by [Johansson et al., 2005a] who created

three-dimensional parallel coordinate renderings by placing axes like tent pegs in a circle

around a central axis. PCPs were also extruded into three-dimensional renderings by

treating each line as a plane that could arbitrarily be transformed [Wegenkittl et al., 1997].
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Chapter 3

Dynamic Visualization of

Coexpression in Systems Genetics

Data

3.1 Introduction

Recent systems genetics research offers near term hopes in addressing scientific questions

long-deemed unapproachable due to their complexity. Current research is uncovering how

the genetic makeup of an organism is associated with the organism’s traits on both molecu-

lar levels, such as gene expression or protein abundance, as well as physical levels including

body height or tendency toward alcohol addiction. The systems genetics approach is a

method to integrate data across all levels of biological scale to uncover molecular and

physiological networks from DNA to function. Novel computational tools are called for to

support the effort.

The central dogma [Doerge, 2002] for genetic studies is that strings of information

known as genes are stored in the DNA sequence (genome) of an organism, each gene

can be transcribed into messenger RNA (i.e. a transcript), and ultimately into proteins

which affect the behavior or morphology of the organism. This multi-step process by

which a gene’s sequence of nucleic acids (ATCG) is converted into mRNA transcripts is

known as gene expression. Gene expression directs the process of cellular differentiation, in
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which specialized cells are generated for the different tissue types. The regulation of gene

expression (i.e. gene regulation) controls the amount and timing of changes to the gene

product. This is the basic mechanism for modifying cell function and thereby the versatility

and adaptability of an organism. Therefore, gene expression and regulation function as a

bridge between genetic makeup and expression of observable traits.

Despite its vital importance, determining the precise roles of given transcripts remains

a fundamental challenge. This is due in large part to the complex machinery employed for

gene expression in which some gene(s) may regulate the simultaneous transcription levels

of other genes. This regulation leads to statistically correlated, or co-expressed, genes in

which one gene is expressed at high levels only when the other is as well. While collecting

gene expression data already requires great technical sophistication and resources, the

limited functionality of current computational tools to discover structural patterns of co-

expressed genes from the collected data presents another grand challenge. Without an

ability to efficiently and comprehensively explore the problem space, full genome-scale

gene expression data are still of limited value for today’s hypothesis-driven research.

Genes act alone or in groups during the process of gene expression and regulation.

Biological pathways are defined by the connectivity of upstream and downstream effects

of genes and gene products, including their action in the regulation of the expression of

other genes. The search for genes co-expressed in a common group, which likely affect

observable traits as a functional unit, often starts with using microarray technology to

profile transcript abundance. A microarray is a device containing microscopic DNA probes

and is capable of measuring the expression levels from thousands of genes for a given

sample [Geschwind, 2000]. From microarray data, biologists can statistically construct

massive correlation matrices that describe pair-wise gene co-expression. The key challenge

then is the representation, decomposition, and interpretation of this genetic correlation

matrix.

By treating the correlation matrices as adjacency matrices, it is natural to consider

correlations of gene expression in the setting of a graph, where vertices represent genes

and edges represent the strength of correlation between pairs of genes. In this analogy, a

group of genes that co-express would necessarily form a network or subgraph consisting of

“highly correlated” genes.
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Although it seems straightforward to directly apply classic graph algorithms to discover

those highly correlated subgraphs, this approach by itself is not sufficient. Many common

graph problems such as clique finding are NP-complete. Even for moderately sized prob-

lems, the computation time is still often overwhelming. Hence, to ensure that problems

are computationally tractable, the current practice is to apply data filtering steps to dra-

matically reduce the density of the graph and dimensionality of the data. The value of key

parameters, such as correlation threshold, is often decided by an educated guess based on

the data size, algorithmic complexity, and the hardware available. Unfortunately, picking

a slightly different threshold often eliminates many of the subtly important correlations

and thereby drastically changes the solutions of graph algorithms.

In addition, scientists in many cases cannot exactly define the term “highly” with

rigor as it is a qualitative criterion with uncertainty. The uncertainty aspect is further

exacerbated by the noise present in current microarray data, inaccuracies introduced during

data collection, and residual errors in subsequent statistical analyses. To date, it has been

hard for scientists to evaluate the true value of gene co-expression as well as the sensitivity

of an “optimal” result computed using expensive graph algorithms.

In this work, we designed a visualization system to provide domain scientists with

tools to evaluate the validity and sensitivity of key parameters in their research hypothe-

ses. By allowing realtime feedback of connectivity, determination of biological relevance

is facilitated by allowing more thorough analyses of their empirical data. Our main effort

focuses on providing interactivity from a number of features beyond fast rendering rates.

A user can interactively explore and filter the data to create meaningful subgraphs by

leveraging four complementary methods: (i) semi-automatic segmentation of highly corre-

lated subgraphs with a 2D focus+context graphical user interface segmented using block

tridiagonalization, (ii) quantitative database queries on data of interest using traditional

compound boolean range queries, (iii) qualitative queries on points of interest using neu-

ral networks, and (iv) dynamic extraction of subgraphs using several fast graph theoretic

algorithms. In addition, these meaningful subgraphs may be used as templates to perform

template-based searches through the entire dataset. The whole process of template cre-

ation, template-based search, extraction of graph metrics, and displaying statistical and

visualization results is interactive.
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Modern microarray data is noisy and complex; visualization alone is not the answer.

By providing interactive visual analytics tools such as graph algorithms, neural network

analysis and level-of-detail control, we bring a human expert into the loop to negotiate

the tradeoff between data size and algorithmic complexity by intuitively tuning key pa-

rameters with realtime feedback for addressing the scientific question at hand. We demon-

strate our system using datasets from a real-world, large-scale, genetical genomics study

of mammalian gene co-expression. In this study, the influence of genetic differences among

individuals is considered as a source of expression covariation.

3.2 Approach

Our goal is to develop a visualization system in which a human expert discerns uncertainties

in the data and guides the system to segment a large graph using a set of automated

tools through an interactive interface. The key components of the system include the 2D

interactive interface, modules to select subgraphs both qualitatively and quantitatively,

and the neural network based classifier that uses selections as a template. We start the

discussion by describing the exact set of input data to our system.

3.2.1 The Data

The only required data is a matrix containing gene-gene correlation values. While all of

our testing data use Pearson’s correlation, different metrics of correlation are treated no

differently in our system. In addition, we handle a database of information corresponding

to each gene as can be seen using three relational tables (Figure ??). Specific information

about the object of interest is stored in the Gene table while information relating to com-

puted gene networks is stored in the Paraclique table. Since our driving application is to

identify the genes that cause variation in complex traits, it is necessary to show the rela-

tionship or distance between genes and QTLs. For that, we need an additional relational

table describing the exact location of QTLs in the unit of megabases.

Graph theoretic algorithms provide valuable information that is otherwise hard to dis-

cern about the data. However, many such algorithms incur long compute times and are

far from being interactive. For those algorithms, it is then necessary to pre-compute and
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store their results for visualization at run-time. In this work, for example, we pre-compute

and store each gene’s membership in any of the paracliques. The resulting data can easily

be stored in a relational table.

We treat all data in the relational tables as attributes of individual vertices, and the

correlation values as an attribute specific to each edge. This is a very generic model that is

applicable to a variety of application domains and is a boon to scientists typically involved

in spreadsheet science. Based on these data, it is then the job of the visualization system

to facilitate interactive, hypothesis-driven study by the user.

3.2.2 A Clutter-Free Interface for Graph Abstraction

A major difficulty with graph visualization is the visual clutter caused by the sheer com-

plexity of the data. As discussed in Section ??, an adjacency matrix provides a concise

interface for overviewing the data in a way that is free from visual clutter. However, the

3D space is still a natural domain for user cognition. The added dimension can be used to

convey additional data, allowing navigation through node-link rendering and full appreci-

ation of structural cues in the data. For our application, we have designed a framework

(illustrated in Figure 3.1) where an overview is provided through a 2D adjacency matrix.

Users can arbitrarily select subsets of interesting vertices and create abstractions for further

interactions in 3D.

Unlike popular datasets studied in most previous works, the range of edge weights in

our data is [-1.0,1.0]. In addition, to let users decide about uncertainty issues, we would

like to avoid taking a threshold at this stage of processing due to possible information loss.

This makes it hard to directly leverage existing vertex reordering algorithms like those

surveyed by Mueller [Mueller et al., 2007] or Henry et al. [Henry and Fekete, 2006].

Block tridiagonalization (BTD) is a mature numerical algorithm that permutes row

and column elements of a matrix in such a way as to cluster nonzero elements in blocks

along the diagonal [Bai et al., 2004]. This algorithm always preserves the eigenvalues of

the original matrix within a specified error tolerance. It iterates until the following criteria

are met: (1) the final matrix has small bandwidth relative to the size of the matrix, and

(2) any off-diagonal blocks in the final matrix have either low dimension or are close to a
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low-rank matrix.

The BTD algorithm was developed to improve both performance and storage efficiency

for solving eigen problems. The smaller a block is in a matrix, the lower the corresponding

rank in most cases. Thus, the optimization goal of BTD is to minimize block sizes on the

diagonal, and correspondingly reduce block sizes off-diagonal as well.

The result of BTD is often characterized as minimization of bandwidth, because non-

zero entries are clustered around the diagonal. It is very significant to our research. In our

application, the minimization of diagonal block sizes through global optimization provides

a reliable means to abstract a large graph into a set of minimal basic “building blocks,”

each of which represents a densely correlated subgraph. The vertices in these subgraphs

appear in contiguous segments along the diagonal. The off-diagonal blocks determine how

these“building block” subgraphs are interconnected. In this way, we can conveniently

reassemble the original graph using the minimized diagonal blocks, and show more appre-

ciable structures with significantly less clutter.

Let us consider the illustration in Figure 3.1 from a biological perspective. In this

example, we show four graph patterns that are often of interest to geneticists. Since

every data entry in an adjacency matrix represents an edge, selections made in adjacency

matrices are on edges and only indirectly on vertices. The green subgraph is a clique

of highly correlated genes that potentially operate as a unit. The orange subgraph is a

bipartite graph, used in gene-phenotype mapping, in which the trait is correlated with a

number of related genes which would be of experimental interest. The blue subgraph is a

perfect matching graph which functions as bridges between subgraphs. The red subgraph is

a star containing a “hub” gene which could be targeted for knock-out and affect expression

in many structures.

For our real world datasets, BTD has been able to consistently generate permutations

that compress the majority of non-zero to the diagonal. This enabled us to crop a stripe

along the diagonal and rotate that stripe to a horizontal position, as shown in Figure 3.1,

bottom. We refer to the horizontal strip as the BTD belt.

BTD belt is a more efficient use of precious screen resources. Our datasets typically

contain several thousand genes so the adjacency matrix is typically very large. Although

it is possible to downsample the matrix for on-screen viewing, the essential high frequency
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details in the matrix could be hard to distinguish.

We show an example of the BTD belt computed from a gene co-expression study of

brain development in Figure 3.2. There are 7,443 genes in this dataset. In an adjacency

matrix, one can make selections with square shaped bounding boxes. In BTD belt, these

square bounding boxes becomes diamond shaped. Ten sample diamond shaped selections

have been specified in Figure 3.2 and magnified to show details.

From the BTD belt interface, a user can select diagonal blocks that are perceived to

be “highly correlated”. Letting a human expert decide what can be considered as “highly

correlated” is our way of handling data uncertainty. We note that the functionality of

detecting high correlation in a general setting is a hard problem, particularly when the

acceptable tolerances of error can only be qualitatively determined in a subjective manner.

In this regard, BTD can be considered as a computational tool for creating data ab-

straction. Figure 3.3 shows a simple example in which ten subgraphs have been selected

using diamond shaped bounding boxes. Each subgraph is abstracted as a super node in

the LoD graph. From the much simplified graph, the interconnections among the graph

nodes are clearly discernable. As expected from the BTD representation, a-c and g-i form

cliques with high edge weights. Interestingly, node a has a strong negative correlation (as

indicated by the dark line color) with subgraphs d, g, and j. LoD visualization of BTD

selections complements BTD in the sense that while these multiple separated clusters may

not share many edges (and thus may not be readily visible in the BTD belt), the edges that

do exist have strong negative correlations. The LoD representation implies that subgraph

a is a potential down-regulator for these three major networks.

Since the BTD-belt is a permuted and rotated adjacency matrix, much information is

visible along the diagonals which correspond to an individual vertex. Therefore, the BTD

belt immediately shows the major graph structures in which each vertex participates. These

properties can be used to quickly determine the role of specific genes in varying numbers

and types of networks.

At a higher level of abstraction, several large structures share many edges where their

diagonals cross as seen in Figure 3.3 where subgraphs g-i form a bipartite-like structure

with j. To be specific, the bipartite structure visually represents the edges induced by

the intersection of each graph’s vertex set. The striping pattern of the bigraph structure
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implies it is typically the case that a single vertex in g-i is connected to many vertices in

j and not vice versa. This allows biologists to get a view of how multiple structures may

interact, or be regulated, through genes that they have in common.

To allow further data abstraction, users are able to dynamically generate level-of-detail

(LoD) representations that facilitate simultaneous operation across multiple levels of scale.

At any point in our system, the current working graph can be saved and is rendered, along

with all other saved subgraphs, in the background of the current working graph. The LoD

graph can be generated by taking all user-defined subgraphs and treating them as super-

nodes. By default, the edge connecting two supernodes has a weight defined as the average

of all edge weights between vertices within the two corresponding subgraphs. Optionally,

feature vectors of topological metrics can be calculated on each subgraph for querying and

graph pattern matching, using methods described in Sections 3.2.3 through 3.2.5, to find

similar graph structures rather than similar data items. This LoD graph can subsequently

be treated as a normal graph and all provided analytics tools in our system can be used to

perform increasingly complex analysis at higher levels of abstraction.

3.2.3 Quantitative Queries

Information contained in relational tables (Figure ??) needs to be studied in an integral

fashion with gene networks. A common comprehensive tool for accessing information in

those formats is compound boolean range queries. Unfortunately, it is a difficult process to

efficiently integrate a commercial database management system with realtime visualization

systems. For this application, we have extended the functionality of a recent visualization

data server to provide essential data management functionalities. The core of that data

server is a simplified B-tree that is optimized assuming no run-time insertion or deletion

in the B-tree [Glatter et al., 2006]. Using this B-tree, the database in our system, with

compound boolean range queries over 8 features, can be queried in O(log n) time at a

rate of 10 million vertices per second on a 2.2Ghz Athlon64. This results in interactive,

sub-millisecond response to sets of dynamic queries even for large graphs.

The effect of querying is data filtering and thereby complexity reduction. One of the

most common data filtering operations for biologists is thresholding. With visualization,
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this threshold choice can be applied to a graph interactively and result in both visual and

statistical testing for proper threshold selection. Besides thresholding, we also provide

more power by also allowing multiple, dynamic, quantitative queries over any computable

attributes of a vertex or edge. Sample queries include all genes within a 100-megabases

distance to a target QTL, or all genes in the current subgraph that are significantly related

to a paraclique of interest.

The queried genes also form a subgraph, no different from those qualitatively selected

via the BTD belt interface. Our querying system attains realtime performance, making

it feasible to visually evaluate the effects or sensitivity of key parameters, such as what

threshold value to use.

3.2.4 Dynamic Fuzzy Classification

When interacting with complex data, it is often useful to provide an automated arbitrator

between the user and the data so that repetitive tasks are off-loaded from the human user.

One such important task is to exhaustively search for genes that match a certain pattern

and classify the data accordingly while handling the innate uncertainty. A key motivation

is to alleviate users from the need to manually browse through the entire dataset and

thus specifying the feature they think they are seeing in an overly rigorous manner. It

is desirable to have a proper level of fuzziness into this iterative feedback loop. While

elaborate agents can take a long time to develop and are too complex to train in realtime,

we have implemented a simpler AI system which users can train at run-time.

In our system, we use a feedforward, multilayer, back-propagation neural network ca-

pable of quickly learning items of interest and displaying similar items to the user. From

this perspective, qualitative selection allows users to visually perceive uncertainties and

decide how to best guide the computational process, while quantitative queries provide an

exact means to request a subset of data. With all datasets, the neural network classifier

can be trained with subsecond efficiency.
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3.2.5 Graph Properties

While our neural network treats input attributes indifferently, the choice of which properties

to feed into the classifier is quite important. Besides domain-specific database variables,

one may also employ several integrated graph properties for graph similarity classification.

Those include: degree of vertex, transitive closure, connected components, edge expansion,

and shortest path.

Each of these properties has a unique biological interpretation. Degree is one of the

simplest useful metrics that can be calculated and allows biologists to determine statistical

correlation between genes and gene networks as there are often many loosely connected

genes and few highly-related genes. Transitive closure minimizes the longest distance to all

other nodes and can be used to find the core of a genetic structure. Connected components

allow biologists to visualize only related data within a given subgraph. Edge expansion

shows relationships within a given subgraph without regard to threshold. Shortest path

allows biologists to see how specific genes most directly regulate one another. It could also

be used to further investigate a favorite location in the graph and gather only the local

correlates view of the specific gene(s) under study.

These properties may be used as extra variables in the feature vector used for training

a neural network. By adding these to the relational data that are queried, we provide more

information to be leveraged for fuzzy classification.

3.3 System Implementation

In this section, we describe details of our system that may be of interest to readers who

would like to implement a similar system. Several performance numbers for our system

may be found in Table 3.1 The number of vertices, edges, and range of absolute values

of edge weights are shown, respectively, along with performance metrics referenced in the

sections below. The columns of “2D” and “3D” show the running times (in seconds) of

Fruchterman and Reingold’s [Fruchterman and Reingold, 1991] method operating in 2D and

3D, respectively. The column of “BTD” shows the timing results of the BTD permutation

process in seconds. The time to complete neural network training from a few examples

and counterexamples along with classification of the entire dataset is recorded in number
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Table 3.1: Datasets and Timing Results (in Seconds)

|V| |E| |Weight| 2D 3D BTD NN(ms)
254 401 [0.57,0.95] 0.203 0.282 0.1 16

2,150 6,171 [0.97,1.00] 16.20 17.19 6.1 31
7,443 695,122 [0.85,1.00] 336.0 318.3 50.9 141

12,343 28,338 [1,74] 883.3 912.7 234.7 172

of milli-seconds (ms) in the column “NN”.

Since this discussion is not restricted to one of only gene expression applications, we

use four test datasets detailed in Table 3.1 to indicate the scalability of the system. The

datasets include genotype correlation datasets used to study human lung cancer, medi-

cal bibliographic references, mouse behavior, and web architecture made available by the

developers of GeNetViz [Zhang et al., 2005].

The primary dataset, which we use throughout the rest of this paper, for our driving

application involves regulation of 7,443 genes for research of mammalian brain and behavior

[Chesler et al., 2005]. Visualization results concerning complex traits in this dataset are

shown in Section ??.

3.3.1 Graph Layout

Our system attempts to load any pre-processed data available or subsequently generates

the files if they are not available. Upon startup with a valid weighted-edge graph, the

system inspects the graph to determine specific properties which would necessitate a special

layout, as in the case of a bipartite graph. Otherwise, it generates 2D and 3D layouts using

either Kamada-Kawai [Kamada and Kawai, 1989] energy minimization or Fruchterman

and Reingold’s [Fruchterman and Reingold, 1991] force-directed placement. Both layout

algorithms are the standard implementations which use simulated annealing to slowly freeze

the layout in place. The layout is said to converge when it reaches a maximum number of

iterations, reaches a small percentage of the initial system temperature, or does not change

significantly between iterations.

Like most regular layout algorithms, in our implementation the vertices are initially

placed randomly and then iterated through four main phases until convergence: random

impulse, impulse away from all other vertices to keep them from overlapping, impulse
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toward the center to keep the system from continuously expanding, and per-vertex impulse

toward or away from its connected neighbors in proportion to the edge weight to preserve

graph topology. The entire process is O(M|V|2) where |V| is the number of vertices and

M is the number of iterations (M∼|V| but varies significantly). Through experiments we

found that the performance differences between 2D and 3D graph layout algorithms are

quite minor as shown in Table 3.1.

The software has been designed such that other graph layout algorithms, such as the

fast multipole multilevel method (FM3) [Hachul and Junger, 2004] or LinLog [Noack, 2004].

Such layout algorithms have different strengths and weaknesses in conveying specific prop-

erties in the resulting topology. Custom algorithms can be easily incorporated in our

application either procedurally or by simply loading a graph layout file. By default, a

single layout is computed for a graph and its appearance is modified at run-time but the

user may also switch interactively between multiple layouts. Additionally, the user may

dynamically swap between the customary 2D view and the 3D view which tends to convey

more relationship information.

It is also noteworthy that clustering is another term often used by biologists in their

research. Although in our work “cluster” and “dense subgraph” have similar semantic

meanings, the goal of our approach is quite different from the basic goal of popular cluster-

ing algorithms. Our goal is to adequately handle uncertainty in the pursuit of coregulated

(putatively cooperating) genes forming a network, and the nature of the interconnections

among those networks. We use BTD belt, queries and neural network to computationally

assist the discovery and realtime fine-tuning of those dense subgraphs of interest. We do

not solely rely on graph layout algorithms to reveal dense clusters.

3.3.2 Rendering

Vertices are rendered after the edges without the depth buffer to prevent edges from oc-

cluding data points. We support the option of rendering vertices as splats (also known as

billboards or impostors) or quadrics which can take arbitrary shape (usually spherical).

The splatting implementation is the typical geometry-based primitive scheme using pre-

classification and thus results in slightly blurry vertices but has the advantage that it is
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typically fast. While both options render in realtime on most single computers, framerate

tests were conducted for the 7,443-node graph at several resolutions on a powerwall using

Chromium. This resulted in 16 fps quads vs. 246 fps splats on an 800x600 viewport, and

5 fps quads vs 17 fps splats at 3840x3072 (9 monitors).

There are many interactive rendering options such as color table generation and weight-

mapping mechanisms for coloring edges. A default set of these has been provided to express

differentiation between solely positive and negative edges (up and down regulation) or

to enhance contrast between edges with similar weights. The rendering mechanism is

adaptive and can optionally adjust properties such as the number of subdivisions in the

quadrics based upon the current frame rate. Semi-transparent vertex halos [Tarini et al.,

2006] are rendered using splatting for enhanced depth perception. Intuitive click-and-drag

interaction and continuous rotation during manipulation circumvents problems with 3D

occlusion and aids perceptual reconstruction of the topology through motion parallax.

The system also has dozens of minor utilities including the ability to change the color

table used by all elements of the program, take a screenshot, create video, print statistical

information for the current graph, and output gene lists.

3.3.3 Neural Network

We use a multilayer, feedforward, back-propagation, online neural network for realtime

classification which is able to learn while in use by employing stochastic gradient descent.

Our implementation closely follows the description in [Russell and Norvig, 2002]. Results

are given for a neural network with the number of input nodes corresponding to the number

of provided attributes, 30 hidden nodes, 2 output nodes, a learning rate of 0.4, a sigmoid

threshold function, and a hard max used to simply select the most likely output. The

unusually large number of hidden nodes provides sufficient degrees of freedom for any

problem domain and could be reduced if training speed or overfitting become issues. Each

of the two output nodes corresponds to likelihood that the user does or does not want to

see the object.

Neural network interaction involves only a few easy steps. The user left-clicks on an

arbitrary number of vertices to select them as examples. Similarly, right clicking on a
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vertex adds the vertex as a counter-example. The user may use any filtering or processing

techniques previously mentioned to aid the process of defining the training set. Once all

examples and counter-examples have been selected, the entire dataset is processed to only

show items like the examples or to segment the data using color. Training the neural

network and classifying all other data items is in the order of dozens of milliseconds, shown

in Table 3.1, and is transparent to the user.

Deciding the proper training set is critical when attempting to achieve accurate classi-

fication for multivariate data due to the high-dimensional decision space. In our system,

we provide two alternative approaches for the user definition of large training sets. First,

we allow selection of the training set using supernodes in the LoD graph. Each supernode

represents a network of genes, typically segmented through BTD selections or database

queries, such that a few example supernodes can correspond to hundreds of individual

data points. In this way, users can visually interact with the data while quickly selecting

entire groups of vertices as examples or counterexamples. Second, the application allows

the import/export of vertex data for the current working graph using ASCII files. This

can be used to analyze the corresponding data with much more sophisticated statistical

packages such as Statistical Analysis Software (SAS) or statistics programming languages

such as R. These analytics tools or their batch programs can be called during run-time to

either fully segment or partially classify the data. The result can be stored in a vertex list

file and then utilized as a training set.

The accuracy of our neural net implementation was independently debugged using a

different application. Our debug case was a benchmark of pixel-based classification of

10 letters selected from the “Artificial Character Database” at UCIs Machine Learning

Repository which were converted into 8x12 binary images. Several tests were conducted

using cross validation with mean-squared error to measure overfitting as well as determine

the optimum parameter settings. The best neural network results in correct classification

96.72% of the time on new input characters (i.e. not part of the training set).
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3.4 Results

3.4.1 Overview: Data and Workflow

While early microarray studies emphasized differential expression and comparative analy-

ses, modern applications [Jansen and Nap, 2001] emphasize correlation of gene expression

across large sets of conditions, including environments, time points and tissues. Increas-

ingly, this data is being collected in a context of natural genetic variation [Chesler et al.,

2005], where it can be integrated with multiple data sources such as genome sequencing,

QTL analysis, and disease relevant phenotypic data. For this application we focus on gene

expression analysis conducted with a particular emphasis on those traits related to brain

and behavior in the laboratory mouse.

A primary source of covariation in gene expression are single nucleotide polymorphisms

(SNPs). Studies in genetical genomics [Jansen and Nap, 2001] attribute variation and co-

variation in gene expression to the influence of these differences in DNA sequence. The use

of recombinant inbred strains allows biologists to study replicate populations of mice with

identical genomes. These populations allow indefinite aggregation of data across studies as

new technologies for characterization of mice become available. When traits are assessed

across genetically identical individuals, the correlations among traits are assumed to be due

to common genetic regulation. By finding and analyzing statistical correlations between

genotypes and phenotypes, geneticists hope to discover and interpret the network of causal

genotype-phenotype relationships that determine a trait of interest.

Systems genetics research often follows a workflow of finding a gene network, finding

regulators of that network, and then performing a focused gene perturbation experiment

to determine the role of the associated network on gene expression or function. To be-

gin, a “large” gene correlation graph must be sifted through, to find a highly connected

subgraph which corresponds biologically to a gene network in which genes are expressed

together, presumably to regulate or subserve a common function. They must then find a

small set of causative genes, highly correlated with the subgraph and likely to regulate co-

expression, to be used as targets of focused investigation. By manipulating the expression

of these genes, the function of the gene network can be determined through observation of

expressed phenotypes. Proof of causality occurs when the gene manipulations recapitulate
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network relations. It should be noted that while standards of “large” are highly application

dependent, even graphs with less than 10k vertices exhibit a combinatorial space that is

overwhelming and, indeed, presents a rather large and unique problem unlike dealing with

volume datasets.

In this section, we showcase results for publicly available biological data which has

been the subject of several previous studies. Whole brain mRNA gene expression data

was obtained using the Affymetrix U74Av2 microarray for each of the strains in the BXD

mouse population and subsequently processed using Robust Multi-Array (RMA) normal-

ization [Chesler et al., 2005]. Throughout the paper, we use Pearson’s correlation over

7,443 genes of this dataset as our driving application. The associated database in our

system is used for querying, interactive neural network training, and constructing dynamic

level-of-detail (LoD) graph features; it contains information relating to typical systems ge-

netic analyses for each gene such as: the chromosome, position (in megabases), paraclique

membership and connectivity, broad-sense heritability indices, and QTL mapping [Wang

et al., 2003] locations with p-values from QTL Reaper (sourceforge.net/projects/qtlreaper).

3.4.2 Discovery of Novel Networks

Typical biologists bring a large amount of domain-specific knowledge to their investiga-

tive process, for which many tools exist but are usually challenged by purely data driven

investigation of networks. One approach to discovery of novel systems genetics networks

is the use of computational tools which allow extraction of highly connected subgraphs in

a qualitative fashion. By providing block tridiagonalization in which clusters around the

diagonal constitute highly related genes, biologists can easily select potentially novel gene

networks. Indeed, this O(|V|2) algorithm quickly extracts dense subgraphs and can be

treated as a rough approximation to the NP-complete problem of paraclique enumeration

in this context.

In Figure 3.4, the user has selected four BTD regions and dynamically generated a

level-of-detail graph. As is expected, the selection 1 is most unrelated to the rightmost

selections and therefore placed far away from the other selections with a negative correlation

to selection 3. By selecting LoD vertices 2-4 as examples and 1 as a counterexample, neural
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network training on entire subgraphs is used to perform template-based search for similar

genes in the original data. The resulting classification from the database information is

the graph in the right center which has been extracted through the application of domain-

specific knowledge in combination with several computational tools (BTD selection, LoD

graphs, and NN template matching). This highly-connected subgraph contains genes which

are similar to cliques 2 and 3 and bipartite structure 4 selected from the BTD and gives

biologists a potentially novel network of two highly-related dense subgraphs to inspect

for related function(s). This is currently being applied to create a comprehensive bipartite

graph of gene networks (represented by LoD vertices) on one side and all network regulators

(network interface genes) on the other. The ability to interactively and qualitatively search

across multiple levels of detail has given biologists several tools for which they can not only

solve current problems but also find new ways to address more difficult problems.

The central motivation of our system is to enable more in-depth and flexible expert-

driven analysis by providing a diverse set of computational tools. However, there are other

more established algorithmic tools, such as graph analysis, that are of value to scientific

research. Those tools can be leveraged from within our system through our internal B-

tree based data structure which allows queries from algorithmic solutions at a rate that

facilitates realtime rendering and interaction. In the section below, we present a significant

use case that demonstrates parts of our system to discover network interface genes.

3.4.3 Use Case: Discovery of Network Interface Genes

We now demonstrate our application with a biologically significant use case. Once gene

networks have been extracted, it is of primary interest to determine the identity of the

gene products that regulate these networks. Using either qualitative BTD selection or

algorithmic network extraction, the total decomposition of a genetic correlation matrix into

disjoint subgraphs can be achieved. With each disjoint subgraph treated as a structure,

finding mRNA transcripts with strong correlations to multiple structures would lead to

the discovery of “interface genes”. These mRNA transcripts regulate expression of genes

in those structures, and thereby couple multiple networks and biological processes. The

detection of these transcripts and the analysis of their gene’s regulatory polymorphisms
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could lead to the discovery of major genetic modifiers of large biological networks.

Our domain experts have found paraclique extraction to be the most useful and general

algorithmic technique. Although choosing the proper threshold is a hard problem in gen-

eral, by way of repetitive experimentation, statistical and combinatorial analysis, 0.85 is a

perferred threshold for extracting paraclique in the dataset at hand [Chesler and Langston,

2005]. Paracliques with more than ten vertices were extracted, resulting in thirty-seven

dense subgraphs, and stored in the systems database. We show the largest and third largest

paracliques corresponding to gene networks ready for further study in Figure 3.5.

In this use case, the challenge is to identify candidate genes that may be the com-

mon regulators of expression for a large number of other genes, and to determine which

functional biological characteristics or disease related traits the network may be involved

with. Some facts are known about this situation: 1) each gene’s physical location within

the genome is near the location of one of the genotype markers associated with the gene

expression level; 2) the interface gene may be a member of one of the dense subgraphs, but

it must be highly connected to members of both dense subgraphs; and 3) the biological

regulator is likely to be in the same pathway as the genes it regulates.

By creating a level-of-detail graph in which the edge weight for supernodes is defined

as the percent of connectivity to the adjacent gene or supernode, we can use the hot-cold

coloring scheme to visually elucidate the correlation between multiple structures. This

allows for an intuitive representation of network distance which can allow biologists to

identify functional modules and their relationship to each other in forming the pathways

underlying specific biological processes. The data is then filtered via threshold to retain only

the strongest correlations between individual transcripts and entire networks. Once such a

network is constructed, additional queries may be posed that relate to additional candidate

genes and their association to the genetic polymorphisms that regulate the network.

In this use case, the technique described above was applied to visually identify a specific

gene of interest whose transcript is connected to over 99% of both the largest and third

largest paracliques as shown in Figure 3.5. The gene of interest, Pr1 or Tmem37 (Affymetric

probe set ID 95464 at), has thus been implicated as part of the regulatory pathway that co-

regulates the two large networks. This gene encodes a voltage-dependent calcium channel

gamma subunit-like protein which modulates electrical properties of neuronal cells. It
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can be hypothesized that the paracliques are related to neuronal activity. Further testing

was then accomplished through data export and communication capabilities to specialized

bioinformatic pathway analysis tools. By further analysis of expression for the gene of

interest, using genenetwork.org, it was revealed that its transcript abundance is correlated

with stereotyped locomotor behavior induced in BXD mice by drugs such as cocaine [Jones

et al., 1999] or methamphetamine [Grisel et al., 1997].

The next stage in the workflow is to enumerate candidate genes which reside at chro-

mosomal locations nearby the gene of interest’s regulatory QTLs. To do this, we must first

run an analysis of genotype associations to the expression of interface gene Pr1 in order

to identify QTLs that regulate its expression. This analysis, which we have performed

using GeneNetwork.org and linear modeling in SAS v9.1, reveals putative regulatory loci

at specific locations on chromosomes 1, 2, 6 and 14. By using our tool’s integrated data

query capability, we can then highlight co-expressed genes that reside in regions provided

by the other tools. The candidate genes may help regulate the networks since they are

located in close physical proximity to one another, their transcripts are highly correlated

to many paraclique members, and the QTL that regulates them also regulates many mem-

bers of both paracliques. This leads to the identification of a limited number of candidate

regulators including Pax3, Lama5, Mkrn2, and Dhrs4.

We have now derived testable hypotheses regarding the mechanisms by which the net-

works are co-regulated and can validate this new knowledge with in vivo experimentation.

It follows from the analysis of coexpression that these two paracliques are controlled by a

common genetic regulator. A high genetic correlation implies that the biomolecules repre-

sented by the connected vertices have values that are determined by the same genotype.

Expression of the interface gene Pr1 can also be correlated with biological function and

traced back to a regulatory QTL. Pr1 and the two dense subgraphs have been associated

with specific traits measured in BXD mice. A small number of candidate regulators from

positions near the regulatory QTL has also been identified. The resulting visualization re-

veals networks which go from locomotor responses to specific drugs down to the connected

molecular pathways which underly them.

While Figure 3.5 represents only a few steps from a typical workflow, the result of this

finding captures overwhelming complexity. As early forays into systems genetic analysis
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have demonstrated, biological processes such as mammalian behavior involve a complex

interplay of expression from many hundreds of genes across multiple chromosomes and

biological systems. For this reason, we expect similar linked views of multiple tools to

be the norm for systems genetic visualization. The tool presented herein allows users to

retain networks and their relationships as well as rapidly isolate genes and subgraphs based

on their connectivity. The tools demonstrated represent a flexible and dynamic approach

which allows users to scale up from single genes or traits of interest found in web based

tools to results of global analyses such as clustering and high-performance combinatorial

analyses.
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Figure 3.1: Illustration of a permuted adjacency matrix with common graph patterns (top),
and extraction of the BTD belt for qualitative selection (bottom).
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Figure 3.2: A BTD belt, with magnified views, from a real-world mammalian gene co-
expression study of brain development involving 7,443 genes.
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Figure 3.3: A 2D level-of-detail graph created from brushed BTD belt selections to show
correlations among BTD structures.
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Figure 3.4: BTD selections (bottom) qualitatively extract gene networks (sides), are ren-
dered using dynamic level-of-detail (center left), and used for template-based classification
of entire subgraphs in the original data (center right) for other regulatory mechanisms
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Figure 3.5: In this screenshot, two gene networks (bottom left and right) have been discov-
ered with a single putatively corregulating gene as a potential target of knock-out study
(center) with proximity information for other potential regulatory genes (top left) under-
going further study. This illustrates the discovery of candidate genes which can affect
expression of several genes throughout the genome that play a role in the locomotor re-
sponse of mice exposed to methamphetamine and cocaine.

40



Chapter 4

Pairwise Axis Ranking for Parallel

Coordinates of Large Multivariate

Data

4.1 Introduction

Visualization and computational tools are necessary for the analysis of large multivariate

data. Parallel coordinates rendering has proven very useful in this area as it allows in-

tuitive visualization of a multidimensional attribute space. It is very natural to visually

“chain together” a sequence of variables in a layout that scales linearly with data dimen-

sion. Ideally, a parallel coordinate rendering should provide a view containing sufficient

information to guide users to the most interesting parts of the underlying data. There are

numerous challenges addressed to varying degrees by current literature relating to proper

axis ordering, axis scaling, axis shape, number of axes, rendering technique, clutter re-

duction, interactivity, etc. In this paper, we aim to address the problem of automatically

selecting the proper order of axes by ranking them based upon an underlying system of

metrics which specifies relationships between each of the variables.

The traditional approach for axis ordering is to rely on the user to drag axes into

positions to discover and elucidate a desired pattern. This goal is quite achievable when

the data at hand is manageably small in terms of the total number of data points and
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variables that must be considered at any particular time. However, without sufficient

computational tools, this task is quite daunting as we increasingly need to handle datasets

with hundreds or thousands of variables. Our goal is to systematically address the axis

ordering problem with scalable algorithmic methods.

A parallel coordinates plot (PCP) can only show a handful of axes on most screens with-

out cognitively overloading the user or obscuring patterns due to visual clutter. Therefore,

the task of selecting a relatively small subset of increasingly large multivariate datasets be-

comes ever more complex. Indeed, the ability to choose the “right” handful of multivariate

relationships can be highly context-specific. To approach this, we note that users innately

leverage spatial locality and relate a given attribute to at most two (the axes before and

after) other attributes in a PCP. By doing so, we reduce the problem space of multivariate

relationships down to the sequence of bivariate relationships which PCPs innately repre-

sent. We provide a pair of algorithms to optimally or near-optimally rank the variables of

an N -variable dataset based upon its O(N2) bivariate relationship while abstracting the

concept of “right” to a user-specifiable metric (correlation, positive skew, etc.).

The novelty of our work stems from our taking an optimization driven perspective to

explore the full potential of using parallel coordinates to visualize datasets with a large

number of concurrent variables. We provide a pair of algorithms to autonomously find

the most interesting patterns. We also devise a PCP rendering method to better reveal

patterns based upon underlying bivariate relationships visually in parallel coordinates. We

demonstrate our system on IPCC climate simulation data. In total, we show parallel

coordinate renderings with axes selected from thousands of variables.

4.2 Metrics

When attempting to determine an optimized axis layout, the criteria that makes such a

layout desirable may vary depending upon the task at hand. For example, it is often the

case that users want layouts which minimize the amount of visual clutter so that patterns

can be easily detected; on the other hand, researchers testing their own clutter reduction

methods may be interested in testing on only the most cluttered layouts.

We propose that the proper level of abstraction necessary for this type of problem is
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to optimize based on the level of some user-defined metric which should be designed to

capture the property of interest. In this way, we propose a general set of algorithms which

can be applied for truly optimal axis layout in whichever manner is deemed relevant by the

user, codified by a matrix of normalized metric values. To relate parallel coordinates using

the common spreadsheet metaphor, each data item corresponds to a row and each column

to an axis in the PCP. The final metric value thus encodes the information of interest in

how one such dimensional axis relates to all other dimensions for the given data.

The problem then becomes, which metric captures the properties of potential interest

for my type of data and the question I want to investigate? While listing all possibilities is

innately intractable, we find that a surprising few satisfy most needs along with mechanisms

for creating variants suited for a particular purpose. In this section, we focus on a single pair

of variables to develop quantitatively defined metrics which capture distinctive patterns in

data space. In this paper, we provide the general mechanism to use any given metric

to autonomously reveal meaningful patterns in large data. This capability facilitates the

user’s first need of quickly previewing the most unique pattern in a real-world dataset

containing thousands of variables.

Data space is the traditional environment for metric calculation since a metric is mathe-

matically defined as a measure of distance. Metrics used by our system are square matrices

with the number of rows and columns equal to the number of data dimensions. As such,

there is a plethora of applicable mathematical metric definitions, frequently involving cal-

culation of trans-dimensional variance over all data points. The art of the system is to

sufficiently constrain the possible metric space to a measure appropriate for the current

investigation. However, beginning users should not be expected to know or to care about

individually defining their own golden standard metric. In that regard we provide sev-

eral useful ones with widespread applicability while leading into possibilities for the more

sophisticated user.

One of the most commonly-used data space metrics is correlation. While this is typ-

ically measured using Pearson’s correlation, we have found that other measures of cor-

relation such as entropy-based mutual information or even literature keyword correlation

are better than Pearson’s in certain domain-specific contexts. While correlation does not

necessarily translate into causation, it is often used as an indicator that can direct an an-
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alyst’s attention to potentially novel knowledge discovery or warrant further investigation

to determine the active mechanism of causation.

More complex non-linear relationships are useful in contexts that warrant increased

specificity. For example, general modeling techniques such as Bayes’ rule for estimating

risk or physics-based models for estimating a property of interest. Once the metric has

been calculated and used to extract a dimensional ranking, other dimensions which are

highly related to the computed metric are immediately visible and can in turn be used to

increase or decrease the complexity of the current model.

4.3 Ranking Algorithms

Our goal is to develop a general system which autonomously generates a near-optimal axis

ordering by ranking variables to obviate key bivariate relationships for a given dataset. The

only required data is a matrix containing values for each axis pair which roughly denote the

importance or strength of a relationship between two attributes based upon a user-selected

or computationally defined metric. Here we present a pair of algorithms which provide an

optimality/time tradeoff based upon a user’s given data size, computational resources, and

time constraints.

4.3.1 Optimal Ranking

Once given an N ×N matrix corresponding to all pairwise attribute metrics, the problem

can be solved in the domain of graph algorithms by treating it as an adjacency matrix. In

this scheme, there is a graph of N vertices and N2 edges from which we want to extract

what we shall refer to as an “optimized k-walk” where k is the number of axes desired in

the parallel coordinate plot. This can be seen as a generalization of the Traveling Salesman

Problem in which the salesperson must make an optimized visit to k ≤ N cities and reduces

to the classical problem for k = N .

The brute force method for solving an “optimized k-walk” is to simply take every

possible N choose k subset and permute every subset’s k variables to find the maximum

sum of edge weights between consecutive pairs. This method is O((N choose k) ∗ k!) or

O( n!
(n−k)!) and can be used to find a subset of k values which maximizes the fitness of the
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resulting ranking derived from this simple optimization equation:

∑

i=1,k−1

Weight(i, i − 1) (4.1)

While this method is guaranteed to find a globally optimum axis ranking, it is NP-

complete and therefore computationally intractable for all but the smallest datasets. Even

for a dataset with only N = 63 variables and k = 7 axes, if calculating the optimum layout

from 7! axis arrangements took only 1 millisecond, the entire calculation would still take

approximately 6.5 days (our result using a 2.1Ghz Intel Core 2). We stopped the global

search algorithm for N = 126 variables using k = 7 axes after running 3 months. This

algorithm is embarrassingly parallel in that each N choose k set of axes could be passed to

a core, permutation tested, and respond back with a fitness which hashes into a sorted data

struct. However, we felt that this was unnecessary as approximate algorithms would suffice.

For this reason, we implemented some simple alternatives to this brute force approach that

typically calculate a layout so near to optimal that the difference is negligible.

4.3.2 Greedy Pairs Algorithm

Due to the NP-complete nature of the true optimization problem, we developed several

approximation algorithms which make various degrees of fitness/time tradeoffs. We include

only one such algorithm here as a simple example upon which other algorithms could be

based.

When we calculate an axis layout, it would make sense to keep the pairs with the

strongest relationship next to one another rather than adding single axes greedily. In this

greedy-based algorithm, shown in figure 4.1, we begin by finding the k largest weights in

the graph using the naive selection algorithm in O(k|V |2) time, where |V | is the number

of vertices in the graph (dimensions in the dataset) and k is the number of axes to be

shown in the final PCP. While this results in the highest pairwise values, order matters

since we would like to string these pairs together in a way that maximizes the total fitness.

We choose k pairs, resulting in 2k axes, despite only needing k axes because we may have

perfect pair overlap. Since each weight has two associated axes, each pair is permuted to

find the pairwise sequence which maximizes the sum of weights from the first k consecutive

45



axes (thus selecting those axes discarding any additional axes). This algorithm runs on the

order of k|V |2 + k! and typically performs negligibly close to the pure optimal algorithm.

This algorithm stably sorted 734 axes in 3.6 milliseconds on a 2.1Ghz Intel Core 2.

4.4 Rendering

Traditional rendering of parallel coordinates involves rendering the multidimensional data

as a series of polylines. The intersections between the polylines and the parallel axes spa-

tially indicate the values for each observation. Ideally, the viewer’s visual cognition system

will identify patterns in the lines indicating relationships between variables. However, such

a simple display easily becomes cluttered for even small datasets and trends are difficult

to discern.

The goal of our research is to automatically make trends highly visible to the user.

Accordingly, we have developed a novel method of parallel coordinate rendering that em-

phasizes variable relationships with easily perceived 3-dimensional cues. Instead of treating

each line separately, we render the series of lines as a planar surface and shade each point

on the surface according to the number of lines that intersect at the point. Our 3-D ap-

proach enables the human perceptual system to quickly parse the display to find interesting

trends, which may emerge as ridges or valleys.

Our renderer first rasterizes all polylines and calculates the depth complexity, or the

number of times each pixel is drawn into. Pixels of high complexity represent locations

where many lines intersect. We then use this depth complexity image to calculate a normal

map. The lines are cleared and a single bump-mapped quadrilateral is drawn in their place.

Each fragment’s normal is retrieved from the normal map texture, and its depth complexity

is used to index into an RGBA transfer function. The normal and color are used to perform

traditional Phong lighting.

Example renderings of our method for two artificial datasets are shown in figure 4.2.

Occlusion in traditional line renderings often masks or subdues trends. By enhancing the

parallel coordinate display with a normal map derived from the depth complexity image,

these trends are strongly emphasized through color and specular and diffuse lighting. For

the uncorrelated dataset in (a), the depth complexity image has nearly constant slope,
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yielding slow color changes and flat surfaces in the enhanced rendering. The correlated

dataset in (b), however, contains a strong ridge where many observations overlap.

The resulting heightfield can be scanned quickly for prominent features or manipulated

by the user. The light source can be translated interactively in three dimensions to in-

vestigate the surface cues through shading changes. The opacity of regions of low or high

complexity can be modulated with a transfer function widget. Since our approach uses

color to denote depth complexity, individual lines are not colored separately. To support

this, we allow the user to further modulate opacity with a second transfer function indexed

by each line’s value on the selected axis.

4.5 Results

We have tried many metrics but will use Pearon’s correlation in results for this section

as it is the easiest to visually verify. Since our optimization framework maximizes the

metric under various constraints, a target of 1 or -1 will yield highly correlated or inversely

correlated results. If you set the target to [−0.2, 0.2], then the system will instead show

things that are mostly uncorrelated, very dissimilar from [-1,1]. We will showcase some

of our results in sections 4.5.2- 4.5.3 after first describing a dataset currently undergoing

active exploration in section 4.5.1.

4.5.1 Climate Simulation Data

We use the greedy pair algorithm to determine an optimal ordering of axes based upon

correlation in the following examples. The proposed system is compatible with any mul-

tivariate data and the examples presented in this section will utilize climate data. The

climate data used here contains 63 physical variables recorded on a monthly basis for 10

years (2000-2009) of IPCC climate simulation. In total, we consider 63 × 12 × 10 = 7560

attribute dimensions by treating time steps independently. Moreover, the simulation grid

corresponding to land points constitutes 7,311 polylines for each axis layout. Most sys-

tems will not contain so many dimensions, but we wanted to demonstrate the speed and

flexibility of our system on such a large, real-world dataset. Due to this large datasize,

we use a greedy pairs algorithm for the most timely performance unless otherwise noted.
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Throughout this paper, we typically use 7 axes based upon the limits of human cognition

to 7 units of information for short-term memory [Miller, 1956].

4.5.2 Ostentatious Patterns

When we use the Pearson’s correlation metric on the climate data, the system returns the

most highly correlated variables. In this example we begin with only 63 climate variables

for January of 2000 and compute the truly globally optimum layout using the correlation

metric. As shown in figure 4.3, the system has detected several variables which are highly

correlated. This type of plot verifies the system is working correctly since all these variables

are differing measures of temperature that should be roughly correlated; left to right these

are: TREFMXAV-maximum average temperature at two meters, ZBOT-temperature and

humidity at two meters, TBOT-atmospheric air temperature, THBOT-atmospheric air

potential temperature, TV-vegetation temperature, TSA-air temperature at two meters,

and TG-ground temperature.

In this example, we add the temporal dimension for an order of magnitude more vari-

ables. Since we treat variables from separate timesteps independently, the system has

selected a layout which shows the common-sense relation of an attribute’s self-correlation

across disparate timesteps. As shown in figure 4.4, snowfall during the summer months

of 2000-2009 is somewhat consistent. This example was chosen for a few reasons. First,

it highlights the fact that the system can detect patterns which may be surprising and

unexpected, prompting the user to create metric variants through constraints. Second,

while repeating axes are not allowed in this example, additional removal of correlation

with other variables throughout time can be a desirable property and is supported by our

system. Third, the years for the layout axes are unordered and a constraint which has time

increasing to the right may be more intuitive.

4.5.3 Constraints for Innate Patterns

By taking the above constraints into account, a user may now be interested in seeing

inversely correlated variables (by subtracting the constrained matrix from a matrix of

ones). The result can be seen in figure 4.5. RSSUN/RSSHA are measures of leaf stomatal
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resistance which is dependent upon the incident photosynthetically active radiation. In this

PCP, the system has selected axes which are inversely proportional in equidistant months

(alternating April/October) in which the direct rays of the sun are at their maximal relative

difference. This example shows that the system can display patterns which are novel and

interesting to naive users but which make complete sense to domain-specific experts.

Global warming is a common concern that scientists attempt to verify and understand

when looking at climate data. One of many ways to gauge global warming is in the variance

of snow depth throughout many years. By using correlation, our system produced the PCP

shown in figure 4.6 which shows a strong correlation in snow depth throughout the years.

As may be expected, there are many locations which have no snow (red line at bottom), a

few that have a little snow (blue area), and more that are typically covered in snow (green

area). However, there are some highlighted ridges in our rendering corresponding to grid

points whose snow depth have varied significantly and should be checked for location of

important polar ice caps.
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int getFitness(int numAxes,

int* layout, graph* g) {

int i, v1,v2, fitness=0;

for(i=1; i<numAxes; i++) {

v1=layout[i-1]; v2=layout[i];

fitness += g->adjmat[v1][v2];

}

return fitness;

}

int getHighestEdges(int numAxes, graph* g,

int** tX, int** tY, int allowRepeats) {

int i,j,k, val,max, axis,got;

int tarX[numAxes], tarY[numAxes];

for(axis=0; axis<numAxes; axis++) {

max=SHRT_MIN; // find k best pairs

for(i=0;i<g->numVerts;i++)

for(j=0;j<i;j++) { //entire matrix

got=check(tarX,tarY,i,j,allowRepeats);

val = g->adjmat[i][j]; //new max?

if (val!=INAN && got==0 && max<val) {

max=val; tarX[axis]=j; tarY[axis]=i;

}//end max check

}//end O(V^2)

}//end naive k best pairs O(kV^2)

*tX = tarX; *tY = tarY; return 0;

}

int* maxPermPairs(int num, int* tarX, int* tarY,

graph* g) {

int i,k, max, fitness = -1;

int a[num], layout[num+1],bestLayout[num+1];

for(i=0; i<num; i++) a[i]=i;

for_all_permutations_of_a[i] {

for(k=0;k<(num+1)/2;k++) { //best perm?

layout[2*k ] = tarX[a[k]];

layout[2*k+1] = tarY[a[k]];

}

if((num+1)%2==1)

layout[num]=tarX[a[(num+1)/2]];

fitness=getFitness(num+1,layout,g);

if(fitness>max) {

max = fitness;

memcpy(bestLayout,layout);

}

} // End O(num!)

return bestLayout;

}

int* greedyPairs(int numAxes=7, graph* g) {

int *tarX, *tarY;

getHighestEdges(numAxes, g, &tarX, &tarY, 0);

return maxPermPairs(numAxes, tarX, tarY, g);

}

Figure 4.1: Pseudocode for the quick, near-optimal greedy pairs algorithm.
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(a) Uncorrelated (b) Highly Correlated

Figure 4.2: Detecting trends in parallel coordinate displays made easier with 3-D surface
cues. (top) Traditional line rendering of two generated datasets. Column (a) represents
an extremely uncorrelated dataset where every data item on the first axis is connected to
every data item on the second. Column (b) is a dataset where half of the observations are
randomly generated and half are randomly offset from an inverse relationship. (middle)
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Figure 4.3: The system finds a strong correlation between various measures of temperature
in Jan’00.
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Figure 4.4: Constraints are included to keep the system from finding repeated results of
self-correlation through time.
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Figure 4.5: Inverse correlation with consistent time constraints which relates the variance
of radiation intensity on leaves as a function of the earth’s tilt throughout the seasons.
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Figure 4.6: One way of measuring global warming showing strong correlation of snow depth
between years. Our rendering technique also shows V-shaped highlights corresponding to
grid locations that my warrant further investigation for snow/ice melting.
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Chapter 5

Opening the SFAM Black Box

(demonstrated using CSI/climate

data)
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Chapter 6

Conclusions

As with most research, the number of possible directions, ideas, and contributions increase

exponentially as time progresses. During my stay, I have compiled a long list of features

that people have recommended, I have considered building upon, or other ideas which I

haven’t a clue how to address yet. I will outline some of these here along with possibilities

of using the general software package developed to address multiple other problems in

various fields.

6.1 Dynamic Visualization of Coexpression

In conclusion, it has been shown that the integrated computational tools not only provide

research scientists and analysts a way to visualize their data, but it also allows complex

querying and filtering for drill-down, graphical analysis, and statistical output. Each of

these are facilitated by combinations of a 3D spring-embedded layout, efficient B-tree

processing, neural networks, matrix operations, and graph algorithms.

While our visualization tool enables significant biological discoveries, its full poten-

tial can only be leveraged when used in combination with mature applications and data

management systems for genetical genomics datasets. For this purpose, our future work

includes integration with the Gaggle API [Shannon et al., 2006], a web-enabled, platform-

independent, multi-application, data-sharing framework for widespread use among systems

biologists available at gaggle.systemsbiology.org. In addition to the linked viewports frame-
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work, we are also considering domain-specific hybrid visualizations such as [Henry et al.,

2007]. This tool is also currently being integrated as a correlation visualization tool to

complement the genome-phenome data integration tools in the Ontological Discovery En-

vironment (ODE) suite at ontologicaldiscovery.org. Ongoing work is currently being con-

ducted with biologists to implement new functionality relating to domain-specific requests

for handling linkage disequilibrium, QTL analysis, integration of genetic information across

multiple scales, multiple time points, and different graph types.

6.2 Axis Ranking for Parallel Coordinates

In conclusion, we have provided a general mechanism for the optimized ranking for axis

ordering in parallel coordinates visualizations along with algorithms to manage sub-optimal

ranking tradeoff for time depending upon data size. We have developed a depth-enhanced

parallel coordinate renderer that uses surface cues to more effectively display trends over

traditional line drawings. The results demonstrated clearly show the automatic ranking

and selection of meaningful patterns in PCP axes for large, time-dependent, multivariate,

climate data.

There are several partially completed items that we consider as potential future work.

First, formalize work on defining constraints on the bivariate matrix to provide intuitive

control for users while pruning the search space. Second, we have already coded up a

learning system to help users determine which metrics are important for a specific pattern

of interest and now analyzing the results. Third, there are several other graph-based algo-

rithms which could be used for determining an axis ordering such as pairwise shortest path

between two specific variables of interest. Fourth, the optimization framework presented

here optimizes on the basis of bivariate relationships but a more general multivariate trend

detection mechanism would allow the detection of nonlinear (sinusoidal) patterns.
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May 2004 M.S. in Computer Systems and Software Design

Graduate GPA: 4.0/4.0; Outstanding MCIS Graduate Award

May 2001 B.S. in Computer Science and Mathematics with Physics minor
Undergraduate GPA: 3.5/4.0

Technical Skills

Platforms: Windows 3.1/95/98/2000/CE/ME/NT/XP/Vista, MS-DOS; SGI Irix
Linux Ubuntu/Debian/Red Hat/Fedora/SUSE; Mac OS X; Sun Solaris

Languages: C, C++, Java, Matlab, Fortran/90, Visual Basic, Ada, Lisp, R, Mathematica,
Tcl/Tk, Perl, Python, PHP, HTML; dBase, SQL, VBA;
WinBatch, DOS batch, shell scripting (sh,csh,tcsh,bash,ksh,zsh)

Libraries: Open-source Graphics Library (OpenGL), Visualization ToolKit (VTK ),
system-independent GUI toolkit (Qt), Message Passing Interface (MPI ),
UTK SeeLab’s Viz CookBook (VCB), Intel’s Image Processing Libraries (IPL),
computer vision library (OpenCV )

Professional Experience

Title: Graduate Research Assistant
Employer: SeeLab, The University of Tennessee at Knoxville
Dates: February 2005-present

• Developed SeeShader, a glut-based framework for easily implementing General Pur-
pose computation on Graphical Processing Units (GPGPU ) applications

• Developed SeeBrain, a GPU-accelerated DT-MRI fiber bundle extraction, visualiza-
tion, and query system for real-time, multi-dataset analysis in collaboration with
Vanderbilt radiologists.

• Other primary projects mentioned in ORNL internships below.
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Title: Research Intern
Employer: Oak Ridge National Laboratory
Dates: Summers 2005, 2007, 2008

• Developed SeeGraph, a general 3D layout and graph visualization package applied to
phenotype correlation of mice by ORNL biologists; extended with graph and matrix
algorithms, image processing, statistics, data mining, and novel interaction tech-
niques for microarray data analysis.

• ORNL/UTK collaboration to leverage supercomputers for climate simulation and
prediction using parallel clustering for ecoregion classification, visualization with GIS
tools, multivariate data analysis using parallel coordinate plots, and maintenance of
parallel model fitting software.

• Helped develop a suite of new visualization tools for large volumetric data that can be
used by practitioners and application scientists on arbitrarily-sized clusters driving
any tiled display.

Title: General Tools Intern
Employer: Vital Images, Inc.
Dates: Summer 2006

• Enhanced usability of Vitrea, a workstation product used worldwide to inspect med-
ical imagery, with changes to tools including 3D angiography, vessel probe and mea-
surements, brain perfusion, cardiac, colonography, and lung analysis as well as 5-
button mouse support for Qt.

• Disambiguated click-and-drag behavior for tool mode versus rotation mode using
several event-emulation bypass methods customizable using XML on a per-tool basis.
Usability testing of bypass methods was conducted and later deployed in the public
release.

Title: Graduate Teaching Assistant
Employer: The University of Tennessee at Knoxville
Dates: September 2004-January 2005

• Developed, provided, organized, and graded course material for UTK’s graduate level
CS552 - Software Engineering under the guidance of Dr. Stacy Prowell.

• Developed grading rubrics for exam material, mentored groups on deliverables for
the semester-long project, and lectured regularly.

Title: Graduate Research Assistant
Employer: Knowledge Systems Laboratory, Jacksonville State University
Dates: September 2001-May 2004

• Developed Med-LIFE, a medical system for visualization and interaction with MRI
data allowing neurophysiologically-based image processing and fusion, interactive
learning agents for database mining and disease segmentation, contextual zoom, and
3D isosurface extraction.

• Implemented a gesture recognition for applied computer vision to live camera feed
for direct manipulation of a 3D object via spatial and temporal hand gestures.
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Title: Computer Specialist
Employer: Ft. McClellan
Dates: June 1997-August 2001

• Primary contributor to the inventory tracking software used to close the military post
which was responsible for the successful transfer of 11,200,000 tons of material in 215
shipments amounting to a total value of approximately $104,314,000. Installed and
customized for use by the Department of Homeland Security, Wastren Inc., and the
Joint Powers Authority.

• Expert knowledge and application in Microsoft Access with Visual Basic and much
experience using SQL, Word, Excel, PowerPoint, Paint Shop Pro, Visio, and similar
software packages.

• Software/hardware/network administrator and troubleshooter, responsible for proper
operation and communication of 40 computers in the personal property section of
the Transition Force.

Awards

2nd Place - Best ACM Mid-Southeastern Chapter graduate paper presentation 2003
Outstanding Graduate in Mathematics Award, Jacksonville State University 2001

Professional Services

Conference Committee IEEE Visualization Conference 2008–2009
Student Volunteer IEEE Visualization Conference 2006–2009
Referee IEEE Trans. on Vis. and Computer Graphics 2005–2009

Association Memberships

IEEE (Institute of Electrical and Electronics Engineers) 2004–Present
ACM (Association for Computing Machinery) and local chapter 2004–Present
Student Chapter of Mathematical Association of America 1997–2002
President of Student Chapter of Mathematical Association of America 1998–2001
Student Chapter of Association of Information Technology Professionals 1997–2002
American Institute of Physicists 1998–2002

Selected Publications

1. Joshua New, Wesley Kendall, Jian Huang, Elissa Chesler, “Dynamic Visualization
of Gene Coexpression in Systems Genetics Data”, IEEE Transactions on Visualization
and Computer Graphics, 14(5), pp. 1081-1094, 2008.

2. Jian Huang, Markus Glatter, Wesley Kendall, Brandon Langley, Joshua New,
Roberto Sisneros, Forrest Hoffman, David Erickson, “Time-Varying Multivariate Vi-
sualization for Understanding the Climate Science of the Terrestrial Biosphere”, Pro-
ceedings of the 13th Annual Community Climate System Model Workshop, Brecken-
ridge, Colorado, June 2008.

3. Joshua New, Master’s Thesis: “An Advanced User Interface for Pattern Recog-
nition in Medical Imagery: Interactive Learning, Contextual Zooming, and Gesture
Recognition”, Archives of the JSU and MCIS Libraries, Jacksonville, AL, 2004.
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4. Joshua New, Erion Hasanbelliu, Mario Aguilar, “Med-LIFE: A Diagnostic Aid for
Medical Imagery”, Proceedings of the International Conference on Mathematics and
Engineering Techniques in Medicine and Biological Sciences, Las Vegas, Nevada,
2004.

5. Joshua New, “Heterogeneous ARTMAPs for Image Segmentation”, Proceedings of
the JSU Graduate Research Colloquium, Jacksonville, AL, 2004.

6. Joshua New, “A Method for Temporal Hand Gesture Recognition”, MCIS Technical
Report, Jacksonville, AL, 2004.

7. Mario Aguilar, Joshua New, Erion Hasanbelliu, “Advances in the use of neurophysiologically-
based fusion for visualization and pattern recognition of medical imagery”, Proceed-
ings of the 6th International Conference on Information Fusion, Cairns, Australia,
2003.

8. Joshua New, Erion Hasanbelliu, Mario Aguilar, “Facilitating User Interaction with
Complex Systems via Hand Gesture Recognition”, Proceedings of the 2003 South-
eastern ACM Conference, Savannah, GA, 2003.

9. Joshua New, “A Method for Hand Gesture Recognition”, Proceedings of the ACM
Mid-Southeast Chapter Fall Conference, Gatlinburg, TN, 2002.

10. Mario Aguilar, Joshua New, “Fusion of Multi-Modality Volumetric Medical Im-
agery”, Proceedings of the 5th International Conference on Information Fusion, An-
napolis, MD, 2002.

11. Joshua New, Erion Hasanbelliu, “Med-LIFE: A System for Medical Imagery Explo-
ration”, Proceedings of the JSU Graduate Research Colloquium, Jacksonville, AL,
2002.

Invited Presentations

1. “SeeGraph: A Visual Analytics System for Correlation Data” as invited presenter
at the 2nd annual Gaggle Workshop at the Institute for Systems Biology in Seattle,
WA, 2008.

2. “SeeShader: A System for General Purpose Computation on the GPU” as special
edition of the UTK computer graphics course, 2007.

3. “SeeBrain: A System for Comparative Visualization of Brain Nerve Fiber Tracts”,
invited presenter at the local chapter of the ACM, 2006.

4. “Fiber Renderer: A System for Visualizing Queries of DT-MRI tracts”, presented at
Vanderbilt University’s Institute of Imaging Science as a source of potential research
funding and collaboration, 2006.

5. “SeeGraph: A System for Visualizing Weighted-Edge Graphs”, research meeting at
Oak Ridge National Laboratory, 2005.

6. “An Advanced User Interface for Pattern Recognition in Medical Imagery: Interactive
Learning, Contextual Zooming, and Gesture Recognition”, JSU Studio Component
Business Presentation, Jacksonville, AL, 2004.
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7. “A Method for Temporal Hand Gesture Recognition”, JSU Graduate Research Sym-
posium, Jacksonville, AL, 2004.

8. “Heterogeneous Collection of Learning Systems for Confident Pattern Recognition”,
JSU Graduate Research Symposium, Jacksonville, AL, 2004.

9. “Advances in the use of neurophysiologically-based fusion for visualization and pat-
tern recognition of medical imagery”, 6th International Conference on Information
Fusion, Cairns, Australia, 2003.

10. “The Sword: A Role Playing Game for Demonstrating Computer Graphics Tech-
niques”, JSU Graduate Research Symposium, Jacksonville, AL, 2003.

11. “Pliable Display Technology: Contextual Zoom as a Learning System Interface”, JSU
Graduate Research Symposium, Jacksonville, AL, 2003.

12. “Facilitating User Interaction with Complex Systems via Hand Gesture Recognition”,
41st annual ACM Southeast Conference, 2003.

13. “Computer Vision: Gesture Recognition from Images”, ACM Mid-Southeast Chapter
Fall Conference, 2002.

14. “Fusion of Multi-Modality Volumetric Medical Imagery”, IEEE 5th International
Conference on Information Fusion, Annapolis, MD, 2002.

15. “Med-LIFE: A System for Medical Imagery Exploration”, JSU Graduate Research
Symposium, 2002.

16. “Sonoluminescence”, Jacksonville State University, College of Arts and Sciences 3rd
Annual Undergraduate Research Symposium, 1999.
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