
Today:
− Greedy Algorithms, Part 1

COSC 581, Algorithms
February 11, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 16.1-16.2

• Reading assignment for next class:

– Chapter 16.3, Ch. 21

• Announcement: Exam 1 is on Tues, Feb. 18

– Will cover everything up through dynamic
programming and HW #5

Recall: Optimization problems
• An optimization problem:

– Given a problem instance, a set of constraints and an objective
function

– Find a feasible solution for the given instance for which the
objective function has an optimal value

– Either maximum or minimum depending on the problem being
solved

• A feasible solution satisfies the problem’s constraints
• The constraints specify the limitations on the required

solutions.
– For example in the knapsack problem we will require that the

items in the knapsack will not exceed a given weight

The Greedy Technique (Method)
• Greedy algorithms make good local choices in the hope that they result in

an optimal solution.
– They result in feasible solutions
– Not necessarily an optimal solution

• A greedy algorithm works in phases. At each phase:

– You take the best you can get right now, without regard for future
consequences

– You hope that by choosing a local optimum at each step, you will end
up at a global optimum

• A proof is needed to show that the algorithm finds an optimal solution.

• A counterexample shows that the greedy algorithm does not provide an
optimal solution.

Example: Coin changing problem
• Problem: Return correct change using a

minimum number of bills/coins.
• Greedy choice: bill/coin with highest coin value

that does not overshoot
– Example: To make $6.39, you can choose:

• a $5 bill
• a $1 bill, to make $6
• a 25¢ coin, to make $6.25
• A 10¢ coin, to make $6.35
• four 1¢ coins, to make $6.39

• For U.S. money, the greedy algorithm always

gives the optimal solution.

Is this currency greedy-optimal?
• In some (fictional) monetary system, “krons” come in 1 kron,

7 kron, and 10 kron coins

Is this currency greedy-optimal?
• In some (fictional) monetary system, “krons” come in 1 kron,

7 kron, and 10 kron coins
• No. Using a greedy algorithm to count out 15 krons, you

would get:
– A 10 kron piece
– Five 1 kron pieces, for a total of 15 krons
– This requires 6 coins

• A better solution would be to use two 7 kron pieces and one
1 kron piece
– This only requires 3 coins

• The greedy algorithm results in a feasible solution, but not in
an optimal solution

Elements of the Greedy Strategy

• Sometimes a greedy strategy results in an
optimal solution and sometimes it does not.

• No general way to tell if the greedy strategy
will result in an optimal solution

• Two ingredients necessary:
– greedy-choice property
– optimal substructure

Greedy-Choice Property

• A globally optimal solution can be arrived at
by making a locally optimal (greedy) choice.

• Unlike dynamic programming, we solve the
problem in a top down manner

• Must prove that the greedy choices result in a
globally optimal solution

Optimal Substructure

• Like dynamic programming, the optimal
solution must contain within it optimal
solutions to sub-problems.

• Given a choice between using a greedy
algorithm and a dynamic programming
algorithm for the same problem, in general
which would you choose?

Elements of the Greedy Strategy
 Cast problem as one in which we make a

greedy choice and are left with one
subproblem to solve.

Elements of the Greedy Strategy

 To show optimality:
1. Prove there is always an optimal solution to

original problem that makes the greedy
choice.

2. Demonstrate that what remains is a
subproblem with property:

 If we combine the optimal solution of the
subproblem with the greedy choice we have
an optimal solution to original problem.

Activity Selection Problem

• Given a set S of n activities with start time
𝑠𝑖 and finish time 𝑓𝑖 of activity 𝑎𝑖

• Find a maximum size subset A of
compatible activities (maximum number of
activities).

• Activities are compatible if they do not
overlap

• Can you suggest a greedy choice?

Example

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 2
1 4

3 7
11 15

3 10
2 12

11 13 Activities
1
2
3
4
5
6
7

15

Counterexample 1

• Select by start time

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 0 15

1 4

11 15
Activities
1
2
3

Counterexample 2

• Select by minimum duration

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 1 8
 7 9

8 15
Activities
1
2
3

Select by earliest finishing time

Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 2

1 4
3 7

11 15

3 10
2 12

11 13

Activities
1
2
3
4
5
6
7

 Activity Selection

• Assume without loss of generality that we
number the intervals in order of finish time.
So f1<...<fn. (Requires a sort)

• Greedy choice: choose activity with minimum
finish time

• The following greedy algorithm starts with
A={𝑎1} and then adds all compatible jobs

GREEDY-ACTIVITY-SELECTOR(s,f)

𝑛 ← s.length // number of activities
𝐴 ← {𝑎1}
𝑘 ← 1 //last activity added
for 𝑚 ← 2 to 𝑛 //select
 if 𝑠𝑚 ≥ 𝑓𝑘 then //compatible (feasible)
 𝐴 = 𝐴 ∪ {𝑎𝑚}
 𝑘 ← 𝑚 //save new last activity
return 𝐴

GREEDY-ACTIVITY-SELECTOR(s,f)

𝑛 ← s.length // number of activities
𝐴 ← {𝑎1}
𝑘 ← 1 //last activity added
for 𝑚 ← 2 to 𝑛 //select
 if 𝑠𝑚 ≥ 𝑓𝑘 then //compatible (feasible)
 𝐴 = 𝐴 ∪ {𝑎𝑚}
 𝑘 ← 𝑚 //save new last activity
return 𝐴

(Θ(𝑛))

Θ(𝑛 lg𝑛) when including sort

Analysis of Activity Selection Algorithm

• The activity selected for consideration is
always the one with the earliest finish

• Why does this work? Intuitively, it always
leaves the maximum time possible to schedule
more activities

• The greedy choice maximizes the amount of
unscheduled time remaining

Proving the Greedy Algorithm Finds
the Optimal Solution

Theorem: Algorithm GREEDY-ACTIVITY-SELECTOR
produces solutions of maximum size for the
activity selection problem

General form of proofs:

– prove that first greedy choice is correct
– show by induction that all other subsequent

greedy choices are correct

Proof:
 Let 𝑆𝑘 = 𝑎𝑖 ∈ 𝑆: 𝑠𝑖 ≥ 𝑓𝑘 be the set of activities that start after activity 𝑎𝑘

finishes. Activity 𝑎𝑚 has the earliest finish time.
 Step 1 (Greedy choice property): Show that there is an optimal solution that

contains activity 𝑎𝑚.
 Suppose 𝐴𝑘 is a subset of 𝑆𝑘that is an optimal solution.
 Suppose the activity in 𝐴𝑘 with the earliest finish time is 𝑎𝑗.
 If 𝑎𝑗 = 𝑎𝑚, then schedule 𝐴𝑘 begins with a greedy choice.
 If 𝑎𝑗 ≠ 𝑎𝑚, then we need to show that there is another
 optimal solution 𝐴′𝑘 that begins with the greedy choice of 𝑎𝑚.
 Let 𝐴′𝑘 = A - { 𝑎𝑗} ∪ { 𝑎𝑚}
 We need to show that 𝐴′𝑘 is still optimal and that the

 activities do not conflict when we replace 𝑎𝑗 with 𝑎𝑚.
 1. 𝐴′𝑘 has the same number of activities as 𝐴𝑘 so it is optimal
 2. Since 𝑓𝑚 ≤ 𝑓𝑗 , activity 𝑎𝑚 will finish before the second

 activity in 𝐴′𝑘 begins, so there are no conflicts.

Proof continued:
 Step 2 (Optimal substructure): Show that a greedy choice of activity 𝑎1 results in

a smaller problem that consists of finding an optimal solution for the activity-
selection problem over those activities in S that are compatible with activity 𝑎1.

 We want to show that if A is an optimal solution to the original problem S, then

A′= A - { 𝑎1} is an optimal solution to the activity-selection problem
S′ = { 𝑎𝑖 ∈ S: 𝑠𝑖 ≥ 𝑓1}.

 Use a proof by contradiction:
 Suppose that we could find a solution B′ to S′ with more
 activities than A′. Then we could add activity 𝑎1 to B′ and
 have a solution to S with more activities than A. But since
 we assumed that A was optimal this is not possible and
 thus we have a contradiction.

 Thus, after each greedy choice is made, we are left with an optimization

problem of the same form as the original problem. By induction on the number
of choices made, making a greedy choice at every step produces an optimal
solution.

Greedy versus Dynamic Programming

• Both greedy and dynamic programming
exploit the optimal substructure property

• Optimal substructure: a problem exhibits
optimal substructure if an optimal solution
to the problem contains within it optimal
solutions to the sub-problems.

Two Knapsack Problems
• 0-1 knapsack problem

– A thief robbing a store finds 𝑛 items
– Item 𝑖 is worth 𝑣𝑖 dollars and weighs 𝑤𝑖 pounds

(both 𝑣𝑖 and 𝑤𝑖 integers)
– Can carry at most 𝑊 pounds in knapsack
– Goal: determine the set of items to take that will

result in the most valuable load

• Fractional knapsack problem
– same setup
– allow thief to take fractions of items

 Optimal Substructure Property
of Two Knapsack Problems

• 0-1 Knapsack:
– Consider optimal load of weight 𝑊
– If item 𝑗 is removed from the load, the resulting load is the most

valuable load weighing at most 𝑊 −𝑤𝑗
 that can be taken from

𝑛 − 1 original items excluding item 𝑗

• Fractional Knapsack:
– Consider optimal load of weight W
– If we remove weight 𝑤 of item 𝑗 , the remaining load is the

optimal load weighing 𝑊 −𝑤 that the thief can take from the
original 𝑛 − 1 original items excluding 𝑤𝑗 − 𝑤 pounds of item 𝑗

Fractional Knapsack can be Solved
Using Greedy Algorithm

• What is the greedy selection criterion?

Fractional Knapsack Example

Item 1 $60

Item 2 20 lb $100

Item 3 30 lb $120
Knapsack

W = 50 lb

10 lb

20 lb

10 lb
20 lb

Optimal
Solution

Greedy Does Not Work for
0-1 Knapsack

Item 1 10 lb $60

Item 2 20 lb $100

Item 3 30 lb $120

30 lb

20 lb 20 lb

30 lb

10 lb

10 lb

$220 $160 $180

Other Possible Greedy Strategies
• Pick the heaviest item first?

• Pick the lightest item first?

• Need dynamic programming: For each item, consider an optimal

solution that does and does not include the item.

• Moral:
– Greedy algorithm sometimes gives the optimal solution,

sometimes not, depending on the problem.
– Dynamic programming, when applicable, will typically give

optimal solutions, but are usually trickier to come up with and
sometimes trickier to implement.

0-1 Knapsack Solution

• The dynamic programming solution to this problem
is similar to the LCS problem. At each step, consider
including or not including each item in a solution

• Let 𝑥𝑖 be 0 if item 𝑖 is not included and 1 if it is
included

• Our goal is to maximize the value of the pack while
keeping the weight ≤ W

Dynamic Programming vs. Greedy Algorithms

• Dynamic programming
– We make a choice at each step
– The choice depends on solutions to subproblems
– Bottom up solution, from smaller to larger subproblems

• Greedy algorithm

– Make the greedy choice and THEN
– Solve the subproblem arising after the choice is made
– The choice we make may depend on previous choices, but

not on solutions to subproblems
– Top down solution, problems decrease in size

By the way… Dijkstra’s alg. is greedy

• Dijkstra’s algorithm finds the shortest paths from a given node
to all other nodes in a graph
– Initially,

• Mark the given node as known (path length is zero)
• For each out-edge, set the distance in each neighboring node equal to the

cost (length) of the out-edge, and set its predecessor to the initially given
node

– Repeatedly (until all nodes are known),
• Find an unknown node containing the smallest distance
• Mark the new node as known
• For each node adjacent to the new node, examine its neighbors to see

whether their estimated distance can be reduced (distance to known
node plus cost of out-edge)

– If so, also reset the predecessor of the new node

In-class Exercise
You are given a set {x1, x2, … xn} of points that all lie on the same
real line. Let us define a “unit-length closed interval” to be a line
segment of length 1 that lies on the same real line as the points
in the given set. This line segment “contains” all the points that
lie along the segment, including the end points.
Describe a greedy algorithm that determines the smallest set of
unit-length closed intervals that contains all of the given points.

In-class Exercise (con’t.)

Prove this alg. is correct.

Reading Assignments

• Reading assignment for next class:
– Chapter 16.3, Ch. 21

• Announcement: Exam 1 is on Tues, Feb. 18
– Will cover everything up through dynamic

programming and HW #5

	Today: �− Greedy Algorithms, Part 1�	
	Reading Assignments
	Recall: Optimization problems
	The Greedy Technique (Method)
	Example: Coin changing problem
	Is this currency greedy-optimal?
	Is this currency greedy-optimal?
	Elements of the Greedy Strategy
	Greedy-Choice Property
	Optimal Substructure
	Elements of the Greedy Strategy
	Elements of the Greedy Strategy
	Activity Selection Problem
	Example
	Counterexample 1
	Counterexample 2
	Select by earliest finishing time
	 Activity Selection
	Greedy-Activity-Selector(s,f)
	Greedy-Activity-Selector(s,f)
	Analysis of Activity Selection Algorithm
	Proving the Greedy Algorithm Finds the Optimal Solution
	Slide Number 23
	Slide Number 24
	Greedy versus Dynamic Programming
	Two Knapsack Problems
	 Optimal Substructure Property �of Two Knapsack Problems
	Fractional Knapsack can be Solved Using Greedy Algorithm
	Slide Number 29
	Greedy Does Not Work for �0-1 Knapsack
	Other Possible Greedy Strategies
	0-1 Knapsack Solution
	Dynamic Programming vs. Greedy Algorithms
	By the way… Dijkstra’s alg. is greedy
	In-class Exercise
	In-class Exercise (con’t.)
	Reading Assignments

