CS581 -- Algorithms

Spring 2014
Prof. Lynne E. Parker

Reading Assignments

- Today's class:
- Chapter 1, Chapter 3
- Reading assignment for next class:
- Chapter 2, 4.0, 4.4

Asymptotic Complexity

- Running time of an algorithm as a function of input size n for large n.
- Expressed using only the highest-order term in the expression for the exact running time.
- Instead of exact running time, say $\Theta\left(n^{2}\right)$.
- Describes behavior of function in the limit.
- Written using Asymptotic Notation.

Asymptotic Notation

- $T(n)=$ worst case run time, defined on integers
- $\Theta, 0, \Omega, o, \omega$
- Defined for functions over the natural numbers.
- Ex: $f(n)=\Theta\left(n^{2}\right)$.
- Describes how $f(n)$ grows in comparison to n^{2}.
- Define a set of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

$\theta(g(n))($ Tight Bound)

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, \quad 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

We write: $f(n)=\theta(g(n))$

$$
(\operatorname{not} f(n) \in \theta(g(n)))
$$

Intuitively: Set of all functions that have the same rate of growth as $g(n)$.
$\boldsymbol{f}(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$ are nonnegative, for large $\mathbf{n .}^{n_{0}} \quad f(n)=\Theta(g(n))$

Example

$$
\Theta(g(n))=\{f(n):
$$

\exists positive constants c_{1}, c_{2}, and
n_{0}, such that $\forall n \geq n_{0}$,
$\left.0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$
$f(n)=\frac{1}{2} n^{2}-3 n=\theta\left(n^{2}\right)$

Find c_{1}, c_{2}, n_{0} that makes this true:

"Eye-balling" order of growth

- Look at leading term
- Ignore constants
- E.g., $n^{2} / 2-3 n=\theta\left(n^{2}\right)$
- Is $3 n^{3}=\theta\left(n^{4}\right)$?

$O(g(n))$ (Upper Bound)

$\boldsymbol{O}(\boldsymbol{g}(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq f(n) \leq \operatorname{cg}(n)\right\}$

We write: $f(n)=O(g(n))$

Intuitively: Set of all functions whose rate of growth is the same as or lower than that of $g(n)$.

$\Omega(g(n))$ (Lower Bound)

$\Omega(g(n))=\left\{f(n): \exists\right.$ positive constants c and n_{0}, such that $\forall n \geq n_{0}$, we have $\left.0 \leq c g(n) \leq f(n)\right\}$

We write: $f(n)=\Omega(g(n))$

Intuitively: Set of all functions whose rate of growth is the same as or higher than that of $g(n)$.

Comparing Θ, Ω, O

Theorem : For any two functions $g(n)$ and $f(n)$,

$$
\begin{aligned}
f(n) & =\Theta(g(n)) \text { iff } \\
f(n) & =O(g(n)) \text { and } f(n)=\Omega(g(n)) .
\end{aligned}
$$

o: Non-asymptotic tight bound

$$
\begin{aligned}
&\hline \boldsymbol{o g}(\boldsymbol{g}))=\{f(n): \forall c>0, \exists \boldsymbol{n}_{0}>\mathbf{0} \text { such that } \\
&\left.\forall n \geq n_{0}, \text { we have } 0 \leq f(n)<c g(n)\right\} .
\end{aligned}
$$

Note that $f(n)=o(g(n)) \Rightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$

ω : Non-asymptotic lower bound

$\omega(\boldsymbol{g}(\boldsymbol{n}))=\left\{f(n): \forall c>0, \exists n_{0}>0\right.$ such that
$\forall n \geq n_{0}$, we have $\left.0 \leq c g(n)<f(n)\right\}$.

Note that $f(n)=\omega(g(n)) \Rightarrow$
$\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

Limits

- $f(n)=o(g(n)) \Rightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- $f(n)=\omega(g(n)) \Rightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$
- $f(n)=\theta(g(n)) \Rightarrow 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$
- $f(n)=O(g(n)) \Rightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$
- $f(n)=\Omega(g(n)) \Rightarrow 0<\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$

Running Times

- "Running time is $O(f(n)) " \Rightarrow$ Worst case is $O(f(n))$
- $O(f(n))$ bound on the worst-case running time \Rightarrow $O(f(n))$ bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time \Rightarrow $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n)) " \Rightarrow$ Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
- Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

$$
\begin{aligned}
& 4 n^{3}+3 n^{2}+2 n+1=4 n^{3}+3 n^{2}+\Theta(n) \\
& =4 n^{3}+\Theta\left(n^{2}\right)=\Theta\left(n^{3}\right) . \text { How to interpret? }
\end{aligned}
$$

- In equations, $\Theta(f(n))$ always stands for an anonymous function $g(n) \in \Theta(f(n))$
- In the example above, $\Theta\left(n^{2}\right)$ stands for $3 n^{2}+2 n+1$.

Relational Properties

- Transitivity:

$$
\begin{gathered}
f(n)=\theta(g(n)) \text { and } g(n)=\theta(h(n)) \\
\Rightarrow f(n)=\theta(h(n))
\end{gathered}
$$

(similarly for $\Omega, \mathrm{O}, \omega, \mathrm{o}$)

Relational Properties

- Reflexivity:

$$
\begin{aligned}
& f(n)=\theta(f(n)) \\
& f(n)=O(f(n)) \\
& f(n)=\Omega(f(n))
\end{aligned}
$$

Relational Properties

- Symmetry:

$$
f(n)=\theta(g(n)) \text { iff } g(n)=\theta(f(n))
$$

- Transpose Symmetry:

$$
\begin{aligned}
& f(n)=O(g(n)) \text { iff } g(n)=\Omega(f(n)) \\
& f(n)=o(g(n)) \text { iff } g(n)=\omega(f(n))
\end{aligned}
$$

Monotonicity

- $f(n)$ is
- monotonically increasing if $m \leq n \Rightarrow f(m) \leq f(n)$.
- monotonically decreasing if $m \geq n \Rightarrow f(m) \geq f(n)$.
- strictly increasing if $m<n \Rightarrow f(m)<f(n)$.
- strictly decreasing if $m>n \Rightarrow f(m)>f(n)$.

Example

- True or false?

For 2 functions $f(n)$ and $g(n)$, either $f(n)=O(g(n))$ or $f(n)=\Omega(g(n))$.

Example

- Let:

$$
\begin{aligned}
& f(n)=n^{3} \lg ^{4} n \\
& g(n)=n^{4} \lg ^{3} n \\
& h(n)=n^{5} / \lg n
\end{aligned}
$$

We also state the following mathematical property:

$$
\lim _{n \rightarrow \infty} \frac{\lg ^{b} n}{n^{a}}=0, \text { for any real constants } a>0 \text { and } b
$$

True or false?

- $f(n) \in O(g(n))$
- $h(n) \in O(g(n))$
- $f(n) \in \Theta(g(n))$
- $g(n) \in \omega(f(n))$
- $h(n) \in o(f(n)$

Exponentials

- Useful Identities:

$$
\begin{aligned}
& a^{-1}=\frac{1}{a} \\
& \left(a^{m}\right)^{n}=a^{m n} \\
& a^{m} a^{n}=a^{m+n}
\end{aligned}
$$

- Exponentials and polynomials

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{n^{b}}{a^{n}}=0 \\
& \Rightarrow n^{b}=o\left(a^{n}\right)
\end{aligned}
$$

Logarithms

$x=\log _{b} a$ is the exponent for $a=b^{x}$.

Natural log: $\ln a=\log _{e} a$ Binary log: $\lg a=\log _{2} a$

$$
\begin{aligned}
& \lg ^{2} a=(\lg a)^{2} \\
& \lg \lg a=\lg (\lg a)
\end{aligned}
$$

$$
\begin{aligned}
& a=b^{\log _{b} a} \\
& \log _{c}(a b)=\log _{c} a+\log _{c} b \\
& \log _{b} a^{n}=n \log _{b} a \\
& \log _{b} a=\frac{\log _{c} a}{\log _{c} b} \\
& \log _{b}(1 / a)=-\log _{b} a \\
& \log _{b} a=\frac{1}{\log _{a} b} \\
& a^{\log _{b} c}=c^{\log _{b} a}
\end{aligned}
$$

Bases of logs and exponentials

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
- Ex: $\log _{10} n * \log _{2} 10=\log _{2} n$.
- Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).
- Ex: $2^{n}=(2 / 3)^{n *} 3^{n}$.

Polylogarithms

- For $a \geq 0, b>0, \lim _{n \rightarrow \infty}\left(\lg ^{a} n / n^{b}\right)=0$, so $\lg ^{a} n=o\left(n^{b}\right)$, and $n^{b}=\omega\left(\lg ^{a} n\right)$
- Prove using l'Hopital's rule repeatedly
- $\lg (n!)=\Theta(n \lg n)$
- Prove using Stirling's approximation (in the text) for $\lg (n!)$.

Exercise

- Express functions in A in asymptotic notation using function in B .
A

B

Remember Reading Assignments

- Today's class:
- Chapter 1, Chapter 3
- Reading assignment for next class:
- Chapter 2, 4.0, 4.4

