
Today:  
− Greedy Algorithms, Part 1 
  

COSC 581, Algorithms 
February 11, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 16.1-16.2 

 
• Reading assignment for next class: 

– Chapter 16.3, Ch. 21 
 

 
• Announcement:  Exam 1 is on Tues, Feb. 18 

– Will cover everything up through dynamic 
programming and HW #5 



Recall:  Optimization problems 
• An optimization problem:  

– Given a problem instance, a set of constraints and an objective 
function  

– Find a feasible solution for the given instance for which the 
objective function has an optimal value 

– Either maximum or minimum depending on the problem being 
solved 

• A feasible solution satisfies the problem’s constraints 
• The constraints specify the limitations on the required 

solutions.  
– For example in the knapsack problem we will require that the 

items in the knapsack will not exceed a given weight 



The Greedy Technique (Method) 
• Greedy algorithms make good local choices in the hope that they result in 

an optimal solution.  
– They result in feasible solutions  
– Not necessarily an optimal solution 

 
• A greedy algorithm works in phases. At each phase: 

– You take the best you can get right now, without regard for future 
consequences 

– You hope that by choosing a local optimum at each step, you will end 
up at a global optimum 
 

• A proof is needed to show that the algorithm finds an optimal solution.  
 

• A counterexample shows that the greedy algorithm does not provide an 
optimal solution. 



Example:  Coin changing problem 
• Problem: Return correct change using a 

minimum number of bills/coins.  
• Greedy choice: bill/coin with highest coin value 

that does not overshoot 
– Example: To make $6.39, you can choose: 

• a $5 bill 
• a $1 bill, to make $6 
• a 25¢ coin, to make $6.25 
• A 10¢ coin, to make $6.35 
• four 1¢ coins, to make $6.39 

 
• For U.S. money, the greedy algorithm always 

gives the optimal solution. 



Is this currency greedy-optimal?  
• In some (fictional) monetary system, “krons” come in 1 kron, 

7 kron, and 10 kron coins 



Is this currency greedy-optimal?  
• In some (fictional) monetary system, “krons” come in 1 kron, 

7 kron, and 10 kron coins 
• No.  Using a greedy algorithm to count out 15 krons, you 

would get: 
– A 10 kron piece 
– Five 1 kron pieces, for a total of 15 krons 
– This requires 6 coins 

• A better solution would be to use two 7 kron pieces and one 
1 kron piece 
– This only requires 3 coins 

• The greedy algorithm results in a feasible solution, but not in 
an optimal solution 



Elements of the Greedy Strategy 

• Sometimes a greedy strategy results in an 
optimal solution and sometimes it does not. 
 

• No general way to tell if the greedy strategy 
will result in an optimal solution 
 

• Two ingredients necessary: 
– greedy-choice property 
– optimal substructure 



Greedy-Choice Property 

• A globally optimal solution can be arrived at 
by making a locally optimal (greedy) choice. 
 

• Unlike dynamic programming, we solve the 
problem in a top down manner 
 

• Must prove that the greedy choices result in a 
globally optimal solution 



Optimal Substructure 

• Like dynamic programming, the optimal 
solution must contain within it optimal 
solutions to sub-problems. 
 

• Given a choice between using a greedy 
algorithm and a dynamic programming 
algorithm for the same problem, in general 
which would you choose? 



Elements of the Greedy Strategy 
 Cast problem as one in which we make a 

greedy choice and are left with one 
subproblem to solve. 

 



Elements of the Greedy Strategy 

 To show optimality:  
1. Prove there is always an optimal solution to 

original problem that makes the greedy 
choice. 

2. Demonstrate that what remains is a 
subproblem with property: 

 If we combine the optimal solution of the 
subproblem with the greedy choice we have 
an optimal solution to original problem. 

 



Activity Selection Problem 

• Given a set S of n activities with start time 
𝑠𝑖 and finish time 𝑓𝑖 of activity 𝑎𝑖 

• Find a maximum size subset A of 
compatible activities (maximum number of 
activities). 

• Activities are compatible if they do not 
overlap 

• Can you suggest a greedy choice? 



Example 

Time 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 

 0      2 
1         4 

3            7 
11             15 

3                       10 
2                                    12 

11   13 Activities 
1 
2 
3 
4 
5 
6 
7 



15 

Counterexample 1 

• Select by start time 

Time 
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 

 0                                                                    15 

1         4 

11            15 
Activities 
1 
2 
3 



Counterexample 2 

• Select by minimum duration 

Time 
0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 

 1                           8 
 7       9 

8                            15 
Activities 
1 
2 
3 



Select by  earliest finishing time 

Time 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 0      2 

1         4 
3            7 

11            15 

3                       10 
2                                    12 

11   13 

Activities 
1 
2 
3 
4 
5 
6 
7 



  Activity Selection  

• Assume without loss of generality that we 
number the intervals in order of finish time.    
So f1<...<fn.  (Requires a sort) 
 

• Greedy choice: choose activity with minimum 
finish time 
 

• The following greedy algorithm starts with 
A={𝑎1} and then adds all compatible jobs 



GREEDY-ACTIVITY-SELECTOR(s,f) 

𝑛 ← s.length // number of activities 
𝐴 ← {𝑎1} 
𝑘 ← 1         //last activity added 
for 𝑚 ← 2 to 𝑛     //select   
    if 𝑠𝑚 ≥ 𝑓𝑘 then      //compatible (feasible)  
        𝐴 = 𝐴 ∪ {𝑎𝑚} 
        𝑘 ← 𝑚       //save new last activity 
return 𝐴 



GREEDY-ACTIVITY-SELECTOR(s,f) 

𝑛 ← s.length // number of activities 
𝐴 ← {𝑎1} 
𝑘 ← 1         //last activity added 
for 𝑚 ← 2 to 𝑛     //select   
    if 𝑠𝑚 ≥ 𝑓𝑘 then      //compatible (feasible)  
        𝐴 = 𝐴 ∪ {𝑎𝑚} 
        𝑘 ← 𝑚       //save new last activity 
return 𝐴 

(Θ(𝑛)) 

Θ(𝑛 lg𝑛) when including sort 



Analysis of Activity Selection Algorithm 

• The activity selected for consideration is 
always the one with the earliest finish  
 

• Why does this work?  Intuitively, it always 
leaves the maximum time possible to schedule 
more activities 
 

• The greedy choice maximizes the amount of 
unscheduled time remaining 



Proving the Greedy Algorithm Finds 
the Optimal Solution 

Theorem:  Algorithm GREEDY-ACTIVITY-SELECTOR 
produces solutions of maximum size for the 
activity selection problem 
 
General form of proofs: 

– prove that first greedy choice is correct 
– show by induction that all other subsequent 

greedy choices are correct 



Proof:   
 Let 𝑆𝑘 = 𝑎𝑖 ∈ 𝑆:  𝑠𝑖 ≥ 𝑓𝑘  be the set of activities that start after activity 𝑎𝑘 

finishes.  Activity  𝑎𝑚 has the earliest finish time. 
 Step 1 (Greedy choice property): Show that there is an optimal solution that 

contains activity 𝑎𝑚. 
 Suppose 𝐴𝑘 is a subset of 𝑆𝑘that is an optimal solution. 
 Suppose the activity in 𝐴𝑘 with the earliest finish time is 𝑎𝑗. 
  If  𝑎𝑗 =  𝑎𝑚, then schedule 𝐴𝑘 begins with a greedy choice. 
  If  𝑎𝑗 ≠  𝑎𝑚, then we need to show that there is another  
      optimal solution 𝐴′𝑘 that begins with the greedy choice of 𝑎𝑚. 
                  Let 𝐴′𝑘 = A - { 𝑎𝑗} ∪ { 𝑎𝑚} 
  We need to show that 𝐴′𝑘 is still optimal and that the   

 activities do not conflict when we replace  𝑎𝑗 with  𝑎𝑚.  
                1. 𝐴′𝑘 has the same number of activities as 𝐴𝑘 so it is optimal 
  2.  Since 𝑓𝑚 ≤ 𝑓𝑗 , activity 𝑎𝑚 will finish before the second  

    activity in 𝐴′𝑘 begins, so there are no conflicts. 



Proof continued:   
 Step 2 (Optimal substructure): Show that a greedy choice of activity 𝑎1 results in 

a smaller problem that consists of finding an optimal solution for the activity-
selection problem over those activities in S that are compatible with activity 𝑎1. 

  
 We want to show that if A is an optimal solution to the original problem S, then 

A′= A - { 𝑎1} is an optimal solution to the activity-selection problem                      
S′ = { 𝑎𝑖 ∈ S: 𝑠𝑖 ≥ 𝑓1}.  

  
 Use a proof by contradiction: 
   Suppose that we could find a solution B′ to S′ with more  
   activities than A′.  Then we could add activity 𝑎1 to B′ and  
                        have a solution to S with more activities than A.  But since  
   we assumed that A was optimal this is not possible and  
   thus we have a contradiction. 
 
 Thus, after each greedy choice is made, we are left with an optimization 

problem of the same form as the original problem.  By induction on the number 
of choices made, making a greedy choice at every step produces an optimal 
solution. 



Greedy versus Dynamic Programming 

• Both greedy and dynamic programming 
exploit the optimal substructure property 
 

• Optimal substructure:  a problem exhibits 
optimal substructure if an optimal solution 
to the problem contains within it optimal 
solutions to the sub-problems. 
 



Two Knapsack Problems 
• 0-1 knapsack problem 

– A thief robbing a store finds 𝑛 items 
– Item  𝑖 is worth 𝑣𝑖 dollars and weighs 𝑤𝑖 pounds 

(both 𝑣𝑖 and 𝑤𝑖 integers) 
– Can carry at most 𝑊 pounds in knapsack 
– Goal:  determine the set of items to take that will 

result in the most valuable load 
 

• Fractional knapsack problem 
– same setup 
– allow thief to take fractions of items 



 Optimal Substructure Property  
of Two Knapsack Problems 

• 0-1 Knapsack: 
– Consider optimal load of weight 𝑊 
– If item 𝑗 is removed from the load, the resulting load is the most 

valuable load weighing at most 𝑊 −𝑤𝑗 
 that can be taken from 

𝑛 − 1 original items excluding item 𝑗 
 

• Fractional Knapsack: 
– Consider optimal load of weight W 
– If we remove weight 𝑤 of item 𝑗 , the remaining load is the 

optimal load weighing 𝑊 −𝑤 that the thief can take from the 
original 𝑛 − 1 original items excluding 𝑤𝑗 − 𝑤 pounds of item 𝑗 



Fractional Knapsack can be Solved 
Using Greedy Algorithm 

• What is the greedy selection criterion? 
 
 



Fractional Knapsack Example 

Item 1 $60 

Item 2 20 lb $100 

Item 3 30 lb $120 
Knapsack 

W = 50 lb 

10 lb 

20 lb 

10 lb 
20 lb 

Optimal 
Solution 



Greedy Does Not Work for  
0-1 Knapsack 

Item 1 10 lb $60 

Item 2 20 lb $100 

Item 3 30 lb $120 

30 lb 

20 lb 20 lb 

30 lb 

10 lb 

10 lb 

$220 $160 $180 



Other Possible Greedy Strategies 
• Pick the heaviest item first?   
 
• Pick the lightest item first? 

 
• Need dynamic programming:  For each item, consider an optimal 

solution that does and does not include the item. 
 

• Moral: 
– Greedy algorithm sometimes gives the optimal solution, 

sometimes not, depending on the problem. 
– Dynamic programming, when applicable, will typically give 

optimal solutions, but are usually trickier to come up with and 
sometimes trickier to implement. 

 



0-1 Knapsack Solution 

• The dynamic programming solution to this problem 
is similar to the LCS problem.  At each step, consider 
including or not including each item in a solution 
 

• Let 𝑥𝑖 be 0 if item 𝑖  is not included and 1 if it is 
included 
 

• Our goal is to maximize the value of the pack while 
keeping the weight ≤ W 



Dynamic Programming vs. Greedy Algorithms 

• Dynamic programming 
– We make a choice at each step 
– The choice depends on solutions to subproblems 
– Bottom up solution, from smaller to larger subproblems 

 
• Greedy algorithm 

– Make the greedy choice and THEN 
– Solve the subproblem arising after the choice is made  
– The choice we make may depend on previous choices, but 

not on solutions to subproblems 
– Top down solution, problems decrease in size 



By the way… Dijkstra’s alg. is greedy 

• Dijkstra’s algorithm finds the shortest paths from a given node 
to all other nodes in a graph 
– Initially,  

• Mark the given node as known (path length is zero) 
• For each out-edge, set the distance in each neighboring node equal to the 

cost (length) of the out-edge, and set its predecessor to the initially given 
node 

– Repeatedly (until all nodes are known), 
• Find an unknown node containing the smallest distance 
• Mark the new node as known 
• For each node adjacent to the new node, examine its neighbors to see 

whether their estimated distance can be reduced (distance to known 
node plus cost of out-edge) 

– If so, also reset the predecessor of the new node 



In-class Exercise 
You are given a set {x1, x2, … xn} of points that all lie on the same 
real line.  Let us define a “unit-length closed interval” to be a line 
segment of length 1 that lies on the same real line as the points 
in the given set.  This line segment “contains” all the points that 
lie along the segment, including the end points.   
Describe a greedy algorithm that determines the smallest set of 
unit-length closed intervals that contains all of the given points. 

 



In-class Exercise (con’t.) 
 

Prove this alg. is correct. 
 



Reading Assignments 

 

• Reading assignment for next class: 
– Chapter 16.3, Ch. 21 

 
 

• Announcement:  Exam 1 is on Tues, Feb. 18 
– Will cover everything up through dynamic 

programming and HW #5 
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