CS581 -- Algorithms

Spring 2014 Prof. Lynne E. Parker

9-Jan-2014

Reading Assignments

- Today's class:
 - Chapter 1, Chapter 3

Reading assignment for next class: – Chapter 2, 4.0, 4.4

Asymptotic Complexity

- Running time of an algorithm as a function of input size *n* for large *n*.
- Expressed using only the highest-order term in the expression for the exact running time.
 – Instead of exact running time, say Θ(n²).
- Describes behavior of function in the limit.
- Written using **Asymptotic Notation**.

Asymptotic Notation

- T(n) = worst case run time, defined on integers
- Θ, Ο, Ω, ο, ω
- Defined for functions over the natural numbers.

 $-\underline{\mathsf{Ex:}}\,f(n)\,=\,\Theta(n^2).$

- Describes how f(n) grows in comparison to n^2 .

- Define a *set* of functions; in practice used to compare two function sizes.
- The notations describe different rate-of-growth relations between the defining function and the defined set of functions.

$\theta(g(n))$ (Tight Bound)

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, \text{ and } n_0, \\ \text{such that } \forall n \ge n_0, \quad 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

We write:
$$f(n) = \theta(g(n))$$

(**not** $f(n) \in \theta(g(n))$)

Intuitively: Set of all functions that have the same *rate of growth* as g(n).

 $c_2g(n)$

f(n) and g(n) are nonnegative, for large n.

Example

 $\Theta(g(n)) = \{f(n) :$ $\exists \text{ positive constants } c_1, c_2, \text{ and}$ $n_0, \text{ such that } \forall n \ge n_0,$ $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \}$

$$f(n) = \frac{1}{2}n^2 - 3n = \theta(n^2)$$

Find c_1, c_2, n_0 that makes this true:

"Eye-balling" order of growth

- Look at leading term
- Ignore constants

• E.g.,
$$n^2/2 - 3n = \theta(n^2)$$

• Is
$$3n^3 = \theta(n^4)$$
?

O(g(n)) (Upper Bound)

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le f(n) \le cg(n) \}$

We write: f(n) = O(g(n))

Intuitively: Set of all functions whose *rate of growth* is the same as or lower than that of g(n).

$\Omega(g(n))$ (Lower Bound)

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c \text{ and } n_0, \text{ such that } \forall n \ge n_0, \text{ we have } 0 \le cg(n) \le f(n)\}$

We write: $f(n) = \Omega(g(n))$

Intuitively: Set of all functions whose *rate of growth* is the same as or higher than that of g(n).

Comparing Θ , Ω , O

<u>Theorem</u>: For any two functions g(n) and f(n), $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

o: Non-asymptotic tight bound

$o(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le f(n) < cg(n)\}.$

Note that $f(n) = o(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

ω : Non-asymptotic lower bound

 $\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ such that} \\ \forall n \ge n_0, \text{ we have } 0 \le cg(n) < f(n)\}.$

Note that
$$f(n) = \omega(g(n)) \Rightarrow$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

Limits

- -

•
$$f(n) = o(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

•
$$f(n) = \omega(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

•
$$f(n) = \theta(g(n)) \Rightarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

•
$$f(n) = O(g(n)) \Rightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$$

•
$$f(n) = \Omega(g(n)) \Rightarrow 0 < \lim_{n \to \infty} \frac{f(n)}{g(n)}$$

Running Times

- "Running time is O(f(n))" \Rightarrow Worst case is O(f(n))
- O(f(n)) bound on the worst-case running time \Rightarrow O(f(n)) bound on the running time of every input.
- $\Theta(f(n))$ bound on the worst-case running time \Rightarrow $\Theta(f(n))$ bound on the running time of every input.
- "Running time is $\Omega(f(n))$ " \Rightarrow Best case is $\Omega(f(n))$
- Can still say "Worst-case running time is $\Omega(f(n))$ "
 - Means worst-case running time is given by some unspecified function $g(n) \in \Omega(f(n))$.

Asymptotic Notation in Equations

- Can use asymptotic notation in equations to replace expressions containing lower-order terms.
- For example,

 $4n^3 + 3n^2 + 2n + 1 = 4n^3 + 3n^2 + \Theta(n)$

= $4n^3 + \Theta(n^2) = \Theta(n^3)$. How to interpret?

- In equations, $\Theta(f(n))$ always stands for an anonymous function $g(n) \in \Theta(f(n))$
 - In the example above, $\Theta(n^2)$ stands for $3n^2 + 2n + 1$.

Relational Properties

• Transitivity:

$$f(n) = \theta(g(n)) \text{ and } g(n) = \theta(h(n))$$

 $\Rightarrow f(n) = \theta(h(n))$
(similarly for Ω , O , ω , o)

Relational Properties

• Reflexivity:

$$f(n) = \theta(f(n))$$

$$f(n) = O(f(n))$$

$$f(n) = \Omega(f(n))$$

Relational Properties

• Symmetry:

$$f(n) = \theta(g(n))$$
 iff $g(n) = \theta(f(n))$

• Transpose Symmetry: f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$ f(n) = o(g(n)) iff $g(n) = \omega(f(n))$

Monotonicity

- *f*(*n*) is
 - monotonically increasing if $m \le n \Rightarrow f(m) \le f(n)$.
 - monotonically decreasing if $m \ge n \Longrightarrow f(m) \ge f(n)$.
 - **strictly increasing** if $m < n \Rightarrow f(m) < f(n)$.
 - **strictly decreasing** if $m > n \Rightarrow f(m) > f(n)$.

Example

• True or false?

For 2 functions f(n) and g(n), either f(n) = O(g(n)) or $f(n) = \Omega(g(n))$.

Example

• Let: $f(n) = n^{3} \lg^{4} n$ $g(n) = n^{4} \lg^{3} n$ $h(n) = n^{5} / \lg n$ We also state the following mathematical property:

$$\lim_{n \to \infty} \frac{\lg^b n}{n^a} = 0$$
, for any real constants $a > 0$ and b .

True or false?

- $f(n) \in O(g(n))$
- $h(n) \in O(g(n))$
- $f(n) \in \mathcal{O}(g(n))$
- $g(n) \in \omega(f(n))$
- $h(n) \in o(f(n))$

Exponentials

• Useful Identities:

$$a^{-1} = \frac{1}{a}$$
$$(a^m)^n = a^{mn}$$
$$a^m a^n = a^{m+n}$$

• Exponentials and polynomials $\lim_{n \to \infty} \frac{n^b}{a^n} = 0$ $\Rightarrow n^b = o(a^n)$

Logarithms

 $x = \log_b a$ is the exponent for $a = b^x$.

Natural log: $\ln a = \log_e a$ Binary log: $\lg a = \log_2 a$

 $|g^{2}a = (|g a)^{2}$ |g |g a = |g (|g a)

$$a = b^{\log_b a}$$

$$\log_c (ab) = \log_c a + \log_c b$$

$$\log_b a^n = n \log_b a$$

$$\log_b a = \frac{\log_c a}{\log_c b}$$

$$\log_b (1/a) = -\log_b a$$

$$\log_b a = \frac{1}{\log_a b}$$

$$a^{\log_b c} = c^{\log_b a}$$

Bases of logs and exponentials

- If the base of a logarithm is changed from one constant to another, the value is altered by a constant factor.
 - $\underline{\mathbf{Ex:}} \log_{10} n * \mathbf{log_2 10} = \log_2 n.$
 - Base of logarithm is not an issue in asymptotic notation.
- Exponentials with different bases differ by a exponential factor (not a constant factor).

- **Ex:** $2^n = (2/3)^n * 3^n$.

Polylogarithms

- For $a \ge 0$, b > 0, $\lim_{n \to \infty} (\lg^a n / n^b) = 0$, so $\lg^a n = o(n^b)$, and $n^b = \omega(\lg^a n)$
 - Prove using L'Hopital's rule repeatedly
- $\lg(n!) = \Theta(n \lg n)$
 - Prove using Stirling's approximation (in the text) for lg(n!).

Exercise

• Express functions in A in asymptotic notation using function in B.

Remember Reading Assignments

- Today's class:
 - Chapter 1, Chapter 3

Reading assignment for next class:
 – Chapter 2, 4.0, 4.4