
CS581 -- Algorithms

Spring 2014
Prof. Lynne E. Parker

9-Jan-2014

Reading Assignments

• Today’s class:
– Chapter 1, Chapter 3

• Reading assignment for next class:

– Chapter 2, 4.0, 4.4

Asymptotic Complexity

• Running time of an algorithm as a function of
input size n for large n.

• Expressed using only the highest-order term
in the expression for the exact running time.
– Instead of exact running time, say Θ(n2).

• Describes behavior of function in the limit.

• Written using Asymptotic Notation.

Asymptotic Notation

• T(n) = worst case run time, defined on integers
• Θ, O, Ω, o, ω
• Defined for functions over the natural numbers.

– Ex: f(n) = Θ(n2).
– Describes how f(n) grows in comparison to n2.

• Define a set of functions; in practice used to compare
two function sizes.

• The notations describe different rate-of-growth
relations between the defining function and the
defined set of functions.

𝜃 𝑔 𝑛 (Tight Bound)

We write: 𝑓 𝑛 = 𝜃 𝑔 𝑛

 (not 𝑓 𝑛 ∈ 𝜃 𝑔 𝑛)

Intuitively: Set of all functions that
have the same rate of growth as g(n).

f(n) and g(n) are nonnegative, for large n.

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0,
such that ∀n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

Example

𝑓 𝑛 = 12𝑛
2 − 3𝑛 = 𝜃(𝑛2)

Find 𝑐1, 𝑐2,𝑛0 that makes this true:

Θ(g(n)) = {f(n) :
∃ positive constants c1, c2, and
n0, such that ∀n ≥ n0,
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

“Eye-balling” order of growth

• Look at leading term
• Ignore constants

• E.g., 𝑛2/2 – 3n = θ(𝑛2)

• Is 3𝑛3= θ(𝑛4)?

O 𝑔 𝑛 (Upper Bound)

We write: 𝑓 𝑛 = 𝑂 𝑔 𝑛

Intuitively: Set of all functions
whose rate of growth is the same as
or lower than that of g(n).

O(g(n)) = {f(n) : ∃ positive constants c and n0,
such that ∀n ≥ n0, we have 0 ≤ f(n) ≤ cg(n) }

Ω 𝑔 𝑛 (Lower Bound)

We write: 𝑓 𝑛 = Ω 𝑔 𝑛

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n).

Ω(g(n)) = {f(n) : ∃ positive constants c and n0, such
that ∀n ≥ n0, we have 0 ≤ cg(n) ≤ f(n)}

Comparing Θ, Ω, O
Theorem : For any two functions g(n) and f(n),
 f(n) = Θ(g(n)) iff
 f(n) = O(g(n)) and f(n) = Ω(g(n)).

o: Non-asymptotic tight bound

Note that 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇒ lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0

o(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that
 ∀ n ≥ n0, we have 0 ≤ f(n) < cg(n)}.

𝜔 : Non-asymptotic lower bound

Note that 𝑓 𝑛 = 𝜔 𝑔 𝑛 ⇒
 lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞

𝝎(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that
 ∀ n ≥ n0, we have 0 ≤ cg(n) < f(n)}.

Limits

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇒ lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0

• 𝑓 𝑛 = 𝜔 𝑔 𝑛 ⇒ lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞

• 𝑓 𝑛 = 𝜃 𝑔 𝑛 ⇒ 0 < lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 ⇒ lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞

• 𝑓 𝑛 = Ω 𝑔 𝑛 ⇒ 0 < lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

Running Times

 “Running time is O(f(n))” ⇒ Worst case is O(f(n))

 O(f(n)) bound on the worst-case running time ⇒
O(f(n)) bound on the running time of every input.

 Θ(f(n)) bound on the worst-case running time ⇒
Θ(f(n)) bound on the running time of every input.

 “Running time is Ω(f(n))” ⇒ Best case is Ω(f(n))

 Can still say “Worst-case running time is Ω(f(n))”
 Means worst-case running time is given by some

unspecified function g(n) ∈ Ω(f(n)).

Asymptotic Notation in Equations

 Can use asymptotic notation in equations to replace
expressions containing lower-order terms.

 For example,
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Θ(n)
= 4n3 + Θ(n2) = Θ(n3). How to interpret?

 In equations, Θ(f(n)) always stands for an
anonymous function g(n) ∈ Θ(f(n))
 In the example above, Θ(n2) stands for

3n2 + 2n + 1.

Relational Properties

• Transitivity:
𝑓 𝑛 = 𝜃 𝑔 𝑛 and 𝑔 𝑛 = 𝜃 ℎ 𝑛

⇒ 𝑓 𝑛 = 𝜃(ℎ 𝑛)
(similarly for Ω, O, 𝜔, o)

Relational Properties

• Reflexivity:
𝑓 𝑛 = 𝜃 𝑓 𝑛
𝑓 𝑛 = 𝑂 𝑓 𝑛
𝑓 𝑛 = Ω 𝑓 𝑛

Relational Properties

• Symmetry:
𝑓 𝑛 = 𝜃 𝑔 𝑛 iff g 𝑛 = 𝜃 𝑓 𝑛

• Transpose Symmetry:
𝑓 𝑛 = 𝑂 𝑔 𝑛 iff g 𝑛 = Ω 𝑓 𝑛

 𝑓 𝑛 = 𝑜 𝑔 𝑛 iff g 𝑛 = 𝜔 𝑓 𝑛

Monotonicity

• f(n) is
– monotonically increasing if m ≤ n ⇒ f(m) ≤ f(n).
– monotonically decreasing if m ≥ n ⇒ f(m) ≥ f(n).
– strictly increasing if m < n ⇒ f(m) < f(n).
– strictly decreasing if m > n ⇒ f(m) > f(n).

Example

• True or false?
For 2 functions f(n) and g(n), either f(n) = O(g(n)) or
f(n) = Ω(g(n)).

Example
• Let: 𝑓 𝑛 = 𝑛3lg4𝑛
 g 𝑛 = 𝑛4lg3𝑛
 h 𝑛 = 𝑛5/ lg𝑛
 We also state the following mathematical property:
 lim

𝑛→∞
lg𝑏𝑛
𝑛𝑎

= 0, for any real constants a > 0 and b.

True or false?
• f(n) ∈ O(g(n))
• h(n) ∈ O(g(n))
• f(n) ∈ Θ(g(n))
• g(n) ∈ ω (f(n))
• h(n) ∈ o(f(n)

Exponentials

• Useful Identities:

• Exponentials and polynomials

nmnm

mnnm

aaa
aa

a
a

+

−

=

=

=

)(

11

)(

0lim

nb

n

b

n

aon
a
n

=⇒

=
∞→

Logarithms

x = logba is the
exponent for a = bx.

Natural log: ln a = logea
Binary log: lg a = log2a

lg2a = (lg a)2

lg lg a = lg (lg a)

ac
a

b

bb

c

c
b

b
n

b

ccc

a

bb

b

ca

b
a

aa
b
aa

ana
baab

ba

loglog

log

log
1log

log)/1(log
log
loglog

loglog

loglog)(log

=

=

−=

=

=

+=
=

Bases of logs and exponentials
• If the base of a logarithm is changed from one

constant to another, the value is altered by a
constant factor.
– Ex: log10 n * log210 = log2 n.
– Base of logarithm is not an issue in asymptotic

notation.

• Exponentials with different bases differ by a
exponential factor (not a constant factor).
– Ex: 2n = (2/3)n*3n.

Polylogarithms

• For a ≥ 0, b > 0, lim n→∞ (lga n / nb) = 0,
so lga n = o(nb), and nb = ω(lga n)
– Prove using L’Hopital’s rule repeatedly

• lg(n!) = Θ(n lg n)

– Prove using Stirling’s approximation (in the text) for lg(n!).

Exercise
• Express functions in A in asymptotic notation using function in B.

 A B

5n2 + 100n 3n2 + 2

log3(n2) log2(n3)

 nlg4 3lg n

lg2n n1/2

Remember Reading Assignments

• Today’s class:
– Chapter 1, Chapter 3

• Reading assignment for next class:

– Chapter 2, 4.0, 4.4

	CS581 -- Algorithms
	Reading Assignments
	Asymptotic Complexity
	Asymptotic Notation
	𝜃 𝑔 𝑛 (Tight Bound)
	Example
	“Eye-balling” order of growth
	O 𝑔 𝑛 (Upper Bound)
	Ω 𝑔 𝑛 (Lower Bound)
	Comparing , , O
	o: Non-asymptotic tight bound
	𝜔 : Non-asymptotic lower bound
	Limits
	Running Times
	Asymptotic Notation in Equations
	Relational Properties
	Relational Properties
	Relational Properties
	Monotonicity
	Example
	Example
	Exponentials
	Logarithms
	Bases of logs and exponentials
	Polylogarithms
	Exercise
	Remember Reading Assignments

