2014

October 2

LR P T

Randomized Graph Search

Motion Planning in C-space

Simple workspace obstacle transformed
into complicated C-obstacle!!

Workspace

obst

C-space

C-obst C-0

anq®

C-obst C-obst

A robot

Path is swept volume

e robot

Path is 1D curve

(from Nancy Amato, Texas A&M Parasol Lab)

The Complexity of Motion Planning

Most motion planning problems of interest are PSPACE-hard
[Reif 79, Hopcroft et al. 84 & 86]

The best deterministic algorithm known has running time that is

exponential in the dimension of the robot’s C-space [Canny 86]
« C-space has high dimension - 6D for rigid body in 3-space
» Simple obstacles have complex C-obstacles == impractical to compute explicit
representation of free space for more than 4 or 5 DOF

So ... attention has turned to randomized algorithms which:
* trade full completeness of the planner
« for probabilistic completeness and a major gain in efficiency

(from Nancy Amato, Texas A&M Parasol Lab)

Probabilistic RoadmaE Methods (PRMs)

[Kavraki, Svestka, Latombe,Overmars 1996]

C-space

Roadmap Construction (Pre-processing)

1. Randomly generate robot configurations (nodes)
- discard nodes that are invalid

2. Connect pairs of nodes to form roadmap
- simple, deterministic local planner (e.g., straight line)

o
@
1
)
- discard paths that are invalid
(4
®
o

Query processing

1. Connect start and goal to roadmap

2. Find path in roadmap between start and goal
o _ - regenerate plans for edges in roadmap
Primitives Required:

1. Method for Sampling points in C-Space
2. Method for "validating’ points in C-Space

(from Nancy Amato, Texas A&M Parasol Lab)

PRMs: Pros & Cons

PRMs: The Good News

1. PRMs are probabilistically complete
2. PRMs apply easily to high-dimensional C-space
3. PRMs support fast queries w/ enough preprocessing

Many success stories where PRMs solve previously unsolved
problems

PRMs: The Bad News

s PRMs don’t work as well for some problems:
— unlikely to sample nodes in narrow passages
— hard to sample/connect nodes on constraint surfaces

C-obst C-obst

(from Nancy Amato, Texas A&M Parasol Lab)

Rapidly Exploring Random Trees (RRTs)

* Promoted by Steve Lavalle and James Kuffner

* Alternative to other randomized approaches
— Probabilistic roadmap planner

 RRT (rapidly exploring random trees) use Configuration Space

— C : configuration space where g belongs to C and describes the position and
orientation of a body place in the space.

- Cs., - set of configuration where the body does not collide with obstacles

The RRT Algorithm

BUILD _RRT(gyt) « Start with initial (random) tree

L 7 .mib(ginit); « Select random configuration in free

2 fork=1to K do space

7 Groma — RANDOM_CONFIG(): P

1 EXTEND(T . g,): « Thetree nod'e closfestlto the selected

5 Return 7 random configuration is found

* Anedge is “grown” toward the new

EXTEND(T.q) configuration, taking into account the

1 gnear +—— NEAREST NEIGHBOR(q, T); robot kinematic motion model

2 if NEW_CONFIG(q, gnear: Gnew) then

3 T .addvertex(q,ew):

4 T .add_edge(gnears Gnew);

51 if g,,... = g then

6 Return Reached;

7 else

8 Return Advanced,

9 Return Trapped;

Basic Extend

Where is the “Rapid” in RRTs?

 Why are RRT’s rapidly exploring?

—the probability of a node being selected for expansion is proportional to
the area of its Voronoi region

* If just choose a vertex at random and extend, then it would act like
random walk instead

— Biased towards start vertex

Variation: RRT-Connect

* RRT-connect is a variation of RRT
—grows two trees from both the source and destination until they meet

—grows the trees towards each other (rather then towards random
configurations)

—the greediness becomes stronger by growing the tree with multiple epsilon
steps instead of a single one

RRT-Connect Algorithm

CONNECT(T,q)
1 repeat
2 S — EXTEND(T,q);
3 until not (S = Advanced)
4 Return S:

RRT_CONNECT_PLANNER(Ginit. 9g0al)

1 ?_cr,-].-nit{%n{fj:. ﬂ-init[q.gm”:.

2 fork=1to K do

3 Grand — RANDOM_CONFIG():

4 if not (EXTEND(7,. ¢rand) = Trapped) then
B

G

if (CONNECT(7,. ¢pew.) =Reached) then
Return PATH(7,.T;,);
SWAP(7,,Ty);
8 Return Failure

'

Examples

Examples

Examples

RRT-Connect Performance

* Much faster than common RRT methods for uncluttered environments
and slightly faster in very cluttered environments

« 2D cases are solved in < 1 second depending on the complexity of the
situation

» 3D piano scene required 12 seconds
* 6 DOF robot arm required 4 seconds

RRT-Connect: Pros and Cons

* Improved version of RRT for faster convergence

» Finds paths in high dimensional spaces at interactive time rates
* Experiments showed it to be consistent

 Drawback: a lot of nearest neighbor searches are performed

Extension to Non-holonomic

* The new_state computation handles all the complicated part
* Given a state x and inputs u

r = f(z,u)

* Integrate numerically to get new position

Examples

http://msl.cs.uiuc.edu/rrt/gallery.html

