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I. PURPOSE OFARTIFICIAL NEURAL NETWORKS

An artificial neural network(ANN) (or, more simply,neural networkor neural net) provides a general, practical method
for learning real-valued, discrete-valued, and vector-valued functions from examples. Neural network learning is a type of
supervisedlearning, meaning that we provide the network with example inputs and the correct answer for that input. Neural
networks are commonly used forclassificationproblems andregressionproblems. Inclassificationproblems, the objective is
to determine which class (out of several possibilities) that an input belongs to. For example, say we want to have a network
learn to distinguish pictures of cats from pictures of dogs.So, we would provide the network with a series of pictures, and
for each picture, we would tell the network whether the picture is of a cat or a dog. Inregressionproblems, the objective
is to learn a real-valued target function. An example would be to learn the relationship between economy metrics (such as
GDP, unemployment rate, inflation rate, average personal savings, etc.) and the stock market performance. The type of problem
you’re trying to solve (i.e., whether you’re solving a regression problem or a classification problem) will determine exactly
how you structure your network. More on this later.

II. N ETWORK STRUCTURE

A neural network consists of layers of interconnected “artificial neurons”, as shown in Figure 1. A “neuron” in a neural
network is sometimes called a “node” or “unit”; all these terms mean the same thing, and are interchangeable.

A multilayer feedforward neural network consists of a layerof input units, one or more layers of hidden units, and one output
layer of units. A neural network that has no hidden units is called a Perceptron. However, a perceptron can only represent
linear functions, so it isn’t powerful enough for the kinds of applications we want to solve. On the other hand, a multilayer
feedforward neural network can represent a very broad set ofnonlinear functions1. So, it is very useful in practice.

The most common network structure we will deal with is a network with one layer of hidden units, so for the rest of these
notes, we’ll make the assumption that we have exactly one layer of hidden units in addition to one layer of input units and
one layer of output units. This structure is calledmultilayerbecause it has a layer of processing units (i.e., the hidden units) in
addition to the output units. These networks are calledfeedforwardbecause the output from one layer of neurons feeds forward
into the next layer of neurons. There are never any backward connections, and connections never skip a layer. Typically,the
layers arefully connected, meaning that all units at one layer are connected with all units at the next layer. So, this means that
all input units are connected to all the units in the layer of hidden units, and all the units in the hidden layer are connected to
all the output units.

Usually, determining the number of input units and output units is clear from your application. However, determining the
number of hidden units is a bit of an art form, and requires experimentation to determine the best number of hidden units. Too
few hidden units will prevent the network from being able to learn the required function, because it will have too few degrees
of freedom. Too many hidden units may cause the network to tend to overfit the training data, thus reducing generalization
accuracy. In many applications, some minimum number of hidden units is needed to learn the target function accurately,
but extra hidden units above this number do not significantlyaffect the generalization accuracy, as long as cross validation
techniques are used (described later). Too many hidden units can also significantly increase the training time.

Each connection between nodes has aweightassociated with it. In addition, there is a special weight (calledw0) that feeds
into every node at the hidden layer and a special weight (calledz0) that feeds into every node at the output layer. These weights

1Research is ongoing to determine exactly which functions are learnable by ANNs; for our purposes, we just need to know that multilayer feedforward
neural networks can express most nonlinear functions that we care about.



Fig. 1. Typical structure of a multilayer feedfoward artificial neural network. Here, there is one layer of input nodes (shown in the bottom row), one layer
of hidden nodes (i.e., the middle row), and one layer of output nodes (at the top). The number of nodes per layer is application-dependent.

are called thebias, and set the thresholding values for the nodes. We’ll come back to this later. Initially, all of the weights are
set to some small random values near zero. The training of ournetwork will adjust these weights (using the Backpropagation
algorithm that we’ll describe later) so that the output generated by the network matches the correct output.

III. PROCESSING AT A NODE

Every node in the hidden layer and in the output layer processes its weighted input to produce an output. This can be done
slightly differently at the hidden layer, compared to the output layer. Here’s how it works.

A. Input units

The input data you provide your network comes through the input units. No processing takes place in an input unit – it
simply feeds data into the system. For example, if you are inputting a grayscale image (e.g., a grayscale picture of your pet
Fido) to your network, your picture will be divided into pixels (say, 120 x 128 pixels), each of which is represented by a
number (typically in the range from 0 to 255) that says what the grayscale value is for that piece of the image. One pixel (i.e.,
a number from 0 to 255) will be fed into each input unit. So, if you have an image of 120 x 128 pixels, you’ll have 15360
input units2.

The value coming out of an input unit is labeledxj , for j going from 1 tod, representingd input units. There is also a
special input unit labeledx0, which always has the value of 1. This is used to provide the bias to the hidden nodes. (More on
this soon.)

B. Hidden units

The connections coming out of an input unit have weights associated with them. A weight going to hidden unitzh from
input unit xj would be labeledwhj . The bias input node,x0, is connected to all the hidden units, with weightswh0. In the
training, these bias weights,wh0, are treated like all other weights, and are updated according to the backpropagation algorithm
we’ll discuss later. Remember, the value coming out ofx0 is always 1.

Each hidden node calculates the weighted sum of its inputs and applies a thresholding function to determine the output of
the hidden node. The weighted sum of the inputs for hidden node zh is calculated as:

d
∑

j=0

whjxj (1)

2Often, you’ll preprocess your input to reduce the number of input units in your network. So, in this case, you might average several pixels to reduce the
resolution down to, say, 30 x 32, which is just 96 input units.
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The thresholding function applied at the hidden node is typically either a step function or a sigmoid function. For our
purposes, we’ll stick with the sigmoid function. The general form of the sigmoid function is:

sigmoid(a) =
1

1 + e−a
(2)

The sigmoid function is sometimes called the “squashing” function, because it squashes its input (i.e.,a) to a value between
0 and 1. At the hidden node, we apply the sigmoid function to the weighted sum of the inputs to the hidden node, so we get
the output of hidden nodezh is:

zh = sigmoid





d
∑

j=0

whjxj



 =
1

1 + e
−

∑

d

j=0
whjxj

(3)

for h going from 1 toH , whereH is the total number of hidden nodes.

C. Output units

Now, we can do a similar computation for the output nodes. Thedifference is that the exact way we compute our output
depends on the type of problem we’re solving – either a regression problem or a classification problem. And, the calculation
also depends on whether we have 1 output unit or multiple output units.

We start out the same as we did with the hidden units, calculating the weighted sum. We label the weights going into output
unit i from hidden unith asvih. Just like the input layer, we also have a bias at the hidden layer. So, each output unit has a
bias input from hidden unitz0, where the input fromz0 is always 1 and the weights associated with that input are trained just
like all the other weights.

So, output uniti computes the weighted sum of its inputs as:

oi =

H
∑

h=0

vihzh (4)

If there is just one output unit, then we omit thei subscripts, and we have:

o =

H
∑

h=0

vhzh (5)

Now, we have to decide what function we’re going to apply to this weighted sum to generateyi, which is the output of unit
i. We’ll look at four cases:

1) Regression with a single output.This is the problem of learning a function, where the single output corresponds to
the value of the function for the given input. Here, because we are learning a function, we do not want our output to
be “squashed” to be between 0 and 1 (which is what the sigmoid function does). Instead, we just want the regular,
unthresholded output. So, in this case, we calculate the output unit value ofy as simply the weighted sum of its inputs:

y = o =

H
∑

h=0

vhzh (6)

Note here that we call thisy instead ofyi because we only have 1 output unit.
2) Regression with multiple (i.e.,K) outputs. This is the regression problem applied to several functionsat once; that is,

we learn to approximate several functions at once, and each output corresponds to the output of one of those functions.
Similar to the previous case, we don’t want to squash the output. However, here, we have multiple output nodes. So, we
calculate the output value of unityi as:

yi = oi =

H
∑

h=0

vihzh (7)

3) Classification for 2 classes. This is the problem of discriminating between two classes. Since one node can output
either a 0 or a 1, we can have one class correspond to a 0 output,and the other class correspond to an output of 1. Here,
we do want our output to be squashed between 0 and 1. So, we apply the sigmoid function at our output unit,y, to get
the following output:

y = sigmoid(o) = sigmoid

(

H
∑

h=0

vhzh

)

=
1

1 + e
−

∑

H

h=0
vhzh

(8)

4) Classification forK > 2 classes.Here, we typically haveK output nodes, forK classes. We usually have one ouput node
per class, instead of havinglog2(K) output nodes for a couple of reasons. First, our network willhave a more expressive
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space to find a function when we have more weights to learn. Second, with this structure, we can get information on the
second choice of the network (e.g., if the first output node gives value of 0.9 and a second node gives a value of 0.8,
we know that the network doesn’t have strong “confidence” that the first class is the correct class, since 0.9 and 0.8 are
both high values. We would know the network had high confidence if only one of the outputs were close to 1, and the
rest were close to 0.)
In this case, we do want our output values to be between 0 and 1,so we could apply the sigmoid function at each of
the output nodes. However, we still have one more step to generate the ultimate answer of the network, which is to
determine which of the output nodes has the largest value. Whichever node generates the largest value tells us which
class the network believes the input belongs to. We could do this by applying the max function to the outputs. However,
a nicer way of doing this is to apply the “softmax” function tothe weighted sum. The softmax function has the effect
of making the maximum value of the outputs to be close to 1 and the rest to be close to 0. An added bonus is that it is
differentiable, which is nice for some theoretical proofs (but which we’ll skip!). So, we’ll calculate the output of node
yi as:

yi = softmax(oi) =
eoi

∑K

i=1 e
oi

=
e

∑

H

h=0
vihzh

∑K

i=1 e

∑

H

h=0
vihzh

(9)

Note that calculating the softmax function is a 2-step process – you first have to calculate theoi values of each output
node, and then you apply the softmax function to each output node.

IV. T RAINING THE NETWORK

Training your neural network to produce the correct outputsfor the given inputs is an iterative process, in which you
repeatedly present the network with an example, compare theoutput on this example (sometimes called theactual output)
with the desired output (sometimes called thetarget output), and adjust the weights in the network to (hopefully) generate
better output the next time (i.e., output that is closer to the correct answer). By training the network over and over withvarious
examples, and using the Backpropagation algorithm (which we’ll talk about in a minute) to adjust the weights, the network
should learn to produce the correct answer. Ideally, the “correct answer” is not just the right answer for the data that you train
your network on, but also for generalizations of that data. (For example, if you train your network on pictures of all the cats
in your neighborhood, you still want it to recognize Morris (the 9 Lives cat, remember?) as a cat, not a dog. Hmmm ... I’m
assuming Morris doesn’t live in your neighborhood.)

You train your network using a data set of examples (calledtraining data). For each example, you know the correct answer,
and you tell the network this correct answer. We will call theprocess of running 1 example through your network (and training
your network on that 1 example) aweight update iteration. Training your network once on each example of your trainingset
is called anepoch. Typically, you have to train your network for many epochs before it converges, meaning that the network
has settled in on a function that it thinks is the best predictor of your input data. More about convergence later.

A. Backpropagation Algorithm

The algorithm we’ll use to train the network is the Backpropagation Algorithm. The general idea with the backpropagation
algorithm is to use gradient descent to update the weights soas to minimize the squared error between the network output
values and the target output values. The update rules are derived by taking the partial derivative of the error function with
respect to the weights to determine each weight’s contribution to the error. Then, each weight is adjusted, using gradient
descent, according to its contribution to the error. We won’t go into the actual derivations here – you can find that in yourtext
and in other sources. This process occurs iteratively for each layer of the network, starting with the last set of weights, and
working back towards the input layer (hence the namebackpropagation).

1) Offline versus Online Learning:Before we get to the details of the algorithm, though, we needto make clear a distinction
between “offline” and “online” learning. “Offline” learning, in the context of this discussion, occurs when you compute the
weight updates after summing overall of the training examples. “Online” learning is when you update the weights after
each training example. The theoretical difference between the two approaches is that offline learning implements what is
called Gradient Descent, whereas online learning implementsStochastic Gradient Descent(also calledIncremental Gradient
Descent).

The general approach for the weight updates is the same, whether online or offline learning is used. The only difference is
that offline learning will sum the error over all inputs, while the online learning will compute the error for each input (one at
a time).

2) Online Weight Updates:As with the output calculation, the weight update calculation depends on the type of problem
we’re trying to solve. Remember, we’re looking at 4 cases, and we’re calculating the weight updates given a single instance
(xt, rt), wherext is the input,rt is the target output, andyt is the actual output of the network. Here, thet superscript just
means the current example that the network is training on. Inthese weight updates, we also use a positive constantlearning
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rate, η, that moderates the degree to which weights are changed at each step. It is usually set to some small value (e.g., 0.1),
and is sometimes made to decay as the number of weight-tuningiterations increases.

Here are the 4 situations:
1) Regression with a single output.The weight updates for this case are:

∆vh = η(rt − yt)zth (10)

∆whj = η(rt − yt)vhz
t
h(1− zth)x

t
j (11)

2) Regression with multiple (i.e.,K) outputs. The weight updates for this case are:

∆vih = η(rti − yti)z
t
h (12)

∆whj = η

(

K
∑

i=1

(rti − yti)vih

)

zth(1 − zth)x
t
j (13)

3) Classification for 2 classes.The weight updates for this case are:

∆vh = η(rt − yt)zth (14)

∆whj = η(rt − yt)vhz
t
h(1− zth)x

t
j (15)

4) Classification for K > 2 classes.The weight updates for this case are:

∆vih = η(rti − yti)z
t
h (16)

∆whj = η

(

K
∑

i=1

(rti − yti)vih

)

zth(1 − zth)x
t
j (17)

3) The Algorithm: Let’s pick the classification problem forK > 2 cases as our example; then the algorithm for online
backpropagation for this problem is given as Algorithm 1. This equation implements equation 9 for the output calculation,
and equations 16 and 17 for the weight updates. You can changethis algorithm to handle the other types of problems (i.e.,
regression or classification with 2 classes) by replacing the algorithm’s output calculations on lines 1.8 - 1.12 with one of the
equations 6, 7, or 8, as well as the weight updates, replacingthe weight updates on lines 1.15 and 1.20 with the appropriate
equations from subsection IV-A2.

B. Calculating the Error

Determining how well your network is approximating the desired output requires that you measure the error of the network.
Many error functions are possible, but the most common errorfunction used is the sum of squared errors. We can measure
this error for one output unit for one training example(xt, rt) as:

E(W,v|xt, rt) =
1

2
(rt − yt)2 (18)

This equation says, “the error for a set of weights W and v, given a particular example(xt, rt) is one-half the sum of the
squared difference between the desired output and the actual output.”

When we have multiple output units, we simply sum the error over all the output units, as follows (again, for just 1 training
example):

E(W,v|xt, rt) =
1

2

K
∑

i=1

(rti − yti)
2 (19)

If we want to calculate the error for one output node (say, output yi) for 1 complete epoch (i.e., for one pass of all the
training examples, we simply sum the error for that output unit over all training examples, as follows:

E(W,v|X ) =
1

2

∑

(xt,rt)∈X

(rti − yti)
2 (20)

If we want to calculate the error for the entire network for 1 complete epoch (i.e., for one pass of all the training examples),
we simply sum the error over all output units over all training examples, as follows:

E(W,v|X ) =
1

2

∑

(xt,rt)∈X

(

K
∑

i=1

(rti − yti)
2

)

(21)

When you are calculating the error during validation, you would use the above equation 21 for determining the error for
the network for all of the validation set.
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Initialize all vih andwhj to rand(-0.01,0.01);1.1

repeat1.2

for all (xt, rt) ∈ X in random orderdo1.3

for h = 1 to H do1.4

zh = sigmoid
(

∑d

j=0 whjx
t
j

)

;1.5

end1.6

total = 0;1.7

for i = 1 to K do1.8

oi =
∑H

h=0 vihzh);1.9

total = total + eoi ;1.10

end1.11

for i = 1 to K do1.12

yi =
eoi

total
;1.13

end1.14

for i = 1 to K do1.15

for h = 0 to H do1.16

∆vih = η(rti − yti)zh;1.17

end1.18

end1.19

for h = 1 to H do1.20

for j = 0 to d do1.21

∆whj = η
(

∑K

i=1 (r
t
i − yti)vih

)

zh(1− zh)x
t
j ;1.22

end1.23

end1.24

for i = 1 to K do1.25

for h = 0 to H do1.26

vih = vih +∆vih ;1.27

end1.28

end1.29

for h = 1 to H do1.30

for j = 0 to d do1.31

whj = whj +∆whj ;1.32

end1.33

end1.34

end1.35

until converged;1.36

Algorithm 1 : Online Backpropagation Algorithm for the classification problem ofK > 2 cases.

C. Determining Convergence

The best way to determine whether your network has reached the best set of weights for your training data is to validate
the results using a validation set of data. This is a separatedata set that you do not use during training. Instead, you usethe
validation data to detect when your network is beginning tooverfit to the training data. Remember, you want your network to
generalize its inputs, so that it can correctly answer regression or classification queries not only for your training data, but also
for other examples. If you train your network too long, it will overfit to the training data, which means that it will correctly
answer only examples that are in your training data set.

So, to help ensure that your network does not overfit, you can use across validationprocedure. This involves training your
network for a while (i.e., several epochs), and then presenting your network with the validation data. Again, the validation
data is a set of data that your network has never seen before. You keep track of the error of your network as it is presented
with the validation data using equation 21, but you DO NOT update the network weights during this procedure.

You repeat the process of training and validating, keeping track of the errors in both cases, and you declare convergencewhen
your validation error is consistently growing. As you go, you need to save the weights of your network when the validation
error is decreasing. This way, once the validation errors begin going up, you’ll have the weights to go back to that give you
the best performance. Keep in mind that it is possible for thevalidation error to grow for a while, but then begin decreasing
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again (before perhaps going up again). So, you have to analyze the trend of your validation error to convince yourself that it
is consistently growing before you halt the training of yournetwork. Once you’ve declared convergence, you use your saved
weights (i.e., from when the validation error was the lowest) for your final network.

If you have enough data, one easy way to handle the validationis to divide your dataset into 3 parts. The first part is used
for training, the second part is used for validation, and thethird part is used at the very end to see how well your network
has truly learned, on examples it has never seen before. However, there are other ways of validating your network, too, such
as k−fold cross validation. This approach is especially good when you have a small data set. In this approach, you divide
your data set intok pieces, and save one of these pieces for validation while youtrain on the otherk − 1 pieces. You keep
track of how many iterations it takes to converge. Then, you repeat this process for allk pieces (selecting a different piece
for validation each time), keeping track of the number of iterations to convergence each time. After allk training stages are
complete, you compute the average number of iterations to converge over thek stages, which we’ll calli. Finally, you train
one last time on all the data fori iterations, and this is your final network.

D. Momentum

Gradient descent is generally a slow process, taking a long time to converge. One easy way to speed the learning process is
to usemomentum. Momentum takes into account the previous weight update when making a current weight update. So, you
must save the updates made for each weight for 1 time step. Then, on the next iteration of weight updates, you make use of
this previous update information. Recall that our old weight updates were as follows:

vih = vih +∆vih

whj = whj +∆whj

So, to add momentum, your new weight update equations become:

vtih = vtih +∆vtih + α∆vt−1
ih (22)

wt
hj = wt

hj +∆wt
hj + α∆wt−1

hj (23)

Here, the superscriptt refers to the current training example andt − 1 refers to the previous training example. So, with
momentum, you just addα times the previous update when adjusting your weights. Here, α is a constant calledmomentum,
with 0 ≤ α < 1.
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