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Reading Assignments 

• Today’s class:  
– Chapter 1, Chapter 3 

 
• Reading assignment for next class: 

– Chapter 2, 4.0, 4.4 



Asymptotic Complexity 

• Running time of an algorithm as a function of 
input size n for large n. 

• Expressed using only the highest-order term 
in the expression for the exact running time. 
– Instead of exact running time, say Θ(n2). 

• Describes behavior of function in the limit. 

• Written using Asymptotic Notation. 
 



Asymptotic Notation 

• T(n) = worst case run time, defined on integers 
• Θ, O, Ω, o, ω 
• Defined for functions over the natural numbers. 

– Ex: f(n)  =  Θ(n2). 
– Describes how f(n) grows in comparison to n2. 

• Define a set of functions; in practice used to compare 
two function sizes. 

• The notations describe different rate-of-growth 
relations between the defining function and the 
defined set of functions. 
 



𝜃 𝑔 𝑛  (Tight Bound) 

 
 
 
We write: 𝑓 𝑛 = 𝜃 𝑔 𝑛  

          (not 𝑓 𝑛 ∈ 𝜃 𝑔 𝑛  ) 

Intuitively: Set of all functions that 
have the same rate of growth as g(n). 

f(n) and g(n) are nonnegative, for large n.  

Θ(g(n)) = {f(n) : ∃ positive constants c1, c2, and n0, 
such that ∀n ≥  n0,    0 ≤ c1g(n) ≤  f(n) ≤ c2g(n)} 



Example 

𝑓 𝑛 =  12𝑛
2 − 3𝑛 =  𝜃(𝑛2) 

 
Find  𝑐1, 𝑐2,𝑛0 that makes this true: 
 

Θ(g(n)) = {f(n) :  
∃ positive constants c1, c2, and 
n0, such that ∀n ≥  n0,     
0 ≤ c1g(n) ≤  f(n) ≤ c2g(n)} 



“Eye-balling” order of growth 

• Look at leading term 
• Ignore constants 

 
• E.g.,   𝑛2/2 – 3n = θ(𝑛2) 

 
• Is 3𝑛3= θ(𝑛4)? 
 



O 𝑔 𝑛  (Upper Bound) 

 
 
 
 
We write: 𝑓 𝑛 = 𝑂 𝑔 𝑛  

Intuitively: Set of all functions 
whose rate of growth is the same as 
or lower than that of g(n). 

O(g(n)) = {f(n) : ∃ positive constants c and n0, 
such that ∀n ≥  n0, we have 0 ≤  f(n) ≤ cg(n) } 



Ω 𝑔 𝑛  (Lower Bound) 

 
 
 
 
We write: 𝑓 𝑛 = Ω 𝑔 𝑛  

Intuitively: Set of all functions 
whose rate of growth is the same 
as or higher than that of g(n). 

Ω(g(n)) = {f(n) : ∃ positive constants c and n0, such 
that ∀n ≥ n0, we have 0 ≤ cg(n) ≤ f(n)} 



Comparing Θ, Ω, O 
Theorem :  For any two functions g(n) and f(n),  
           f(n) = Θ(g(n)) iff  
 f(n) = O(g(n)) and f(n) = Ω(g(n)). 



o:  Non-asymptotic tight bound 

 
 

Note that 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇒  lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0 

o(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that  
  ∀ n ≥  n0, we have 0 ≤  f(n) < cg(n)}. 



𝜔 :  Non-asymptotic lower bound 
 
 
 
Note that 𝑓 𝑛 = 𝜔 𝑔 𝑛 ⇒
 lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞ 

𝝎(g(n)) = {f(n): ∀ c > 0, ∃ n0 > 0 such that  
  ∀ n ≥  n0, we have 0 ≤ cg(n) <  f(n)}. 



Limits 

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇒  lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= 0 

• 𝑓 𝑛 = 𝜔 𝑔 𝑛 ⇒  lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

= ∞ 

 

• 𝑓 𝑛 = 𝜃 𝑔 𝑛 ⇒ 0 < lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞ 

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 ⇒ lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

< ∞ 

• 𝑓 𝑛 = Ω 𝑔 𝑛 ⇒ 0 < lim
𝑛→∞

𝑓(𝑛)
𝑔(𝑛)

 

 
 

 



Running Times 

 “Running time is O(f(n))” ⇒ Worst case is O(f(n)) 

 O(f(n)) bound on the worst-case running time ⇒ 
O(f(n)) bound on the running time of every input. 

 Θ(f(n)) bound on the worst-case running time ⇒ 
Θ(f(n)) bound on the running time of every input. 

 “Running time is Ω(f(n))” ⇒ Best case is Ω(f(n))  

 Can still say “Worst-case running time is Ω(f(n))” 
 Means worst-case running time is given by some 

unspecified function g(n) ∈ Ω(f(n)). 



Asymptotic Notation in Equations 

 Can use asymptotic notation in equations to replace 
expressions containing lower-order terms. 

 For example, 
4n3 + 3n2 + 2n + 1 = 4n3 + 3n2 + Θ(n)  
= 4n3 + Θ(n2) = Θ(n3). How to interpret? 

 In equations, Θ(f(n)) always stands for an 
anonymous function g(n) ∈ Θ(f(n)) 
 In the example above, Θ(n2) stands for  

3n2 + 2n + 1. 



Relational Properties 

• Transitivity: 
𝑓 𝑛 = 𝜃 𝑔 𝑛   and 𝑔 𝑛 =  𝜃 ℎ 𝑛   

⇒ 𝑓 𝑛 = 𝜃(ℎ 𝑛 )  
(similarly for Ω, O, 𝜔, o) 



Relational Properties 

• Reflexivity: 
𝑓 𝑛 = 𝜃 𝑓 𝑛  
𝑓 𝑛 = 𝑂 𝑓 𝑛  
𝑓 𝑛 = Ω 𝑓 𝑛  

  



Relational Properties 

• Symmetry: 
𝑓 𝑛 = 𝜃 𝑔 𝑛    iff   g 𝑛 = 𝜃 𝑓 𝑛   
 

• Transpose Symmetry: 
𝑓 𝑛 = 𝑂 𝑔 𝑛    iff   g 𝑛 = Ω 𝑓 𝑛   

     𝑓 𝑛 = 𝑜 𝑔 𝑛    iff   g 𝑛 = 𝜔 𝑓 𝑛  
 

  



Monotonicity 

• f(n) is  
– monotonically increasing if m ≤ n ⇒ f(m) ≤ f(n). 
– monotonically decreasing if m ≥ n ⇒ f(m) ≥ f(n). 
– strictly increasing if m < n ⇒ f(m) < f(n). 
– strictly decreasing if m > n ⇒ f(m) > f(n). 

 



Example 

• True or false?   
For 2 functions f(n) and g(n), either f(n) = O(g(n))  or 
f(n) = Ω(g(n)). 

 



Example 
• Let:   𝑓 𝑛 = 𝑛3lg4𝑛 
   g 𝑛 = 𝑛4lg3𝑛 
   h 𝑛 = 𝑛5/ lg𝑛 
      We also state the following mathematical property:      
 lim

𝑛→∞
lg𝑏𝑛
𝑛𝑎

= 0, for any real constants a > 0 and b. 

 
True or false?   
• f(n)  ∈ O(g(n))           
• h(n) ∈ O(g(n))     
• f(n)  ∈ Θ(g(n))     
• g(n) ∈ ω (f(n))      
• h(n) ∈ o(f(n) 

 



Exponentials 

• Useful Identities: 
 
 
 
 

• Exponentials and polynomials 
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Logarithms 

x = logba is the  
exponent for a = bx. 

 

Natural log: ln a = logea 
Binary log: lg a = log2a 
 
lg2a = (lg a)2 

lg lg a  =  lg (lg a) 
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Bases of logs and exponentials 
• If the base of a logarithm is changed from one 

constant to another, the value is altered by a 
constant factor. 
– Ex: log10 n * log210 = log2 n. 
– Base of logarithm is not an issue in asymptotic 

notation. 
 

• Exponentials with different bases differ by a 
exponential factor (not a constant factor). 
– Ex: 2n = (2/3)n*3n. 

 



Polylogarithms 

• For a ≥ 0, b > 0, lim n→∞ ( lga n / nb ) = 0,  
so lga n = o(nb), and  nb = ω(lga n ) 
– Prove using L’Hopital’s rule repeatedly 

 
• lg(n!) = Θ(n lg n) 

– Prove using Stirling’s approximation (in the text) for lg(n!). 

 



Exercise 
• Express functions in A in asymptotic notation using function in B. 

         A                                 B                                     

5n2 + 100n                 3n2 + 2 

log3(n2)             log2(n3) 

 nlg4                3lg n 

lg2n                            n1/2 



Remember Reading Assignments 

• Today’s class:  
– Chapter 1, Chapter 3 

 
• Reading assignment for next class: 

– Chapter 2, 4.0, 4.4 
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