Problem Set 2:

Recurrences and Divide and Conquer

Due: Thursday, January 23, 2014, at the beginning of class

1. Solve the following recurrences, showing your work. Assume $T(1)=1$ in all cases. Give your answers in Θ notation.
a. $T(n)=4 T(n / 3)+\sqrt[3]{n}$
b. $T(n)=4 T(n / 3)+n \sqrt[3]{n}$
c. $T(n)=4 T(n / 3)+\left(n^{\log _{3} 4}\right) \log _{3} n$
d. $T(n)=T(\sqrt{n})+1 \quad$ [Hint: consider change of variable, as discussed on page 86.]
2. Use Strassen's algorithm to compute the following matrix product. Show your work.

$$
\left(\begin{array}{ll}
1 & 3 \\
7 & 5
\end{array}\right)\left(\begin{array}{ll}
6 & 8 \\
4 & 2
\end{array}\right)
$$

3. What is the largest k such that if you can multiply 3×3 matrices using k multiplications (not assuming commutativity of multiplication), then you can multiply n x n matrices in time $o\left(n^{\lg 7}\right)$? What would the running time of the algorithm be? Show your work. [Hint: Make use of the master method to reason about this problem.]
