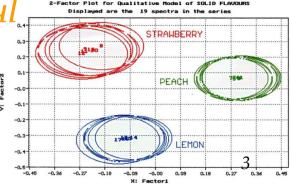

CS425/CS528, Fall 2012 11:10 AM – 12:25 PM MK 525

Machine Learning

What is Learning? and Why Learn ?

- Machine learning is programming computers to optimize a performance criterion using example data or past experience.
- Learning is used when:
 - □ Human expertise does not exist (navigating on Mars),
 - □ Humans are unable to explain their expertise (speech recognition)
 - Solution changes in time (routing on a computer network)
 - □ Solution needs to be adapted to particular cases (user biometrics)
- But, not always appropriate
 - □ For example, there is no need to "learn" to calculate payroll

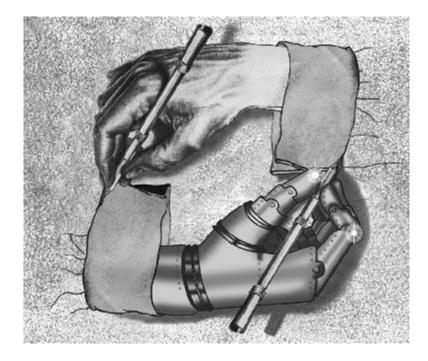


What We Talk About When We Talk About "Learning"

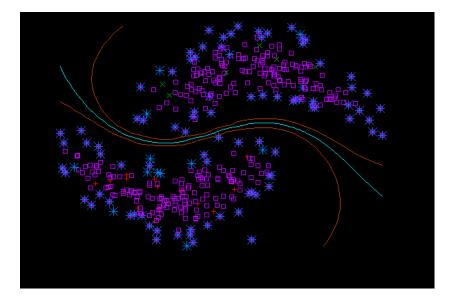
- Learning general models from data of particular examples
- Data is cheap and abundant (data warehouses, data marts); knowledge is expensive and scarce.
- Example in retail: Customer transactions to consumer behavior:

People who bought "Da Vinci Code" also bought "The Five People You Meet in Heaven" (www.amazon.com)

Build a model that is a good and useful approximation to the data.


Data Mining: Application of Machine Learning to Large Databases (also called "Knowledge Discovery in Databases (KDD)")

- Retail: Market basket analysis, Customer relationship management (CRM)
- Finance: Credit scoring, fraud detection
- Manufacturing: Optimization, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Quality of service optimization
- Bioinformatics: Motifs, alignment
- Web mining: Search engines


Relevant Disciplines for Machine Learning

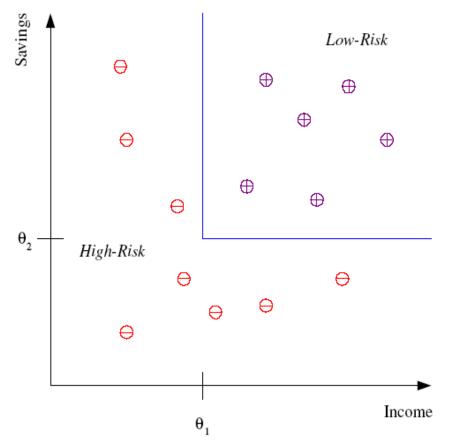
- Artificial Intelligence
- Bayesian methods
- Computational complexity theory
- Control theory
- Information theory
- Statistics
- Philosophy
- Psychology

Some Types of Machine Learning

- Learning Associations: Find relationships in the data
- Supervised Learning: We want to learn a mapping from the input to the output; correct values are provided by supervisor
 - □ Classification
 - □ Regression
- Unsupervised Learning: We have only input data; we want to find regularities in the data.
- Reinforcement Learning: Learn a policy that maps states to actions.

Learning Associations

Example: Shopping basket analysis P(Y|X) probability that somebody who buys *X* also buys *Y* where *X* and *Y* are products/services.


We learn *Association Rule*: *P* (chips | soda) =

Use this Association Rule like this:
 Target customers who bought *X*, but not *Y* Try to convince them to buy *Y*

Classification (*a type of supervised learning*)

- Example: Credit scoring
- Differentiating between low-risk and high-risk customers from their *income* and savings

Discriminant: IF *income* > θ_1 AND *savings* > θ_2 THEN low-risk ELSE high-risk

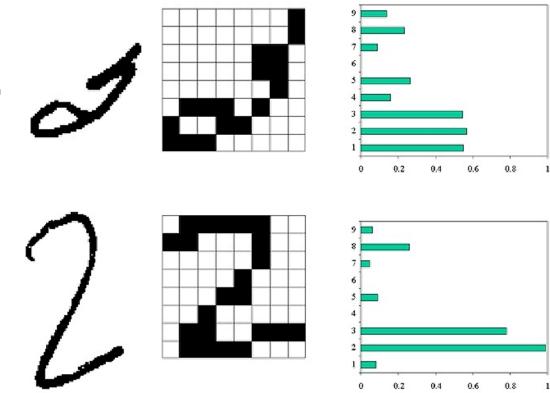
 Main application: prediction

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

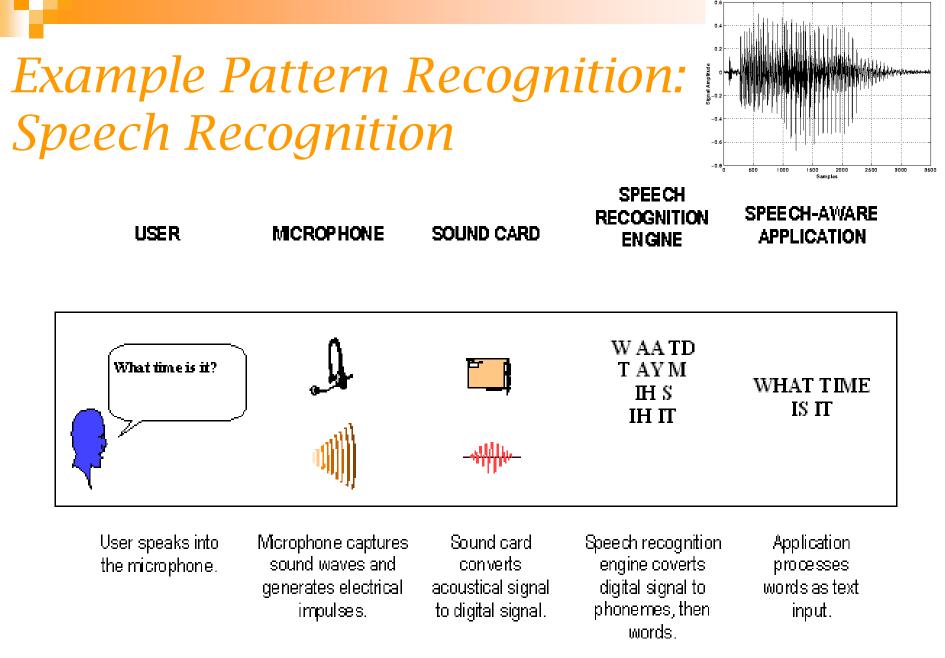
Example Pattern Recognition: Face Recognition

Training examples of a person

Test images



AT&T Laboratories, Cambridge UK http://www.uk.research.att.com/facedatabase.html


- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

Example Pattern Recognition: Character Recognition

Want to learn how to recognize characters, even if written in different ways by different people

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

last Name #

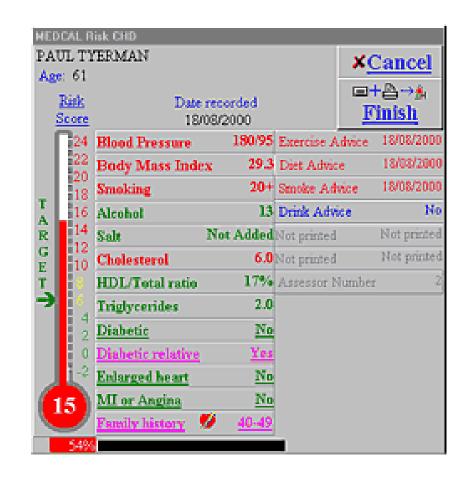
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

Example Pattern Recognition: Gesture Recognition

Backward

Forward

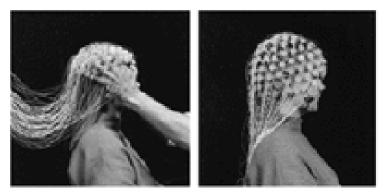
Home

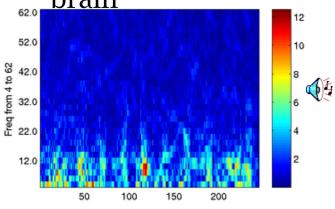

Left

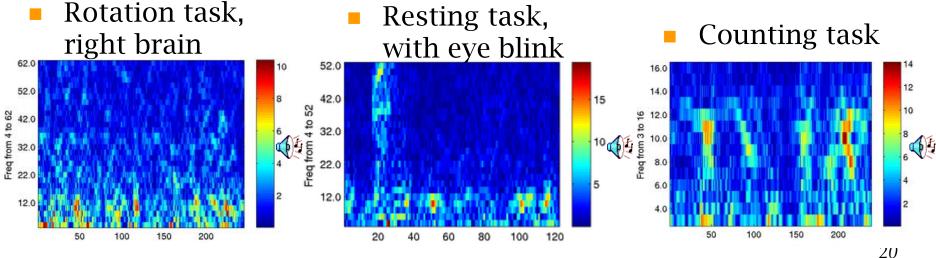
- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

Example Pattern Recognition: Medical Diagnosis

Inputs: relevant info about patient, symptoms, test results, etc.


Output: Expected illness or risk factors


- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
- Reading text:

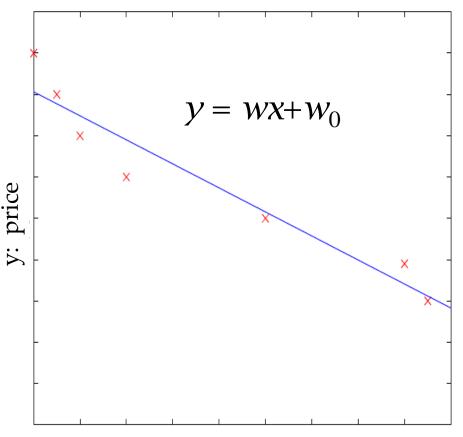

Example Pattern Recognition: Interpreting Brainwaves

EEG electrodes reading brain waves:

 Rotation task, left brain

- Face recognition: Pose, lighting, occlusion (glasses, beard), make-up, hair style
- Character recognition: Different handwriting styles.
- Speech recognition: Temporal dependency.
 - □ Use of a dictionary or the syntax of the language.
 - Sensor fusion: Combine multiple modalities; eg, visual (lip image) and acoustic for speech
- Gesture recognition: Different hand shapes.
- Medical diagnosis: From symptoms to illnesses.
- Brainwave understanding: From signals to "states" of thought
 - Reading text:

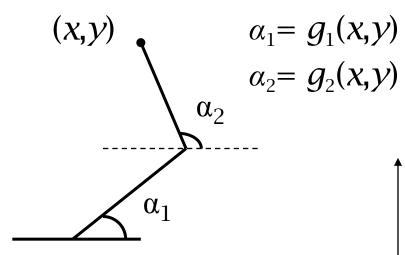
Example Pattern Recognition: Reading text


- Can you read this?
 - Aircndcog to a rseerhcaer at Cbiardmge Urensvitiy, it dsoen't mtetar in waht oderr the letrtes in a wrod are, the olny ipnaotmrt tihng is taht the fsrit and lsat lteter be at the rgiht plcae. The rset can be a toatl mses and you can slitl raed it wutohit porlebm. Tehy spectluae taht tihs is bseuace the hmaun mnid deos not raed erevy leettr by iesltf but the wrod as a whloe. Wtehehr tihs is ture or not is a ponit of deabte.
- Clearly, the brain has learned syntax and semantics of language, including contextual dependencies, to make sense of this ⁽²⁾
- For fun: Here's a web page where you can create your own jumbled text: <u>http://www.stevesachs.com/jumbler.cgi</u>

Regression (another type of supervised learning)

- Example:
 - Predict price of a used car
- (Input) x : car attributes (e.g., mileage)
 (Output) y : price
- Our task: learn the mapping from input to output
 - \square We know basic g () model
 - We want to learn appropriate values for *θ* parameters that minimize the error in the approximation:

$$y = g\left(x \mid \theta\right)$$


Here, a linear regression function:

x: mileage

Example Regression Applications

- Navigating a car: Angle of the steering wheel (CMU NavLab)
- Kinematics of a robot arm

 Response surface design (using function optimization)

Supervised Learning: Handy Uses

- Prediction of future cases: Use the rule to predict the output for future inputs
- Knowledge extraction: We can deduce an explanation about the process underlying the data
- Compression: The rule is simpler than the data it explains
- Outlier detection: We can find instances that do not obey the rule, and are thus exceptions (e.g., to detect fraud)

Unsupervised Learning

- Learning "what normally happens"
- No output available (i.e., we don't know the "right" answer)
- Clustering (density estimation): Grouping similar instances
- Example applications:
 - Customer segmentation in CRM (Customer Relationship Management)
 - Company may have different marketing approaches for different groupings of customers

□ Image compression: Color quantization

- Instead of using 24 bits to represent 16 million colors, reduce to 6 bits and 64 colors, if the image only uses those 64 colors.
- Bioinformatics: Learning motifs (i.e., sequences of amino acids that occur repeatedly in proteins)

Reinforcement Learning

- Learning a policy: A sequence of actions to take, given the current state
- No supervised output, but delayed reward is provided
- Credit assignment problem
- Game playing
- Robot in a maze
- Multiple agents, partial observability, ...

Where is Machine Learning Headed?

Today: tip of the iceberg

- First-generation algorithms: neural networks, decision trees, regression...
- □ Applied to well-formatted databases
- Budding industry
- Opportunity for tomorrow: enormous impact
 - □ Learn across full mixed-media data
 - Learn across multiple internal databases, plus the web and newsfeeds
 - □ Learn by active experimentation
 - Learn decisions rather than predictions
 - □ Cumulative, lifelong learning
 - □ Programming languages with learning embedded?

Resources: Journals

- Journal of Machine Learning Research
- Machine Learning
- Neural Computation
- Neural Networks
- *IEEE Transactions on Neural Networks*
- IEEE Transactions on Pattern Analysis and Machine Intelligence
- Annals of Statistics
- *Journal of the American Statistical Association*

Resources: Conferences

- International Conference on Machine Learning (ICML)
- European Conference on Machine Learning (ECML) and European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
- Neural Information Processing Systems (NIPS)
- Uncertainty in Artificial Intelligence (UAI)
- Computational Learning Theory (COLT)
- International Joint Conference on Artificial Intelligence (IJCAI)
- International Conference on Neural Networks (Europe)

Our First Learning Study: Neural Networks

But first, we'll look at some general issues in designing a machine learning system

For next time, read chapter 1 of Mitchell text