Notes on Multilayer, Feedforward Neural Networks

CS425/528: Machine Learning
Fall 2012

Prepared by: Lynne E. Parker

[Material in these notes was gleaned from various sourceljding E. Alpaydin’s bookntroduction to Machine Learning
MIT Press, 2004; and T. Mitchell's bodWachine LearningMcGraw Hill, 1997.]

|. PURPOSE OFARTIFICIAL NEURAL NETWORKS

An artificial neural network(ANN) (or, more simply,neural networkor neural ne} provides a general, practical method
for learning real-valued, discrete-valued, and vectdue@ functions from examples. Neural network learning is/pet of
supervisedearning, meaning that we provide the network with exampputs and the correct answer for that input. Neural
networks are commonly used fofassificationproblems andegressionproblems. Inclassificationproblems, the objective is
to determine which class (out of several possibilities)} #irainput belongs to. For example, say we want to have a nktwor
learn to distinguish pictures of cats from pictures of ddgs, we would provide the network with a series of pictures an
for each picture, we would tell the network whether the pietis of a cat or a dog. Imegressionproblems, the objective
is to learn a real-valued target function. An example woudtd learn the relationship between economy metrics (such as
GDP, unemployment rate, inflation rate, average personaigs, etc.) and the stock market performance. The typeaflpm
you're trying to solve (i.e., whether you're solving a reggidn problem or a classification problem) will determinetk/
how you structure your network. More on this later.

II. NETWORK STRUCTURE

A neural network consists of layers of interconnected fiaiéil neurons”, as shown in Figure 1. A “neuron” in a neural
network is sometimes called a “node” or “unit”; all thesentermean the same thing, and are interchangeable.

A multilayer feedforward neural network consists of a lag€imput units, one or more layers of hidden units, and ong@uwiut
layer of units. A neural network that has no hidden units ikedaa Perceptron However, a perceptron can only represent
linear functions, so it isn't powerful enough for the kindsapplications we want to solve. On the other hand, a mukitay
feedforward neural network can represent a very broad sebwlinear functions So, it is very useful in practice.

The most common network structure we will deal with is a nekweith one layer of hidden units, so for the rest of these
notes, we’ll make the assumption that we have exactly onerlaf hidden units in addition to one layer of input units and
one layer of output units. This structure is calladltilayer because it has a layer of processing units (i.e., the hiddés)un
addition to the output units. These networks are cdiediforwardbecause the output from one layer of neurons feeds forward
into the next layer of neurons. There are never any backwandections, and connections never skip a layer. Typictily,
layers arefully connectegdmeaning that all units at one layer are connected with atswat the next layer. So, this means that
all input units are connected to all the units in the layer idden units, and all the units in the hidden layer are coratketd
all the output units.

Usually, determining the number of input units and outputauis clear from your application. However, determining th
number of hidden units is a bit of an art form, and requireseexpentation to determine the best number of hidden unds. T
few hidden units will prevent the network from being able éarn the required function, because it will have too few degr
of freedom. Too many hidden units may cause the network td teroverfit the training data, thus reducing generalization
accuracy. In many applications, some minimum number of driddnits is needed to learn the target function accurately,
but extra hidden units above this number do not significaaffgct the generalization accuracy, as long as cross vValida
techniques are used (described later). Too many hidder aait also significantly increase the training time.

Each connection between nodes hagseaghtassociated with it. In addition, there is a special weightléd w,) that feeds
into every node at the hidden layer and a special weightg@al) that feeds into every node at the output layer. These weight

1Research is ongoing to determine exactly which functiorslearnable by ANNSs; for our purposes, we just need to know rinaltilayer feedforward
neural networks can express most nonlinear functions tieatave about.

¥

X,=+1 & *a

Fig. 1. Typical structure of a multilayer feedfoward arfdicneural network. Here, there is one layer of input nodésys in the bottom row), one layer
of hidden nodes (i.e., the middle row), and one layer of dutmdes (at the top). The number of nodes per layer is apipiicaiependent.

are called thévias and set the thresholding values for the nodes. We’'ll conok bathis later. Initially, all of the weights are
set to some small random values near zero. The training ohetwork will adjust these weights (using the Backpropagmati
algorithm that we’ll describe later) so that the output gaterd by the network matches the correct output.

IIl. PROCESSING AT A NODE

Every node in the hidden layer and in the output layer praeis weighted input to produce an output. This can be done
slightly differently at the hidden layer, compared to theput layer. Here’'s how it works.

A. Input units

The input data you provide your network comes through theitinmits. No processing takes place in an input unit — it
simply feeds data into the system. For example, if you aretiimg a grayscale image (e.g., a grayscale picture of yetir p
Fido) to your network, your picture will be divided into pige(say, 120 x 128 pixels), each of which is represented by a
number (typically in the range from 0 to 255) that says whatdhayscale value is for that piece of the image. One pixel, (i.

a number from 0 to 255) will be fed into each input unit. So, duyhave an image of 120 x 128 pixels, you'll have 15360
input unitg.

The value coming out of an input unit is labeleg, for j going from 1 tod, representing! input units. There is also a
special input unit labeled,, which always has the value of 1. This is used to provide ths b the hidden nodes. (More on
this soon.)

B. Hidden units

The connections coming out of an input unit have weights @ased with them. A weight going to hidden unit from
input unitz; would be labeledv,;. The bias input nodeyg, is connected to all the hidden units, with weighig,. In the
training, these bias weightsy,q, are treated like all other weights, and are updated aaogtdi the backpropagation algorithm
we'll discuss later. Remember, the value coming out@fis always 1.

Each hidden node calculates the weighted sum of its inpudsapplies a thresholding function to determine the output of
the hidden node. The weighted sum of the inputs for hidderergds calculated as:

d
Z WhjT; (1)
j=0

20ften, you'll preprocess your input to reduce the numbemptit units in your network. So, in this case, you might averagveral pixels to reduce the
resolution down to, say, 30 x 32, which is just 96 input units.

The thresholding function applied at the hidden node iscgify either a step function or a sigmoid function. For our
purposes, we'll stick with the sigmoid function. The gerndoam of the sigmoid function is:
1
14+e@ 2)
The sigmoid function is sometimes called the “squashingicfion, because it squashes its input (i#.fo a value between

0 and 1. At the hidden node, we apply the sigmoid function towleighted sum of the inputs to the hidden node, so we get
the output of hidden node, is:

sigmoida) =

d

zp, = sigmoid thjxj -

1

®3)

for h going from 1 toH, where H is the total number of hidden nodes.

C. Output units

Now, we can do a similar computation for the output nodes. difference is that the exact way we compute our output
depends on the type of problem we're solving — either a regragroblem or a classification problem. And, the calcatati
also depends on whether we have 1 output unit or multipleututpits.

We start out the same as we did with the hidden units, calogléhe weighted sum. We label the weights going into output
unit ¢ from hidden unith asv;;. Just like the input layer, we also have a bias at the hiddger.l&0, each output unit has a
bias input from hidden unity, where the input from, is always 1 and the weights associated with that input aneeigust
like all the other weights.

So, output unit computes the weighted sum of its inputs as:

H
0; = Z Vih Zh (4)
h=0
If there is just one output unit, then we omit theubscripts, and we have:
H
0= Z VhZh (5)
h=0

Now, we have to decide what function we’re going to apply tis theighted sum to generagg, which is the output of unit
7. We'll look at four cases:

1) Regression with a single output.This is the problem of learning a function, where the singlépat corresponds to
the value of the function for the given input. Here, becaugeane learning a function, we do not want our output to
be “squashed” to be between 0 and 1 (which is what the sigmaidtion does). Instead, we just want the regular,
unthresholded output. So, in this case, we calculate theubumit value ofy as simply the weighted sum of its inputs:

H
y=o0= Z VR Zh (6)
h=0
Note here that we call thig instead ofy; because we only have 1 output unit.

2) Regression with multiple (i.e.,K) outputs. This is the regression problem applied to several functainsnce; that is,
we learn to approximate several functions at once, and eatgubcorresponds to the output of one of those functions.
Similar to the previous case, we don’t want to squash theubulbowever, here, we have multiple output nodes. So, we
calculate the output value of unjt as:

H
Yi=0i= Y VinZh Q)
h=0

3) Classification for 2 classes. This is the problem of discriminating between two classésce&one node can output
either a 0 or a 1, we can have one class correspond to a 0 oatylithe other class correspond to an output of 1. Here,
we do want our output to be squashed between 0 and 1. So, we thepsigmoid function at our output unig, to get
the following output:

H
y = sigmoido) = sigmoid (Z vhzh> = 1,, 8
1+e

h=0 Zh:(} UhZh

4) Classification for K > 2 classesHere, we typically have< output nodes, foK classes. We usually have one ouput node
per class, instead of havirigg2 (K') output nodes for a couple of reasons. First, our networkveile a more expressive

3

space to find a function when we have more weights to learror8eavith this structure, we can get information on the
second choice of the network (e.qg., if the first output nodegivalue of 0.9 and a second node gives a value of 0.8,
we know that the network doesn’t have strong “confidencet tha first class is the correct class, since 0.9 and 0.8 are
both high values. We would know the network had high confidehonly one of the outputs were close to 1, and the
rest were close to 0.)
In this case, we do want our output values to be between 0 asd tve could apply the sigmoid function at each of
the output nodes. However, we still have one more step torgan¢he ultimate answer of the network, which is to
determine which of the output nodes has the largest valuechher node generates the largest value tells us which
class the network believes the input belongs to. We couldchidolty applying the max function to the outputs. However,
a nicer way of doing this is to apply the “softmax” functionttte weighted sum. The softmax function has the effect
of making the maximum value of the outputs to be close to 1 Ardést to be close to 0. An added bonus is that it is
differentiable, which is nice for some theoretical prodfsit(which we’ll skip!). So, we'll calculate the output of ned
Y; as:
ft e?i eZhH:[) VinZh
; = softmaxo;) = =
Yi)(z) iKzl €0i Zfil 625:0 VinZh

9)

Note that calculating the softmax function is a 2-step psece you first have to calculate tlag values of each output
node, and then you apply the softmax function to each outpdén

IV. TRAINING THE NETWORK

Training your neural network to produce the correct outdotsthe given inputs is an iterative process, in which you
repeatedly present the network with an example, compareuiygut on this example (sometimes called #wtual outpuy}
with the desired output (sometimes called theget outpu}, and adjust the weights in the network to (hopefully) gater
better output the next time (i.e., output that is closer ®dbrrect answer). By training the network over and over wéhous
examples, and using the Backpropagation algorithm (whiehl walk about in a minute) to adjust the weights, the networ
should learn to produce the correct answer. Ideally, theréod answer” is not just the right answer for the data that train
your network on, but also for generalizations of that dafar (example, if you train your network on pictures of all tretsc
in your neighborhood, you still want it to recognize Morrth€ 9 Lives cat, remember?) as a cat, not a dog. Hmmm ... I'm
assuming Morris doesn't live in your neighborhood.)

You train your network using a data set of examples (callaohing datg. For each example, you know the correct answer,
and you tell the network this correct answer. We will call grecess of running 1 example through your network (anditrgin
your network on that 1 example)weight update iterationTraining your network once on each example of your trairseg
is called anepoch Typically, you have to train your network for many epoch$obe it convergesmeaning that the network
has settled in on a function that it thinks is the best prediof your input data. More about convergence later.

A. Backpropagation Algorithm

The algorithm we’ll use to train the network is the Backprgaigon Algorithm. The general idea with the backpropagatio
algorithm is to use gradient descent to update the weightsssim minimize the squared error between the network output
values and the target output values. The update rules arneeddry taking the partial derivative of the error functiorittw
respect to the weights to determine each weight’s contdbuto the error. Then, each weight is adjusted, using gradie
descent, according to its contribution to the error. We wgp’ into the actual derivations here — you can find that in yext
and in other sources. This process occurs iteratively foh déayer of the network, starting with the last set of weiglatsd
working back towards the input layer (hence the ndraekpropagatioh

1) Offline versus Online Learning3efore we get to the details of the algorithm, though, we neadake clear a distinction
between “offline” and “online” learning. “Offline” learningn the context of this discussion, occurs when you comple t
weight updates after summing ovell of the training examples. “Online” learning is when you uggdéhe weights after
eachtraining example. The theoretical difference between the &pproaches is that offline learning implements what is
called Gradient Descentwhereas online learning implemer$ochastic Gradient Descefulso calledincremental Gradient
Descenkt

The general approach for the weight updates is the samehwhenline or offline learning is used. The only difference is
that offline learning will sum the error over all inputs, withe online learning will compute the error for each inputgat
a time).

2) Online Weight UpdatesAs with the output calculation, the weight update calcolatdepends on the type of problem
we’'re trying to solve. Remember, we're looking at 4 casesl awp're calculating the weight updates given a single insan
(«t,rt), wherez! is the input,rt is the target output, angf is the actual output of the network. Here, theuperscript just
means the current example that the network is training othése weight updates, we also use a positive conktanting

rate, n, that moderates the degree to which weights are changedlatséap. It is usually set to some small value (e.g., 0.1),
and is sometimes made to decay as the number of weight-titeiragions increases.
Here are the 4 situations:

1) Regression with a single output.The weight updates for this case are:

Avy, = (" —y")z, (10)
Awp; = (' =y)onzp (1 — zp)2} (11)
2) Regression with multiple (i.e., K) outputs. The weight updates for this case are:
Avip, = (ri —yi)z, (12)
K
Ay = (z ot y>> A0t @9
i=1
3) Classification for 2 classes.The weight updates for this case are:
Avy, = (" —y")z, (14)
Awnj = (" =y)onz,(1 = 23)7; (15)
4) Classification for K > 2 classesThe weight updates for this case are:
Avi, = (i —y)z, (16)
K
Ay = (z ot y>> A0 st an
i=1

3) The Algorithm: Let's pick the classification problem fak" > 2 cases as our example; then the algorithm for online
backpropagation for this problem is given as Algorithm lisTéquation implements equation 9 for the output calcufatio
and equations 16 and 17 for the weight updates. You can chhimgalgorithm to handle the other types of problems (i.e.,
regression or classification with 2 classes) by replacimgaligorithm’s output calculations on lines 1.8 - 1.12 witte@f the
equations 6, 7, or 8, as well as the weight updates, replabmgveight updates on lines 1.15 and 1.20 with the apprapriat
equations from subsection 1V-A2.

B. Calculating the Error

Determining how well your network is approximating the dedioutput requires that you measure the error of the network
Many error functions are possible, but the most common dtnoction used is the sum of squared errors. We can measure
this error for one output unit for one training examgi€, r*) as:

BWla',) = 507 — y')? (19

This equation says, “the error for a set of weights W and vemia particular examplér?, rt) is one-half the sum of the
squared difference between the desired output and thel aeitput.”
When we have multiple output units, we simply sum the err@rall the output units, as follows (again, for just 1 tragin

example):
K

PN GRS (19)

=1
If we want to calculate the error for one output node (saypouy;) for 1 complete epoch (i.e., for one pass of all the
training examples, we simply sum the error for that output awer all training examples, as follows:

BWMX) =5 3 (o -yl (20)

(zt,rt)ex

EWyv|zt, rt) =

N =

If we want to calculate the error for the entire network fordmplete epoch (i.e., for one pass of all the training exas)ple
we simply sum the error over all output units over all traghigxamples, as follows:

K
E(vv,v|X>=§ > (Z(rﬁ—yb?) (21)

(zt,rt)ex \i=1

When you are calculating the error during validation, youwlisouse the above equation 21 for determining the error for
the network for all of the validation set.

1.1 Initialize all v;;, andwy,; to rand(-0.01,0.01);
1.2 repeat

13 for all (z*,7") € X in random orderdo
1.4 for h=11to H do

15 ‘ 2p = sigmoid(zg.l:O whj:vg»);
1.6 end

1.7 total = 0;

1.8 for i =1to K do

19 0i = Y no Vin2h);

1.10 total = total + €°;

1.11 end

1.12 for i =1to K do

1.13 | Yi = %

1.14 end

1.15 for i=11to K do

1.16 for h=0to H do

1.17 | Avip, = n(rt — y!)zn;

1.18 end

1.19 end

1.20 for h=1to H do

1.21 for j =0tod do

1.22 ‘ Awpj =1 (Zszl (Tf - yf)vih) zp(1 — Zh)xg';
1.23 end

1.24 end

1.25 for i=11to K do

1.26 for h=0to H do

1.27 | Vih = Uin + Avp,

1.28 end

1.29 end

1.30 for h=1to H do

1.31 for j =0tod do

132 | wh; =wnj + Awy; ;

1.33 end

1.34 end

1.35 end

1.36 until converged

Algorithm 1: Online Backpropagation Algorithm for the classificatiorolplem of X > 2 cases.

C. Determining Convergence

The best way to determine whether your network has reachetebt set of weights for your training data is to validate
the results using a validation set of data. This is a sepaaite set that you do not use during training. Instead, youthese
validation data to detect when your network is beginningverfitto the training data. Remember, you want your network to
generalize its inputs, so that it can correctly answer i&gjo@ or classification queries not only for your trainingadéut also
for other examples. If you train your network too long, it Malverfit to the training data, which means that it will cortigc
answer only examples that are in your training data set.

So, to help ensure that your network does not overfit, you canaeross validationprocedure. This involves training your
network for a while (i.e., several epochs), and then prasgntour network with the validation data. Again, the vatida
data is a set of data that your network has never seen befoteké&ep track of the error of your network as it is presented
with the validation data using equation 21, but you DO NOT atpdhe network weights during this procedure.

You repeat the process of training and validating, keepiacktof the errors in both cases, and you declare converyeamnee
your validation error is consistently growing. As you gouyoeed to save the weights of your network when the validation
error is decreasing. This way, once the validation errogirbgoing up, you'll have the weights to go back to that giveiyo
the best performance. Keep in mind that it is possible forvidelation error to grow for a while, but then begin decragsi

again (before perhaps going up again). So, you have to anéigztrend of your validation error to convince yourselfttiha
is consistently growing before you halt the training of yowtwork. Once you've declared convergence, you use yowgdsav
weights (i.e., from when the validation error was the loywést your final network.

If you have enough data, one easy way to handle the valid&itm divide your dataset into 3 parts. The first part is used
for training, the second part is used for validation, andtthied part is used at the very end to see how well your network
has truly learned, on examples it has never seen before. Wowere are other ways of validating your network, toahsu
as k—fold cross validation. This approach is especially good mkieu have a small data set. In this approach, you divide
your data set intd pieces, and save one of these pieces for validation whiletsgn on the othek — 1 pieces. You keep
track of how many iterations it takes to converge. Then, yepeat this process for all pieces (selecting a different piece
for validation each time), keeping track of the number ofdt®ns to convergence each time. After altraining stages are
complete, you compute the average number of iterations nwerge over the: stages, which we’ll calf. Finally, you train
one last time on all the data fariterations, and this is your final network.

D. Momentum

Gradient descent is generally a slow process, taking a liomg to converge. One easy way to speed the learning process is
to usemomentumMomentum takes into account the previous weight updatenwhaking a current weight update. So, you
must save the updates made for each weight for 1 time stem, Dimethe next iteration of weight updates, you make use of
this previous update information. Recall that our old weighdates were as follows:

Vin = Vip + Avip
Whj = Whj + Awhj
So, to add momentum, your new weight update equations become
vh, = v+ Avj, + alup (22)
t

wp; = witzj + Aw,tw- + ozAwZ}l (23)

Here, the superscrigt refers to the current training example ahd 1 refers to the previous training example. So, with
momentum, you just add times the previous update when adjusting your weights. Heiie a constant calledhomentum
with 0 < o < 1.

