
Today:
− Huffman Codes
− Data Structures for Disjoint Sets

COSC 581, Algorithms
February 20, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 16.3, Ch. 21

• Reading assignment for next class:
– Chapter 23

Huffman Coding

• Huffman codes can be used to compress information
(savings of 20% to 90%)
– Like WinZip – although WinZip doesn’t use the Huffman algorithm
– .mp3 and .jpg file formats use Huffman coding at one stage of the

compression

• The basic idea is that instead of storing each character in a
file as an 8-bit ASCII value, we will instead store the more
frequently occurring characters using fewer bits and less
frequently occurring characters using more bits
– On average this should decrease the file size (usually ½)

Huffman Coding Problem

• The more frequent a symbol occurs, the
shorter should be the Huffman binary word
representing it.

• The Huffman code is a prefix code.

– No prefix of a code word is equal to another
codeword.

Prefix Code
• Prefix(-free) code: no codeword is also a prefix of some other codewords

(Un-ambiguous)
– An optimal data compression achievable by a character code can always

be achieved with a prefix code
– Simplify the encoding (compression) and decoding

• Encoding: abc  0 . 101. 100 = 0101100
• Decoding: 001011101 = 0. 0. 101. 1101  aabe

– Use binary tree to represent prefix codes for easy decoding
• An optimal code is always represented by a full binary tree, in which every

non-leaf node has two children
– |C| leaves and |C|-1 internal nodes Cost:

∑=
∈Cc

T cdcfTB)()()(
Frequency of c

Depth of c (length of the codeword)

Decode the following

E 0

T 11

N 100

I 1010

S 1011

11010010010101011

E 0

T 10

N 100

I 0111

S 1010

100100101010

Prefix codes and binary trees

Tree representation of prefix codes

A 00
B 010
C 0110
D 0111
E 10
F 11

0

0 0

0

0

1

1

1 1

1 A

B

C D

E F

Idea for Building a Huffman Tree

1. Compute the frequencies of each character in the alphabet
2. Build a tree forest with one-node trees, where each node

corresponds to a character and contains the frequency of the
character in the text to be encoded

3. Select two parentless nodes with the lowest frequency
4. Create a new node which is the parent of the two lowest

frequency nodes.
5. Label the left link with 0 and the right link with 1
6. Assign the new node a frequency equal to the sum of its

children's frequencies.
7. Repeat Steps 3 through 6 until there is only one parentless

node left.

Huffman Coding Algorithm

// C is a set of n characters

// Q is implemented as a binary min-heap

Huffman Coding Algorithm

O(lg n)

O(lg n)

O(lg n)

Total computation time = O(n lg n)

// C is a set of n characters

// Q is implemented as a binary min-heap O(n)

Huffman Algorithm correctness:
Need to prove two things:

(1) Greedy Choice Property:

 There exists a minimum cost prefix tree where

the two smallest frequency characters are
indeed siblings with the longest path from root.

 This means that the greedy choice does not

hurt finding the optimum.

Algorithm correctness:

(2) Optimal Substructure Property:

 The optimal solution to the subproblem,

combined with the greedy choice (i.e., the
choice of the two least frequent elements),
leads to an optimal solution to the original
problem.

Algorithm correctness:

 (1) Greedy Choice Property:
 There exists a minimum cost tree where the minimum

frequency elements are longest path siblings:

 Assume that is not the situation.
 Then there are two elements in the longest path.

 Say a, b are the elements with smallest frequency and

x, y the elements in the longest path.

Algorithm correctness:

x y

a

dy

da

We know
about depth
and
frequency:

da ≤ dy

fa ≤ fy

CT

Algorithm correctness:

x y

a

dy

da

We also know
about code
tree CT:

 ∑ fcdc
 c∈C

is smallest
possible.

CT

Now exchange a and y.

Algorithm correctness:

x a

y

dy

da

CT′

(da ≤ dy , fa ≤ fy
Therefore
fada ≥fyda and
fydy ≥fady)

Cost(CT) = ∑ fcdc =

∑ fcdc+ fada+ fydy ≥

∑ fcdc+ fyda+ fady=

 cost(CT′)

c∈C ≠a,y

c∈C ≠a,y

c∈C

Algorithm correctness:

x a

b

dx

db

CT

Now do the same
thing for b and x

Algorithm correctness:

b a

x

dx

db

CT′′

And get an
optimal code tree
where
a and b are
siblings with the
longest paths

Algorithm correctness:
Optimal substructure property:

Let a,b be the symbols with the smallest
 frequency.
Let x be a new symbol whose frequency is
 fx = fa +fb.
Delete characters a and b, and find the optimal
 code tree CT for the reduced alphabet.

Then CT′ = CT ⋃ {a,b} is an optimal tree for the
 original alphabet.

Algorithm correctness:
CT

x

a b

CT′

x

fx = fa + fb

Algorithm correctness:

cost(CT′)=∑fcd′c = ∑fcd′c + fad′a + fbd′b

= ∑ fcd′c + fa(dx+1) + fb (dx+1)

 = ∑ fcd′c+(fa + fb)(dx+1)

 = ∑ fcdc+fx(dx+1)+fx = cost(CT) + fx

c∈C c∈C ≠a,b

c∈C ≠a,b

c∈C ≠a,b

c∈C ≠a,b

Algorithm correctness:
CT

x

a b

CT′

x

fx = fa + fb

cost(CT)+fx = cost(CT′)

Algorithm correctness:

Assume CT′ is not optimal.

By the previous lemma there is a tree CT′′
that is optimal, and where a and b are siblings.

So:
 cost(CT′′) < cost(CT′)

Algorithm correctness:

CT′′′

x

a b

CT′′

x

fx = fa + fb

By a similar argument:
cost(CT′′′)+fx = cost(CT′′)

Consider:

Algorithm correctness:

We get:

cost(CT′′′) = cost(CT′′) – fx < cost(CT′) – fx
 = cost(CT)

and this contradicts the minimality of cost(CT).

Disjoint Sets Data Structure (Chap. 21)
• A disjoint-set is a collection S = {S1, S2,…, Sk} of

distinct dynamic sets.

• Each set is identified by a member of the set,
called representative.

• Disjoint set operations:
– MAKE-SET(x): create a new set with only x. assume x is

not already in some other set.
– UNION(x,y): combine the two sets containing x and y

into one new set. A new representative is selected.
– FIND-SET(x): return the representative of the set

containing x.

Multiple Operations

• Suppose multiple operations:
– n: #MAKE-SET operations (executed at beginning).
– m: #MAKE-SET, UNION, FIND-SET operations.
– m≥n, #UNION operation is at most n-1.

An Application of Disjoint-Set
• Determine the connected components of an

undirected graph.

CONNECTED-COMPONENTS(G)
1. for each vertex v ∈V[G]
2. do MAKE-SET(v)
3. for each edge (u,v) ∈E[G]
4. do if FIND-SET(u) ≠ FIND-SET(v)
5. then UNION(u,v)

SAME-COMPONENT(u,v)
1. if FIND-SET(u)=FIND-SET(v)
2. then return TRUE
3. else return FALSE

Disjoint-set Implementation: Forests
• Rooted trees, each tree is a set, root is the

representative. Each node points to its
parent. Root points to itself.

c f

h e

c c c f

d d

h e

c c

Set {c,h,e} Set {f,d} UNION

Operations

• Three operations:
– MAKE-SET(x): create a tree containing x. O(1)
– FIND-SET(x): follow the chain of parent pointers until to the

root. O(height of x’s tree)
– UNION(x,y): let the root of one tree point to the root of the

other. O(1)

• It is possible that n-1 UNIONs results in a tree of
height n-1 (just a linear chain of n nodes).

• So n FIND-SET operations will cost O(n2).

Union by Rank & Path Compression

• Union by Rank: Each node is associated with a rank,
which is the upper bound on the height of the node (i.e.,
the height of subtree rooted at the node), then when
UNION, let the root with smaller rank point to the root
with larger rank.

• Path Compression: used in FIND-SET(x) operation, make
each node in the path from x to the root directly point to
the root. Thus reduce the tree height.

Path Compression

f

e

d

c

f

e d c

Algorithm for Disjoint-Set Forest

MAKE-SET(x)
1. p[x]←x
2. rank[x]←0 LINK(x,y)

1. if rank[x]>rank[y]
2. then p[y] ←x
3. else p[x] ←y
4. if rank[x]=rank[y]
5. then rank[y]++

FIND-SET(x)
1. if x≠ p[x]
2. then p[x] ←FIND-SET(p[x])
3. return p[x]

Worst case running time for m MAKE-SET, UNION, FIND-SET operations is:
O(mα(n)) where α(n)≤4. So nearly linear in m (but not actually linear!).

UNION(x,y)
1. LINK(FIND-SET(x),FIND-SET(y))

Understanding α(n)…
Inverse is Ak(n)

• 𝐴𝑘 𝑗 = �
𝑗 + 1 if 𝑘 = 0

𝐴𝑘−1 (𝑗) if 𝑘 ≥ 1

• Examine Ak(1): for k=0,1,2,3,4:
A0(1)=1+1=2
A1(1)=2∙1+1=3
A2(1)=21+1(1+1)-1=7
A3(1)=A2

(1+1)(1)=A2
(2)(1)=A2(A2(1))=A2(7)=27+1(7+1)-1=28 ∙ 8-1=2047

A4(1)=A3
2(1)=A3(A3(1)) =A3(2047)=A2

(2048)(2047)
 >> A2(2047) =22048.2048-1 >22048 =(24)512 =(16)512

>>1080 (estimated number of atoms in universe!)

(𝑗 + 1)

Inverse of Ak(n): α(n)

α(n) = min{k: Ak(1) ≥n} (so, Aα(n)(1) ≥n)
 0 for 0≤ n ≤2
 1 for n =3
α(n)= 2 for 4≤ n ≤7
 3 for 8≤ n ≤2047
 4 for 2048≤ n ≤A4(1).
Extremely slow increasing function.
 α(n) ≤4 for all practical purposes.

Reading Assignments

• Reading assignment for next class:
– Chapter 23

	Today: �− Huffman Codes�− Data Structures for Disjoint Sets	
	Reading Assignments
	Huffman Coding
	Huffman Coding Problem
	Prefix Code
	Decode the following
	Prefix codes and binary trees
	Idea for Building a Huffman Tree
	Huffman Coding Algorithm
	Huffman Coding Algorithm
	Huffman Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Algorithm correctness:
	Disjoint Sets Data Structure (Chap. 21)
	Multiple Operations
	An Application of Disjoint-Set
	Disjoint-set Implementation: Forests
	Operations
	Union by Rank & Path Compression
	Path Compression
	Algorithm for Disjoint-Set Forest
	Understanding (n)…�Inverse is Ak(n)
	Inverse of Ak(n): (n)
	Reading Assignments

