Robot Locomotion

(many slides adapted from authors of Autonomous Mobile Robots, MIT Press) August 28, 2014

Reading Assignments

- Today: Chapter 2, sections 2.1-2.3
- Next time:
 - *Chapter 2, section 2.4*
 - *Begin Chapter 3*

Locomotion Concepts

- Concepts
- Legged Locomotion
- Wheeled Locomotion

Locomotion Concepts: Principles Found in Nature

Type of motion	Resistance to motion	Basic kinematics of motion
Flow in a Channel	Hydrodynamic forces	Eddies
Crawl	Friction forces	
Sliding	Friction forces	Transverse vibration
Running	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Jumping A	Loss of kinetic energy	Oscillatory movement of a multi-link pendulum
Walking	Gravitational forces	Rolling of a polygon (see figure 2.2)

Locomotion Concepts

- Concepts found in nature
 - *>difficult to imitate technically*
- Most technical systems use wheels or caterpillars
- Rolling is most efficient, but not found in nature
 Nature never invented the wheel !
- However, the movement of a walking biped is close to rolling

Walking of a Biped

- Biped walking mechanism
 - \succ not too far from real rolling.
 - rolling of a polygon with side length equal to the length of the step.
 - the smaller the step gets, the more the polygon tends to a circle (wheel).
- However, fully rotating joint was not developed in nature.

Walking or rolling?

- number of actuators
- structural complexity
- control expense
- energy efficient
 - terrain (flat ground, soft ground, climbing..)
- movement of the involved masses
 - walking / running includes up and down movement of COG
 - some extra losses

Characterization of locomotion concept

- Locomotion
 - > physical interaction between the vehicle and its environment.
- Locomotion is concerned with *interaction forces*, and the *mechanisms* and *actuators* that generate them.
- The most important issues in locomotion are:
- stability
 - number of contact points
 - center of gravity
 - > static/dynamic stabilization
 - > inclination of terrain

- characteristics of contact
 - contact point or contact area
 - > angle of contact
 - ➢ friction
- type of environment
 - > structure
 - medium (water, air, soft or hard ground)

Mobile Robots with legs (walking machines)

- The fewer legs, the more complicated becomes locomotion
 - > stability, at least three legs are required for static stability
- During walking some legs are lifted
 - thus loosing stability?
- For static walking at least 6 legs are required
 - babies have to learn for quite a while until they are able to stand or even walk on their two legs.

Number of Joints of Each Leg (DOF: degrees of freedom)

- A minimum of two DOF is required to move a leg forward
 - \geq a lift and a swing motion.
 - > sliding free motion in more than one direction not possible
- Three DOF for each leg in most cases
- Fourth DOF for the ankle joint
 - > might improve walking
 - however, additional joint (DOF) increases the complexity of the design and especially of the locomotion control.

Passive Dynamic Walkers

- Efficient walking via natural dynamics of mechanical structure
- Use pendula and springs to generate periodic motions
- Result: passive dynamic walking

Here: Cornell's Ranger robot (2011):

Examples of Legs with 3 DOF

The number of possible gaits

- The gait is characterized as the sequence of lift and release events of the individual legs
 - \succ it depends on the number of legs.
 - \succ the number of possible events N for a walking machine with k legs is:

$$N = (2k - 1)!$$

• For a biped walker (k=2) the number of possible events N is:

$$N = (2k - 1)! = 3! = 3 \cdot 2 \cdot 1 = 6$$

The 6 different events are: lift right leg / lift left leg / release right leg / release left leg / lift both legs together / release both legs together

• For a robot with 6 legs (hexapod) N is already

N = 11 != 39,916,800

Most Obvious Gaits with 4 legs

Changeover Walking

Galloping

Most Obvious Gait with 6 legs (static)

Examples of Walking Machines

• No industrial applications up to date, but a popular research field

Courtesy of Marc Raibert

The Hopping Machine

Raibert's Hopping Machines

Bipedal Robots

• Leg Laboratory from MIT

Spring Flamingo the bipedal running machine

"Troody" Dinosaur like robot

> "M2" Humanoid robot

more infos : http://www.ai.mit.edu/projects/leglab/

Spring Flamingo, MIT Leg Lab

Genghis Robot

- Developed in late 1980s by Rodney Brooks
- Illustration of "elephants don't play chess"!
- Demonstration of behavior-based robotics
- Used subsumption architecture

Walking Robots with Four Legs (Quadruped)

• Artificial Dog Aibo from Sony, Japan

2.2.2

Walking Robots with Four Legs (Quadruped)

• Titan VIII, a quadruped robot, Tokyo Institute of Technology

Weight: 19 kg
 Height: 0.25 m
 DOF: 4*3

Walking Robots with Four Legs (Quadruped)

• Big Dog, Little Dog: Boston Dynamics

Walking Robots with Six Legs (Hexapod)

- Most popular because static stable walking possible
- The human guided hexapod of Ohio State University
 - > Maximum Speed: 2.3 m/s
 - ➤ Weight: 3.2 t
 - ➤ Height: 3 m
 - *▶ Length:* 5.2 *m*
 - \geq No. of legs: 6
 - ➢ DOF in total: 6*3

Walking Robots with Six Legs (Hexapod)

 Lauron II, University of Karlsruhe

- > Maximum Speed: 0.5 m/s
- > Weight: 6 kg
- ➢ Height: 0.3 m
- *▶ Length:* 0.7 *m*
- \geq No. of legs: 6
- *▶ DOF in total: 6*3*
- > Power Consumption: 10 W

Raibert's Boston Dynamics Robots

Raibert's Boston Dynamics Robots – Cheetah

Humanoid Robots

- P1-P2-P3-etc. (Asimo) from Honda, Japan
- Latest version:
 - > Walking Speed: 2.7+ km/h
 - Running Speed: 9 km/h
 - > Autonomy: 1+ hour
 - > Weight: 55 kg
 - ≻ Height: 1.3 m
 - *▶ DOF: 57*
 - *Head: 3*
 - Arm: 2 * 7
 - *Hand:* 2 * 13
 - Torso: 2
 - Leg DOF: 2*6

Autonomous Mobile Robots, Chapter 2

Honda's Asimo, 2014

NAO Robot

- Developed by Alderbaran (French company)
- Designed especially for education

Legged Locomotion – Summary of Important Concepts

- Characterized by point contacts with ground
- Key advantages: adaptability and maneuverability
- Key disadvantages: power, mechanical complexity
- Stability:
 - > Generally, more legs provide more stability, more maneuverability
 - > Static stability versus dynamic stability
- Legged locomotion loses energy due to friction, periodic acceleration/deceleration, actuators working against each other
- Passive dynamic walking minimizes energy loss via mechanical structure
- 1-legged walking: key challenge is balance
- 2-legged (bipedal), and 4-legged walking: lots of successful robot examples
- 6-legged walking: can be statically stable

2.3

Mobile Robots with Wheels

- Wheels are the most appropriate solution for many applications
- Three wheels are sufficient to guarantee stability
- With more than three wheels a flexible suspension is required
- Selection of wheels depends on the application

The Four Basic Wheels Types

- a) Standard wheel: Two degrees of freedom; rotation around the (motorized) wheel axle and the contact point
- b) Castor wheel: Three degrees of freedom; rotation around the wheel axle, the contact point and the castor axle

The Four Basic Wheels Types

- c) Swedish wheel: Three degrees of freedom; rotation around the (motorized) wheel axle, around the rollers and around the contact point

 d) Ball or spherical wheel: Suspension technically not solved

Trade-Offs

Stability

A statically-stable robot is one whose center of gravity lies inside the support pattern

Maneuverability

> How many degrees of freedom a robot can manipulate

Controllability

Inversely correlated to maneuverability; how "easy" the robot is to control to achieve the desired motion

2.3.1

Characteristics of Wheeled Robots and Vehicles

- Stability of a vehicle is guaranteed with 3 wheels
 - center of gravity is within the triangle formed by the ground contact point of the wheels.
- Stability is improved by 4 or more wheels
 - however, these arrangements are hyperstatic and require a flexible suspension system.
- Bigger wheels allow overcoming higher obstacles
 - *but they require higher torque or reductions in the gear box.*
- Most arrangements are non-holonomic (see chapter 3)
 - > require high control effort
- Combining actuation and steering on one wheel makes the design complex and adds additional errors for odometry.

Different Arrangements of Wheels I

• Two wheels

• Three wheels

Omnidirectional Drive

Synchro Drive

Different Arrangements of Wheels II

• Four wheels

• Six wheels

Two wheeled robot can achieve dynamic stability

Synchro Drive

- All wheels are actuated synchronously by one motor
 - > defines the speed of the vehicle
- All wheels steered synchronously by a second motor
 - > sets the heading of the vehicle
- The orientation in space of the robot frame will always remain the same
 - It is therefore not possible to control the orientation of the robot frame.

Omnidirectional Robot

Robot balancing on a ball

• From Japan's RIKEN Institute (2010):

Stability

- 2-wheeled robots:
 - Can achieve static stability with 2 wheels, if center of mass is below wheel axle
 - > Generally, static stability with 2 wheels requires large wheel diameters
 - > Dynamic stability is possible with 2 wheels, via control
- 3-wheeled robots:
 - Can achieve static stability easily center of mass must be within triangle formed by ground contact points of wheels
- More wheels:
 - > Usually requires flexible suspension on uneven terrain

Maneuverability

- Omnidirectional robots are highly maneuverable
- Two-wheel differential-drive robot is also highly maneuverable
 - > Use additional castor for stability
- Standard automobiles use Ackerman steering:

- Advantage: high lateral stability in high-speed turns
- > Disadvantage: Low maneuverability:
 - Large turning diameter
 - Sideways moving is difficult (think parallel parking!)

Controllability

- Generally, an inverse correlation between controllability and maneuverability
- E.g., omnidirectional designs usually require significant processing to convert desired velocities to individual motor commands
- High maneuverability → usually high DOF → accumulation of uncertainty

Is there an "ideal" configuration?

- Unfortunately, no.
- Can't simultaneously maximize stability, maneuverability, controllability
- Each application places unique constraints on the robot design problem
- Designer's task:
 - > Choose most appropriate drive configuration for the application

Some interesting case studies...

Curiosity Rocker-Bogie Mechanism

Hybrid Walking Wheeled Robot ("Roller-Walker", 2007)

Whegs – Wheel-leg robot (Case Western Univ., 2009)

Wheeled Locomotion – Summary of Important Concepts

- Stability usually "automatic", since wheels designed to have constant ground contact
- Bigger challenges: traction, maneuverability, control
- 4 major wheel classes: standard, castor, Swedish, ball/spherical
- Wheel choice and geometry affect:
 - > Maneuverability
 - > Controllability
 - > Stability

Next time...

- Locomotion Aerial robots
- Chapter 3 Mobile Robot Kinematics