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ntetest in the study of neural networks has grown remarkably in the last several years. This 

effort has been characterized in a variety of ways: as the study of brain-style computation, 

connectionist architectures, parallel distributed-processing systems, neuromorphic computation, 

artificial neural systems. The common theme to these efforts has been an interest in looking at 

the brain as a model of a pat&l computational device very different from that of a traditional 

serial computer. 

The strategy has been to develop 
simplified mathematical models of 
brain-like systems and then to study 
these models to understand how vari- 
ous computational problems can be 
solved by such devices. The work has 
attracted scientists from a number of 
disciplines: neuroscientists who are 

interested in making models of the 
neural circuitry found in specific 
areas of the brains of various animals; 
physicists who see analogies between 
the dynamical behavior of brain-like 
systems and the kinds of nonlinear 
dynamical systems familiar in physics; 
computer engineers who are inter- 
ested in fabricating brain-like com- 
puters; workers in artificial intelli- 

gence (AI) who are interested in 
building machines with the intelli- 
gence of biological organisms; engi- 
neers interested in solving practical 
problems; psychologists who are in- 
terested in the mechanisms of human 
information processing; mathemati- 
cians who are interested in the math- 
ematics of such neural network sys- 
tems; philosophers who are 
interested in how such systems 

change our view of the nature ‘of 

mind and its relationship to brain; 
and many others. The wealth of tal- 
ent and the breadth df interest have 
made the area a magnet for bright 
young students. 

Although the details ofthe propos- 
als vary, the most common models 
take the neuron as the basic process- 
ing unit. Each such processing unit is 

characterized by an activity level (rep- 
resenting the state of polarization of a 
neuron), an output value (represent- 
ing the firing rate of the neuron), a 
set of input connections, (represent- 
ing synapses on the cell and its den- 
drite), a bias value (representing an 
internal resting level of the neuron), 
and a set of output connections (rep- 
resenting a neuron’s axonal projec- 

tions). Each of these aspects of the 
unit are represented mathematically 
by real numbers. Thus, each connec- 
tion has an associated weight (synap- 
tic strength) which determines the 
effect of the incoming input on the 
activation level of the unit. The 
weights may be positive (excitatory) 
or negative (inhibitory). Frequently, 

the input lines are assumed to sum 
linearly yielding an activation value 

for unit i at time t, given by 

J 

where wq is the strength of the con- 
nection from uni$ to unit,, pi is the 
unit’s bias value; and x, is the output 
value of unitj. 

Note that the effect of a particular 
unit’s output on the activity of an- 
other unit is jointly determined by its 
output level and the strength (and 
sign) of its connection to that unit. If 

the sign is negative, it lowers the acti- 
vation; if the sign is positive it raises 
the activation. The magnitude of the 
output and the strength of the con- 
nection determine the amount of the 
effect. The output of such a unit is 
normally a nonlinear function of its 
activation value. A typical choice of 
such a function is the sigmoid. The 
logistic, 

Yift) = 
l+e+2 

illustrated in Figure 1, will be em- 
ployed in the examples illustrated 












