
Randomized Graph Search

October 2, 2014

robot

obst

obst

obst

obst

x
y



C-obst

C-obstC-obst

C-obst

robot

Path is swept volume

Motion Planning in C-space

Path is 1D curve

Workspace

C-space

Simple workspace obstacle transformed

into complicated C-obstacle!!

(from Nancy Amato, Texas A&M Parasol Lab)

Most motion planning problems of interest are PSPACE-hard
[Reif 79, Hopcroft et al. 84 & 86]

The best deterministic algorithm known has running time that is

exponential in the dimension of the robot’s C-space [Canny 86]

• C-space has high dimension - 6D for rigid body in 3-space

• Simple obstacles have complex C-obstacles impractical to compute explicit

representation of free space for more than 4 or 5 DOF

So … attention has turned to randomized algorithms which:

• trade full completeness of the planner

• for probabilistic completeness and a major gain in efficiency

The Complexity of Motion Planning

(from Nancy Amato, Texas A&M Parasol Lab)

1. Connect start and goal to roadmap

Query processing
start

goal

Probabilistic Roadmap Methods (PRMs)
[Kavraki, Svestka, Latombe,Overmars 1996]

C-obst

C-obst

C-obst

C-obst

Roadmap Construction (Pre-processing)

2. Connect pairs of nodes to form roadmap

- simple, deterministic local planner (e.g., straight line)

- discard paths that are invalid

1. Randomly generate robot configurations (nodes)

- discard nodes that are invalid

C-obst

C-space

2. Find path in roadmap between start and goal

- regenerate plans for edges in roadmap

Primitives Required:

1. Method for Sampling points in C-Space

2. Method for `validating’ points in C-Space

(from Nancy Amato, Texas A&M Parasol Lab)

PRMs: Pros & Cons

PRMs: The Good News

1. PRMs are probabilistically complete

2. PRMs apply easily to high-dimensional C-space

3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved

problems

C-obst

C-obst

C-obst

C-obst

C-obst

start

goal

PRMs: The Bad News

PRMs don’t work as well for some problems:

– unlikely to sample nodes in narrow passages

– hard to sample/connect nodes on constraint surfaces

start

goal

C-obst

C-obst

C-obst

C-obst

(from Nancy Amato, Texas A&M Parasol Lab)

Rapidly Exploring Random Trees (RRTs)

• Promoted by Steve Lavalle and James Kuffner

• Alternative to other randomized approaches

– Probabilistic roadmap planner

• RRT (rapidly exploring random trees) use Configuration Space

– C : configuration space where q belongs to C and describes the position and
orientation of a body place in the space.

– Cfree : set of configuration where the body does not collide with obstacles

The RRT Algorithm

• Start with initial (random) tree

• Select random configuration in free

space

• The tree node closest to the selected

random configuration is found

• An edge is “grown” toward the new

configuration, taking into account the

robot kinematic motion model

Basic Extend

Where is the “Rapid” in RRTs?

• Why are RRT’s rapidly exploring?

– the probability of a node being selected for expansion is proportional to
the area of its Voronoi region

• If just choose a vertex at random and extend, then it would act like
random walk instead

– Biased towards start vertex

Variation: RRT-Connect

• RRT-connect is a variation of RRT

– grows two trees from both the source and destination until they meet

– grows the trees towards each other (rather then towards random
configurations)

– the greediness becomes stronger by growing the tree with multiple epsilon
steps instead of a single one

RRT-Connect Algorithm

Examples

Examples

Examples

Examples

RRT-Connect Performance

• Much faster than common RRT methods for uncluttered environments
and slightly faster in very cluttered environments

• 2D cases are solved in  1 second depending on the complexity of the
situation

• 3D piano scene required 12 seconds

• 6 DOF robot arm required 4 seconds

RRT-Connect: Pros and Cons

• Improved version of RRT for faster convergence

• Finds paths in high dimensional spaces at interactive time rates

• Experiments showed it to be consistent

• Drawback: a lot of nearest neighbor searches are performed

Extension to Non-holonomic

• The new_state computation handles all the complicated part

• Given a state x and inputs u

• Integrate numerically to get new position

Examples

• http://msl.cs.uiuc.edu/rrt/gallery.html

http://msl.cs.uiuc.edu/rrt/gallery.html

