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Abstract

The use of SVM (Support Vector Machine) as component classifier in AdaBoost may seem like going against the grain of the Boosting
principle since SVM is not an easy classifier to train. Moreover, Wickramaratna et al. [2001. Performance degradation in boosting. In:
Proceedings of the Second International Workshop on Multiple Classifier Systems, pp. 11-21] show that AdaBoost with strong
component classifiers is not viable. In this paper, we shall show that AdaBoost incorporating properly designed RBFSVM (SVM with the
RBF kernel) component classifiers, which we call AdaBoostSV M, can perform as well as SVM.

Furthermore, the proposed AdaBoostSVM demonstrates better generalization performance than SVM on imbalanced classification
problems. The key idea of AdaBoostSVM is that for the sequence of trained RBFSVM component classifiers, starting with large ¢ values
(implying weak learning), the o values are reduced progressively as the Boosting iteration proceeds. This effectively produces a set of
RBFSVM component classifiers whose model parameters are adaptively different manifesting in better generalization as compared to
AdaBoost approach with SVM component classifiers using a fixed (optimal) ¢ value. From benchmark data sets, we show that our
AdaBoostSVM approach outperforms other AdaBoost approaches using component classifiers such as Decision Trees and Neural
Networks. AdaBoostSV M can be seen as a proof of concept of the idea proposed in Valentini and Dietterich [2004. Bias-variance analysis
of support vector machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research 5, 725-775]
that Adaboost with heterogeneous SVMs could work well. Moreover, we extend AdaBoostSV M to the Diverse AdaBoostSV M to address
the reported accuracy/diversity dilemma of the original Adaboost. By designing parameter adjusting strategies, the distributions of
accuracy and diversity over RBFSVM component classifiers are tuned to maintain a good balance between them and promising results
have been obtained on benchmark data sets.
© 2007 Published by Elsevier Ltd.
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1. Introduction

One of the major developments in machine learning in
the past decade is the Ensemble method, which finds a
highly accurate classifier by combining many moderately
accurate component classifiers. Two of the commonly used
techniques for constructing Ensemble classifiers are Boost-
ing (Schapire, 2002) and Bagging (Breiman, 1996).
Compared with Bagging, Boosting performs better when
the data do not have much noise (Opitz and Maclin, 1999;
Bauer and Kohavi, 1999). As the most popular Boosting
method, AdaBoost (Freund and Schapire, 1997) creates a
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collection of component classifiers by maintaining a set of
weights over training samples and adaptively adjusting
these weights after each Boosting iteration: the weights of
the training samples which are misclassified by current
component classifier will be increased while the weights of
the training samples which are correctly classified will be
decreased. Several ways have been proposed to implement
the weight update in Adaboost (Kuncheva and Whitaker,
2002).

The success of AdaBoost can be attributed to its ability
to enlarge the margin (Schapire et al., 1998), which could
enhance the generalization capability of AdaBoost. Many
studies that use Decision Trees (Dietterich, 2000) or Neural
Networks (Schwenk and Bengio, 2000; Ratsch, 2001) as
component classifiers in AdaBoost have been reported.
These studies show good generalization performance of
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these AdaBoost. Still, some difficulties remain. When
Decision Trees are used as component classifiers, what
should be the suitable tree size? When Radial Basis
Function (RBF) Neural Networks are used as component
classifiers, how could the complexity be controlled to avoid
overfitting? Moreover, we have to decide on the optimum
number of centers and the width of the RBFs? All of these
have to be carefully tuned for AdaBoost to achieve better
performance. Furthermore, diversity is known to be an
important factor which affects the generalization perfor-
mance of Ensemble classifiers (Melville and Mooney, 2005;
Kuncheva and Whitaker, 2003). Some methods are
proposed to quantify the diversity (Kuncheva and Whi-
taker, 2003; Windeatt, 2005). It is also known that there is
an accuracy/diversity dilemma in AdaBoost (Dietterich,
2000), which means that the more accurate the two
component classifiers become, the less they can disagree
with each other. Only when the accuracy and diversity are
well balanced, can the AdaBoost demonstrate excellent
generalization performance. However, the existing Ada-
Boost algorithms do not explicitly take sufficient measures
to deal with this problem.

Support Vector Machine (SVM) (Vapnik, 1998) is
developed from the theory of Structural Risk Minimiza-
tion. By using a kernel trick to map the training samples
from an input space to a high-dimensional feature space,
SVM finds an optimal separating hyperplane in the feature
space and uses a regularization parameter, C, to control its
model complexity and training error. One of the popular
kernels used in SVM is the RBF kernel, which has a
parameter known as Gaussian width, ¢. In contrast to the
RBF networks, SVM with the RBF kernel (RBFSVM in
short) can automatically determine the number and
location of the centers and the weight values (Scholkopf
et al., 1997). Also, it can effectively avoid overfitting by
selecting proper values of C and ¢. From the performance
analysis of RBFSVM (Valentini and Dietterich, 2004), we
know that ¢ is a more important parameter compared to C:
although RBFSVM cannot learn well when a very low
value of C is used, its performance largely depends on the ¢
value if a roughly suitable C is given. This means that, over
a range of suitable C, the performance of RBFSVM can be
changed by simply adjusting the value of .

Therefore, in this paper, we try to answer the following
questions: Can the SVM be used as an effective component
classifier in AdaBoost? If yes, what will be the general-
ization performance of this AdaBoost? Will this AdaBoost
show some advantages over the existing ones, especially on
the aforementioned problems? Furthermore, compared
with the individual SVM, what is the benefit of using an
AdaBoost as a combination of multiple SVMs? In this
paper, RBFSVM is adopted as component classifier for
AdaBoost. As mentioned above, there is a parameter ¢ in
RBFSVM which has to be set beforechand. An intuitive way
is to simply apply a single ¢ to all RBFSVM component
classifiers. However, we observed that this way cannot lead
to successful AdaBoost due to the over-weak or over-

strong RBFSVM component classifiers encountered in
Boosting process. Although there may exist a single best g,
we find that AdaBoost with this single best ¢ obtained by
cross-validation cannot lead to the best generalization
performance and also doing cross-validation for it will
increase the computational load. Therefore, using a single
o in all RBFSVM component classifiers should be avoided
if possible.

The following fact opens the door for us to avoid
searching the single best o and help AdaBoost achieve even
better generalization performance. It is known that the
classification performance of RBFSVM can be conveni-
ently changed by adjusting the kernel parameter, o.
Enlightened by this, the proposed AdaBoostSV M approach
adaptively adjusts the ¢ values in RBFSVM component
classifiers to obtain a set of moderately accurate
RBFSVMs for AdaBoost. As will be shown later, this
gives rise to a better SVM-based AdaBoost. Compared
with the existing AdaBoost approaches with Neural
Networks or Decision Tree component classifiers, our
proposed AdaBoostSVM can achieve better generalization
performance and it can be seen as a proof of concept of the
idea suggested by Valentini and Dietterich (2004) that
Adaboost with heterogeneous SVMs could work well.
Furthermore, compared with individual SVM, Ada-
BoostSVM can achieve much better generalization perfor-
mance on imbalanced data sets. We argue that in
AdaBoostSVM, the Boosting mechanism forces some
RBFSVM component classifiers to focus on the misclassi-
fied samples from the minority class, and this can prevent
the minority class from being considered as noise in the
dominant class and be wrongly classified. This also
justifies, from another perspective, the significance of
exploring AdaBoost with SVM component classifiers.

Furthermore, since AdaBoostSVM provides a conveni-
ent way to control the classification accuracy of each
RBFSVM component classifier by simply adjusting the o
value, it also provides an opportunity to deal with the well-
known accuracy/diveristy dilemma in Boosting methods.
This is a happy “discovery” found during the investigation
of AdaBoost with RBFSVM-based component classifiers.
Through some parameter adjusting strategies, we can tune
the distributions of accuracy and diversity over these
component classifiers to achieve a good balance. We also
propose an improved version of AdaBoostSVM called
Diverse AdaBoostSVM in this paper. It is observed that,
benefiting from the balance between accuracy and diver-
sity, it can give better generalization performance than
AdaBoostSVM.

2. Background
2.1. AdaBoost
Given a set of training samples, AdaBoost (Schapire and

Singer, 1999) maintains a weight distribution, W, over
these samples. This distribution is initially set uniform.
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Table 1

Algorithm: AdaBoost (Schapire and Singer, 1999)
1. Input: a set of training samples with labels {(x1,,),..., Xn,¥y)}, @
ComponentLearn algorithm, the number of cycles 7.
2. Initialize: the weights of training samples: w! = 1/N, for all
i=1,...,N.
3.Dofort=1,...,T

(1) Use the ComponentLearn algorithm to train a component classifier,
h;, on the weighted training samples.

(2) Calculate the training error of A, : ¢ = vazlwl'., Vi Fh(x)).

(3) Set weight for the component classifier /4, : o, = lln(';%).

. . i bl whexpl-ayhi(x)
(4) Update the weights of training samples: w;™" = T
i=1,...,N

where C, is a normalization constant, and E}Lwﬁ“ =1.

4. Output: f(x) = sign(Z,T:]cx,h,(x)).

Then, AdaBoost calls ComponentLearn algorithm repeat-
edly in a series of cycles (Table 1). At cycle ¢, AdaBoost
provides training samples with a distribution W, to
ComponentLearn. In response, the ComponentLearn
trains a classifier 4;. The distribution W, is updated after
each cycle according to the prediction results on the
training samples. ‘“Easy” samples that are correctly
classified &, get lower weights, and “hard” samples that
are misclassified get higher weights. Thus, AdaBoost
focuses on the samples with higher weights, which seem
to be harder for ComponentLearn. This process continues
for T cycles, and finally, AdaBoost linearly combines all
the component classifiers into a single final hypothesis f.
Greater weights are given to component classifiers with
lower training errors. The important theoretical property
of AdaBoost is that if the component classifiers consis-
tently have accuracy only slightly better than half, then the
training error of the final hypothesis drops to zero
exponentially fast. This means that the component
classifiers need to be only slightly better than random.

2.2. Support Vector Machine

SVM was developed from the theory of Structural Risk
Minimization. In a binary classification problem, the
decision function of SVM is

J(x) = (W, ¢(x)) + b, (1)

where ¢(x) is a mapping of sample x from the input space
to a high-dimensional feature space. (-,-) denotes the dot
product in the feature space. The optimal values of w and b
can be obtained by solving the following optimization
problem:

o 1 -
minimize:  g(w, &) = 3 Iwll* + CZ Si (2)
i1

subject to: (W, p(x)) +b)=1—-¢&;, =0, (€)

where &; is the ith slack variable and C is the regularization
parameter. According to the Wolfe dual form, the above
minimization problem can be written as

N
minimize: W(a) = — Z o
i=1
1 XN
*5 Z Z Y00k (Xi, X)) “)
=1 j=1
N
subject to: Z yo; =0, Vi:0<0,<C, ®)
=1

where o; is a Lagrange multiplier which corresponds to the
sample x;, k(-,-) is a kernel function that implicitly maps
the input vectors into a suitable feature space

k(xi, %)) = ((x7), p(x))). (6)

Compared with RBF networks (Scholkopf et al., 1997),
SVM automatically calculates the number and location of
centers, weights, and thresholds in the following way: by
the use of a suitable kernel function (in this paper, the RBF
kernel, k(x;,x;) = exp(—[x; — xj||2/202), is used), the sam-
ples are mapped nonlinearly into a high-dimensional
feature space. In this space, an optimal separating hyper-
plane is constructed by the support vectors. Support
vectors correspond to the centers of RBF kernels in the
input space. The generalization performance of SVM is
mainly affected by the kernel parameters, for example, o,
and the regularization parameter, C. They have to be set
beforehand.

3. Proposed algorithm: AdaBoostSVM

This work aims to employ RBFSVM as component
classifier in AdaBoost. But how should we set the ¢ value
for these RBFSVM component classifiers during the
AdaBoost iterations? Problems are encountered when
applying a single ¢ to all RBFSVM component classifiers.
In detail, having too large a value of ¢ often results in too
weak a RBFSVM component classifier. Its classification
accuracy is often less than 50% and cannot meet the
requirement on a component classifier given in AdaBoost.
On the other hand, a smaller ¢ often makes the RBFSVM
component classifier stronger and boosting them may
become inefficient because the errors of these component
classifiers are highly correlated. Furthermore, too small a
value of ¢ can even make RBFSVM overfit the training
samples. Hence, finding a suitable ¢ for these SVM
component classifiers in AdaBoost becomes a problem.
By using model selection techniques such as k-fold or leave-
one-out cross-validation, a single best ¢ may be found for
these component classifiers. However, the process of model
selection is time consuming and should be avoided if
possible. Hence, it seems that SVM component classifiers
do not perform optimally if only one single value of ¢ is
used.
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3.1. Influence of parameters on SVM performance

The classification performance of SVM is affected by its
model parameters. For RBFSVM, the model parameters
include the Gaussian width, o, and the regularization
parameter, C. The variation of either of them leads to the
change of classification performance. However, as reported
in Valentini and Dietterich (2004), although RBFSVM
cannot learn well when a very low value of C is used, its
performance largely depends on the ¢ value if a roughly
suitable C is given. An example is shown in Fig. 1, which
plots the test error of SVM against the values of C and ¢ on
a non-separable data set used in Baudat and Anouar
(2000). Clearly, changing ¢ leads to larger variation on test
error than changing C. This means that, over a large range
of C, the performance of RBFSVM can be adjusted by
simply changing the value of o. It is known that, in a
certain range, a larger o often leads to a reduction in
classifier complexity but at the same lowers the classifica-
tion performance. Also, a smaller ¢ often increases the
learning complexity and leads to higher classification
performance in general. Therefore, this gives a chance to
get around the problem resulted from using a fixed o for all
RBFSVM component classifiers. In the following, a set of
moderately accurate RBFSVM component classifiers is
obtained by adaptively adjusting their ¢ values.

3.2. Proposed algorithm: AdaBoostSVM

When applying Boosting method to strong component
classifiers, these component classifiers must be appropri-
ately weakened in order to benefit from Boosting
(Dietterich, 2000). Hence, if RBFSVM is used as compo-
nent classifier in AdaBoost, a relatively large ¢ value, which
corresponds to a RBFSVM with relatively weak learning

X. Li et al. | Engineering Applications of Artificial Intelligence 21 (2008) 785-795

ability, is preferred. In the proposed AdaBoostSVM,
without loss of generality, the re-weighting technique is
used to update the weights of training samples. Ada-
BoostSV M can be described as follows (Table 2): Initially,
a large value is set to g, corresponding to a RBFSVM
classifier with very weak learning ability. Then, RBFSVM
with this ¢ is trained as many cycles as possible as long as
more than half accuracy can be obtained. Otherwise, this ¢
value is decreased slightly to increase the learning
capability of RBFSVM to help it achieve more than half
accuracy. By decreasing the ¢ value slightly, this prevents
the new RBFSVM from being too strong for the current
weighted training samples, and thus moderately accurate
RBFSVM component classifiers are obtained. The reason
why moderately accurate RBFSVM component classifiers
are favored lies in the fact that these classifiers often have
larger diversity than those component classifiers which are
very accurate. These larger diversities may lead to a better
generalization performance of AdaBoost. This process

Table 2

Algorithm: AdaBoostSVM
1. Input: a set of training samples with labels {(x1,,),...,(Xn,yy)}; the
initial ¢, ojy;; the minimal 6, opin; the step of 6, oep.
2. Initialize: the weights of training samples: w} = 1/N, for all
i=1,...,N.
3. Do While (6> oyin)

(1) Train a RBFSVM component classifier, /;, on the weighted training
set.

(2) Calculate the training error of i, : & = Zﬁlwl’., Vi #h(X;).

(3) If &,>0.5, decrease ¢ value by oy, and goto (1).

(4) Set the weight of component classifier 4, : o, = 4 In(

1—¢

& 1)'

whexp{=ayihi(x;)}
Cy

+1 _ 1.

(5) Update the weights of training samples: wg“ =

. . . N
whereC; is a normalization constant, and ;_ w!

4. Output: f(x) = sign(thzloz,h,(x)).
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continues until the o is decreased to the given minimal
value.

4. Improvement: diverse AdaBoostSVM
4.1. Accuracy/diversity dilemma of AdaBoost

Diversity is known to be an important factor affecting
the generalization performance of Ensemble methods
(Melville and Mooney, 2005; Kuncheva and Whitaker,
2003), which means that the errors made by different
component classifiers should be uncorrelated. If each
component classifier is moderately accurate and these
component classifiers largely disagree with each other, the
uncorrelated errors of these component classifiers will be
removed by the voting process so as to achieve good
ensemble generalization performance (Shin and Sohn,
2005). This also applies to AdaBoost. As mentioned
before, there exists a dilemma in AdaBoost between the
classification accuracy of component classifiers and the
diversity among them (Dietterich, 2000), which means that
the more accurate the two component classifiers become,
the less they can disagree with each other. The Accur-
acy—Diversity diagram in Fig. 2 is used to explain this
dilemma. Following Margineantu and Dietterich (1997)
and Domeniconi and Yan (2004), the Kappa statistic is
used to measure the diversity.

This diagram is a scatter-plot where each point
corresponds to a component classifier. The x coordinate
value of a point is the diversity value of the corresponding
component classifier while the y coordinate value is the
accuracy value of the corresponding component classifier.
From this figure, it can be observed that, if the component
classifiers are too accurate, it is difficult to find very diverse
ones, and combining these accurate but non-diverse
classifiers often leads to very limited improvement (Wind-
eatt, 2005). On the other hand, if the component classifiers

XX X X X X
Xxx
x x x
X x x
XXX X X X
XXXX x
XXXXXXX XXXX XX
xx XX X XXX X
XXX XXXXXXX XXX
X X XXXXXXXX xx
XXXXXXXXXXXX X
XXXXXXXX XXX XX X
XX XX XXXX XXX X
XX XXXXXXXXXXX XXX
XXXXX  XXXXX XXXX
XX XX XXXX X
XX XX X X X XX
XXX X XX x xx x
xx x x
X X xx x

Accuracy ——>
x
x
o
x x
x

Diversity ——>

Fig. 2. Accuracy and diversity dilemma of AdaBoost.

are too inaccurate, although we can find diverse ones, the
combination result may be worse than that of combining
both more accurate and diverse component classifiers. This
is because if the combination result is dominated by too
many inaccurate component classifiers, it will be wrong
most of the time, leading to poor classification result.
Hence, how could we maximize the diversity under the
condition of obtaining a fairly good component classifier
accuracy in AdaBoost?

In AdaBoostSVM, the obtained RBFSVM component
classifiers are mostly moderately accurate, which gives
chances to select more diverse component classifiers. As
aforementioned, through adjustment of the ¢ value, a set of
RBFSVM component classifiers with different learning
abilities is obtained. This provides an opportunity of
selecting more diverse component classifiers from this set to
deal with the accuracy/diversity dilemma. Hence, we
proposed a Diverse AdaBoostSVM approach (Table 3),
and it is hoped to further improve the generalization
performance of AdaBoostSVM.

4.2. Improvement of AdaBoostSVM: diverse
AdaBoostSVM

Although the matter of how diversity is measured and
used in Ensemble methods is still an open problem
(Kuncheva and Whitaker, 2003), some promising results
(Melville and Mooney, 2005; Dasgupta and Long, 2003)
have been reported recently. By increasing the diversity of
component classifiers, these methods can achieve higher
generalization accuracy. In the proposed Diverse Ada-
BoostSVM approach, we use the definition of diversity in
Melville and Mooney (2005), which measures the disagree-
ment between one component classifier and all the existing
component classifiers. In the Diverse AdaBoostSV M, the
diversity is calculated as follows: If /,(x;) is the prediction
label of the 7th component classifier on the sample x;, and

Table 3

Algorithm: Diverse AdaBoostSVM
1. Input: a set of training samples with labels {(x1,,),...,(Xn,y)}; the
initial o, oj,;; the minimal ¢, oyin; the step of g, gyp; the threshold on
diversity DIV.
2. Initialize: the weights of training samples: w} = 1/N, for all
i=1,...,N.
3. Do While (6> oin)

(1) Train a RBFSVM component classifier, /;, on the weighted training
set.

(2) Calculate the training error of /i, : & = Zﬁlwl’., Vi#h(X;).

(3) Calculate the diversity of A, : D, = Zfi]d,(x,-).

4) If &,>0.5 or D,< DIV, decrease ¢ by ogep and goto (1).

(5) Set the weight of component classifier /4, : o, = %ln('f"’),

&

| whexpl=ayih(x))
— L

. o N
whereC, is a normalization constant, and "5 wi*! = 1.

4. Output: f(x) = sign(Z,T:l o hy(X)).

(6) Update the weights of training samples: wi*
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f(x;) is the combined prediction label of all the existing
component classifiers, the diversity of the rth component
classifier on the sample x; is calculated as:

if h(x;) = f(x;
dz(Xi)={(1) if h(x;) = f(x;)

if hu(x;) #f(x:)
and the diversity of AdaBoostSVM with T component
classifiers on N samples is calculated as

1 L
__NZ

=1

()

™=

di(x;). )
1

At each cycle of Diverse AdaBoostSVM, the diversity
value, D, is calculated first. If D is larger than the
predefined threshold, DIV, this new RBFSVM component
classifier will be selected. Otherwise, this component
classifier will be discarded. Through this mechanism, a
set of moderately accurate and diverse RBFSVM compo-
nent classifiers can be generated. This is different from the
above AdaBoostSVM which simply takes all the available
RBFSVM component classifiers. As seen from the follow-
ing experimental results, the Diverse AdaBoostSVM gives
better generalization performance. We think that the
improvement is due to its explicit dealing with the
accuracy/diversity dilemma.

5. Experimental results

In this section, our proposed AdaBoostSVM and Diverse
AdaBoostSVM are compared with the commonly used
AdaBoost, which takes Neural Networks or Decision Tree
as component classifiers. Then, they are compared with
several state-of-the-art imbalanced classification algo-
rithms to show the significance of exploring SVM-based
AdaBoost algorithms applied to some imbalanced data
sets.

Table 4

5.1. Comparison on benchmark data sets

5.1.1. Data set information and parameter setting

Thirteen benchmark data sets from UCI Repository,
DELVE, and STATLOG are used to evaluate the general-
ization performance of two proposed algorithms. The
dimensions of these data sets range from 2 to 60, the
numbers of training samples range from 140 to 1300, and
the numbers of test samples range from 75 to 7000.
Detailed information about these data sets can be found in
(http://mlg.anu.edu.au/~raetsch/data). Each data set is
partitioned into training and test subsets, usually in the
ratio of 60-40%. 100 such partitions are generated
randomly for the experiments. On each partition, the
compared algorithms are trained and tested, respectively.
The final performance of each algorithm on a data set is the
average of the results over the 100 partitions.

As the generalization performance of RBFSVM is
mainly affected by the parameter, o, the regularization
parameter, C, is empirically set as a value within 10-100 for
all experiments. The o, is set as the average minimal
distance between any two training samples and the oy, is
set as the scatter radius of the training samples in the input
space. Although the value of oy, affects the number of
AdaBoostSVM learning cycles, it has less impact on the
final generalization performance, as shown later. There-
fore, oicp is set to a value within 1-3. The threshold “DIV”
in the Diverse AdaBoostSVM is set as nD: ., where n €
(0,1] and D!, denotes the maximal diversity value
obtained in past ¢ cycles. In this experiment, y = 0.7 is
used to handle the possible small variation on diversity.

5.1.2. Evaluation of the generalization performance

Firstly, we give the generalization errors with standard
deviation of the six algorithms on the benchmark data sets in
Table 4: AdaBoost with Decision Tree component classifier
(ABpr), AdaBoost with Neural Networks component

Generalization errors with standard deviation of algorithms: AdaBoost with Decision Tree component classifiers, (ABpr), AdaBoost with Neural
Networks component classifiers (AByn), AdaBoost with SVM component classifiers using single best parameters for SVM (ABsym-—s), proposed
AdaBoostSVM (ABgym), proposed Diverse AdaBoostSVM (DABgyym) and SVM

Data set ABDT ABNN ABSVM—S ABSVM DABSVM SVM

Banana 13.24+0.7 1234+0.7 1424+0.6 121+1.7 113+14 11.5+0.7
B. cancer 323+47 30.4+4.7 304+44 25.5+5.0 248+44 26.0 4.7
Diabetes 27.8+23 26.5+23 248+2.0 248+23 243+2.1 235+1.7
German 293+24 275425 258+1.9 234 +2.1 223+2.1 23.6 2.1
Heart 21.5+£33 20.3+34 19.24+3.5 155+34 149 £3.0 16.0£3.3
Image 3.7+£0.8 27+£0.7 6.2+0.7 27+£0.7 24+05 3.0+0.6
Ringnorm 254+03 1.9+0.3 51402 2.1+1.1 20+0.7 1.7+£0.1
F. solar 379+ 1.5 357+ 1.8 36.8+1.5 33.8+1.5 337+ 14 324+18
Splice 120403 10.1£05 143+0.5 11.1+1.2 11.0+1.0 10.94+0.7
Thyroid 5.6£2.0 44+22 85+2.1 44+2.1 37+21 48+22
Titanic 23.8+0.7 226+1.2 256+1.2 22.1+19 218+15 224+1.0
Twonorm 3.5+02 3.0+£0.3 57+03 2.6+0.6 25+05 3.0+0.2
Waveform 12.1+0.6 10.8 £ 0.6 127+ 0.4 103+ 1.7 102+1.2 99+04
Average 174+ 1.5 16.0+ 1.6 177+ 1.5 146+19 142+£1.7 145+1.5
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classifier (ABnn), AdaBoost with SVM component classifier
using cross-validated single best parameters for SVM
(ABsym—s), proposed AdaBoostSVM (ABsym), proposed
Diverse AdaBoostSVM (DABgsym) and standard SVM.

Next, the McNemar’s statistical test (Eveitt, 1977) is
done to confirm whether proposed algorithms outperform
others on these data sets. For a data set, the McNemar’s
statistical test of algorithm a and algorithm b is based on
the following values of these two algorithms:

Noo: number of test data No1: number of test data
misclassified by both misclassified by algorithm «
algorithm a and algorithm » but not by algorithm »

N1p: number of test data Ni1: number of test data
misclassified by algorithm b misclassified by neither

but not by algorithm a algorithm « nor algorithm b

Table 5

then the following statistic is calculated:

(INo1 — Nyl — 1)
Noi + Nio .

)

If algorithm a and algorithm b perform significantly
different, the McNemar’s statistic is greater than y7 g5 =
3.841459 (Dietterich, 1998). Tables 5 and 6 show the
McNemar’s statistical test results of AdaBoostSVM and
Diverse AdaBoostSVM on the 13 benchmark data sets
(“YES” or “NO” in the parentheses indicates whether
these two algorithms perform significantly different on this
data set).

In Table 5, the McNemar’s statistical test results
illustrate that the performance of AdaBoostSVM signifi-
cantly differs from that of AdaBoostpt on 10 data sets out
of total 13 data sets. This is because on these 10 data sets,

McNemar’s statistical test results between AdaBoostSVM and the compared algorithms

Data set McNemar’s statistic
(ABsvm—s — ABsvm)

McNemar’s statistic
(ABpt — ABsvm)

McNemar’s statistic
(SVM — ABsvym)

McNemar’s statistic
(ABnn — ABsvm)

4.12417 (YES)
4.76512 (YES)
4.51249 (YES)
5.10248 (YES)
5.12457 (YES)
3.15421 (NO)
3.25994 (NO)
421548 (YES)
3.56154 (NO)
4.21457 (YES)
3.65223 (NO)
3.91241 (YES)
3.89215 (YES)

2.87183 (NO)
2.91432 (NO)
3.29810 (NO)
2.76391 (NO)
2.98714 (NO)
3.29011 (NO)
2.87446 (NO)
3.54129 (NO)
2.14102 (NO)
3.41928 (NO)
3.01822 (NO)
3.41839 (NO)
2.81376 (NO)

Banana 5.01843 (YES) 4.73252 (YES)
B. cancer 4.76182 (YES) 5.12491 (YES)
Diabetes 2.96412 (NO) 4.87432 (YES)
German 3.98824 (YES) 5.30991 (YES)
Heart 4.27339 (YES) 5.33074 (YES)
Image 5.39172 (YES) 4.10342 (YES)
Ringnorm 4.93901 (YES) 3.51085 (NO)
F. solar 4.87122 (YES) 5.09321 (YES)
Splice 3.98532 (YES) 3.79011 (NO)
Thyroid 5.09974 (YES) 432133 (YES)
Titanic 4.28330 (YES) 3.77819 (NO)
Twonorm 4.01291 (YES) 4.01121 (YES)
Waveform 4.01197 (YES) 3.99871 (YES)
Average 4.53086 (12 YES/1 4.45996 (10 YES/3

4.11471 (9 YES/4 3.02710 (0 YES/13

NO)

NO)

NO)

NO)

(“YES” or “NO” in the parentheses indicates whether these two algorithms perform significantly different on this data set).

Table 6

McNemar’s statistical test results between Diverse AdaBoostSVM and the compared algorithms

McNemar’s statistic
(ABxn — DABgsvm)

McNemar’s statistic
(SVM — DABgym)

Data set McNemar’s statistic McNemar’s statistic
(ABsvm—s — DABsvm) (ABpt — DABsym)
Banana 5.18291 (YES) 4.89967 (YES)
B. cancer 4.83708 (YES) 5.30089 (YES)
Diabetes 3.27817 (NO) 4.93101 (YES)
German 4.29164 (YES) 5.48552 (YES)
Heart 4.40081 (YES) 5.28919 (YES)
Image 5.51728 (YES) 4.28853 (YES)
Ringnorm 5.19374 (YES) 3.67192 (NO)
F. solar 4.98732 (YES) 5.18392 (YES)
Splice 4.19383 (YES) 3.80208 (NO)
Thyroid 5.22328 (YES) 4.42862 (YES)
Titanic 4.39827 (YES) 3.93800 (YES)
Twonorm 4.11873 (YES) 4.09128 (YES)
Waveform 4.32891 (YES) 4.11837 (YES)
Average 4.61169 (12 YES/1 NO) 4.56950 (10 YES/2 NO)

4.28770 (YES)
4.89013 (YES)
4.68291 (YES)
5.33092 (YES)
5.23980 (YES)
3.27116 (NO)
3.49381 (NO)
4.37186 (YES)
3.70918 (NO)
4.38510 (YES)
3.71902 (NO)
3.99808 (YES)
3.92473 (YES)

4.25496 (9 YES/4 NO)

3.18921 (NO)
3.88942 (YES)
3.49284 (NO)
3.89018 (YES)
3.48237(NO)

3.52349 (NO)
2.94509 (NO)
3.74320 (NO)
2.53249 (NO)
3.92787 (YES)
3.34328 (NO)
3.64354 (NO)
2.98234 (NO)

3.42964 (3 YES/10 NO)

(“YES” or “NO” in the parentheses indicates whether these two algorithms perform significantly different on this data set).
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each McNemar’s statistic (Eq. (9)) is larger than 3.841459.
Furthermore, since the generalization errors of Ada-
BoostSVM are less than those of AdaBoostpt on these
10 data sets (see Table 6), AdaBoostSVM performs better
than AdaBoostpt on these 10 data sets. Hence, we can
conclude that proposed AdaBoostSV M algorithm performs
better than ABprt in general on these data sets. A similar
conclusion can also be drawn from Table 5 that
AdaBoostSVM outperforms ABnn, and is comparable to
the standard SVM. It can be observed that the ABsym_s
performs worse than the standard SVM. We think that this
is because ABgynm_s forces the strong SVM classifiers (SVM
with its best parameters) to focus on very hard training
samples or outliers more emphatically. This case is also
observed in Wickramaratna et al. (2001). Generally
speaking, for balanced classification problems, the con-
tribution of the proposed AdaBoostSVM lies in the
corroborative proof and realization of Valentini and
Dietterich’s (2004) idea, that states that AdaBoost with
heterogenecous SVMs could work well. Furthermore,
proposed AdaBoostSVM outperforms other Boosting
algorithms on these balanced data sets, which has been
justified statistically verified by our extensive experiments
based on McNemar’s statistical test.

From Table 6, similar conclusions can also be drawn
that our proposed Diverse AdaBoostSVM outperforms
both ABpt and ABnN in general on these benchmark data
sets. Moreover, since the Diverse AdaBoostSVM outper-
forms the standard SVM on 3 data sets while comparable
on the other 10 data sets, we say that proposed Diverse
AdaBoostSVM performs a little better than standard SVM
in general.

5.1.3. Influence of C and oiy

In order to show the influence of parameter C on
AdaBoostSVM, we use the results on the UCI ‘“Titanic”
data set for illustration. We vary the value of C from 1 to
100, and perform experiments on 100 random partitions of
this data set to obtain the average generalization perfor-
mance. Fig. 3 shows the comparative results. Over a large
range, the variation of C has little effect (less than 1%) on
the final generalization performance. This is also consistent
with the analysis of RBFSVM in Valentini and Dietterich
(2004) that C value has less effect on the performance of
RBFSVM. Note that the ¢ value decreases from iy tO o min
as the number of SVM component classifiers increases (see
the label of horizontal axis in Fig. 3). The small platform at
the left top corner of this figure means that the test error
does not decrease until the ¢ reduces to a certain value.
Then, the test error decreases quickly to the lowest value
and stabilities there. This shows that the oiy; value does not
have much impact on the final performance of Ada-
BoostSVM.

5.1.4. Influence of ogcp
In order to show the influence of the step size of
parameter ogep on AdaBoostSVM, we also use the results
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Fig. 3. The performance of AdaBoostSVM with different C values.
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Fig. 4. The performance of AdaBoostSVM with different oy, values.

on the UCI “Titanic” data set for illustration. A set of
experiments with different oy, values on the “Titanic”
data set were performed. Fig. 4 gives the results. From this
figure, we can find that, although the number of learning
cycles in AdaBoostSVM changes with the value of o, the
final test error is relatively stable. Similar conclusions can
also be drawn on other benchmark data sets.

5.2. Comparison on imbalanced data sets

Although SVM has achieved great success in many area,
such as handwriting recognition (Vapnik, 1998), text
classification (Joachims, 1998) and image retrieval (Tong
and Koller, 2001), when handling imbalanced classification
problems, its performance drops significantly. In this
section, we will show the performance of our proposed
AdaBoostSVM on imbalanced classification problems and
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compare it with several state-of-the-art algorithms specifi-
cally designed to solve these problems.

5.2.1. Review of current algorithms dealing with imbalanced
problems

In the case of binary classification, imbalanced classifica-
tion means that the number of negative instances is much
larger than that of positive ones, or vice versa, such as
imbalanced document categorization (del Castillo and
Serrano, 2004), imbalanced clustering for microarray data
(Pearson et al., 2003), detecting credit card fraud (Fawcett
and Provost, 1997) and many data mining tasks (Aaai’2000
Workshop on Learning from Imbalanced Data Sets, 2000;
IecmI’2003 Workshop on Learning from Imbalanced Data
Sets (ii), 2003; Editorial: Special issue on learning from
imbalanced data sets, 2004. SIGKDD Explorations).

A common method to handle imbalanced problems is to
rebalance them artificially by under-sampling (Kubat and
Matwin, 1997) (ignoring instances from the majority class)
or over-sampling (Chawla et al., 2002) (replicating
instances from the minority class) or combination of both
under-sampling and over-sampling (Ling and Li, 1998).
The popular approach is the SMOTE algorithm (Chawla
et al., 2002), which synthetically over-samples the minority
class. Another type of algorithms focuses on biasing the
SVM to deal with the imbalanced problems. Several
different ways are used. In Veropoulos et al. (1999),
different penalty constants are used for different classes to
control the balance between false positive instances and
false negative instances. Cristianini et al. (2001) use kernel
alignment to adjust the kernel matrix to fit the training
samples. Wu and Chang (2005) realize this by kernel
boundary alignment. Furthermore, in Akbani et al. (2004),
SMOTE and different error costs are combined for SVM to
better handle imbalanced problems. Decision tree (Drum-
mond and Holte, 2000) and multiplayer perceptron
(Nugroho et al., 2002) are also modified to improve the
learning performance on imbalanced data sets. In Guo and
Viktor (2004), Boosting combined with data generation is
used to solve imbalanced problems. Another similar work
(Yan et al., 2003) uses SVM ensemble to predict rare
classes in scene classification.

5.2.2. Generalization performance on imbalanced data sets

Firstly, we compare our AdaBoostSVM with the
standard SVM on the UCI “Splice” data set. The “Splice”
data set has 483 positive training samples, 517 negative
training samples and 2175 test samples. In the following
experiments, the number of negative samples is fixed at 500
and the number of positive samples is reduced from 150 to
30 step-wise to realize different imbalance ratios. From
Fig. 5, it can be found that along with the decreasing ratio
of positive samples to that of negative ones, the improve-
ment of AdaBoostSVM over SVM increases monotoni-
cally. When the ratio reaches 30:500, SVM almost cannot
work and performs like random guess. On the other hand,

90% T T .

A SWM
- AdaBoostSVM | |

85% [
Vi

80% r

75% 1

70% |

Test accuracy

65% |

60%

55%

50%

150:500 100:500 80:500 60:500
Number of postive samples :

Number of negtive samples

30:500

Fig. 5. Comparison between AdaBoostSVM and SVM on imbalanced
data sets.

AdaBoostSVM can still work, and the improvement reach
about 15%.

In the following, AdaBoostSVM is compared with four
algorithms, which are standard SVM (Vapnik, 1998), SVM
with different penalty constants (SVM-DPC) (Veropoulos
et al., 1999), Under-sampling (US) (Kubat and Matwin,
1997) and SMOTE (Chawla et al., 2002). Five UCI
imbalanced data sets are used, namely Car(3), Glass(7),
Letter(26), Segment(1) and Soybean(12). The class labels in
the parentheses indicate the classes selected. For each data
set, we randomly split it into training and test sets in the
ratio of 70%:30%, and in these two sets, the ratios between
the numbers of positive and negative instances are roughly
same (Kubat and Matwin, 1997). In Table 7, the general
characteristics of these data sets are given including the
number of attributes, the number of positive instances and
the number of negative instances. It also lists the amount of
over-sampling of the minority class for SMOTE as
suggested in Wu and Chang (2005). For SVM-DPC, the
two penalty cost values are decided according to Akbani
et al. (2004), where their ratio is set as the inverse of the ratio
of the instance numbers in the two classes. For the under-
sampling algorithm, the majority class is under-sampled by
randomly removing samples from the majority class until it
has the same number of instances as minority class.

The commonly used sensitivity and specificity are taken
to measure the performance of each algorithm on the
imbalanced data sets. They are defined as

e #t iti
Sensitivity = - fue_pom e > (10)
#true_positive + #false_negative
o #true_negative
Specificity = (11)

#true_negative + #false_positive

Several researchers (Kubat and Matwin, 1997, Wu and
Chang, 2005; Akbani et al., 2004) have used the g-means
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Table 7
General characteristics of UCI imbalanced data sets and the amount of
over-sampling of the minority class for the SMOTE algorithm

Data set # Attribute  # Minority # Majority Over-
class class sampled (%)

Segmentl 19 330 1980 200

Glass7 10 29 185 200
Soybean12 35 44 639 400

Car3 6 69 1659 400

Letter26 17 734 19266 400

Table 8

g-means metric results on the five UCI imbalanced data sets

Data set SVM  SVM-DPC US SMOTE AdaBoostSVM

Segment| 0.995 0.956 0.945  0.958 0.965
Glass7 0.867 0.874 0.835  0.863 0.885
Soybeanl2  0.926  0.993 0.921  0.975 0.997
Car3 0 0.382 0.925  0.966 0.975
Letter26 0.818 0.934 0913  0.927 0.945
Average 0.721  0.827 0.908  0.938 0.953

metric to evaluate the algorithm performance on imbal-
anced problems because g-means metric combines both the
sensitivity and specificity by taking their geometric mean.
Based on sensitivity and specificity, the g-means metric in
Kubat and Matwin (1997) is calculated to evaluate these
five algorithms on the imbalanced data sets. It is defined as
follows:

g= \/ sensitivity * specificity. (12)

The g-means metric value of the five algorithms on the UCI
imbalanced data sets are shown in Table 8. From this table,
it can be found that proposed AdaBoostSVM performs
best among the five algorithms in general. It achieves the
highest g-means metric value in four out of the five data
sets and also obtain the highest average g-means metric
value among them. The success of the proposed algorithm
lies in its Boosting mechanism forcing part of RBFSVM
component classifiers to focus on the misclassified instances
in the minority class, which can prevent the minority class
from being wrongly recognized as a noise of the majority
class and classified into it. Hence, the AdaBoostSVM
achieves better generalization performance on the imbal-
anced data sets. Note that the g-means metric value of
SVM on “Car3” data set is 0. This is because SVM predict
all the instances into the majority class.

Furthermore, the Receiver Operating Characteristic
(ROC) analysis has been done. We use the Area Under
the ROC curve (AUC) (Bradley, 1997) to compare these
five algorithms on these imbalanced data sets. The AUC is
defined as the area under an ROC curve. It is known that
larger AUC values indicate generally better classifier
performance (Hand, 1997). The AUC values listed in

Table 9

AUS results on the five UCI imbalanced data sets

Data set SVM  SVM-DPC US SMOTE  AdaBoostSVM
Segmentl 0.998 0.982 0.978  0.985 0.991

Glass7 0.943  0.956 0.938  0.941 0.963
Soybeanl2  0.960  0.998 0.955  0.989 1.000

Car3 0.631  0.762 0.962  0.984 0.997

Letter26 0.933  0.978 0.950 0.964 0.985

Average 0.893  0.935 0.957 0972 0.987

Table 9 illustrate that AdaBoostSV M achieves the highest
average AUC values in all the five data sets. Statistically,
the higher AUC values obtained by AdaBoostSV M means
that AdaBoostSVM would favor classifying a positive
(target) instance with a higher probability than other
algorithms and so it can better handle the imbalanced
problems.

6. Conclusions

AdaBoost with properly designed SVM-based compo-
nent classifiers is proposed in this paper, which is achieved
by adaptively adjusting the kernel parameter to get a set of
effective RBFSVM component classifiers. Experimental
results on benchmark data sets demonstrate that proposed
AdaBoostSVM performs better than other approaches of
using component classifiers such as Decision Trees and
Neural Networks. Besides these, it is found that Ada-
BoostSVM demonstrates good performance on imbalanced
classification problems. An improved version is further
developed to deal with the accuracy/diversity dilemma in
Boosting algorithms, giving rising to better generalization
performance.
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