
Today:
− Theory behind Min. Spanning Tree
− Max Flow (as time allows)

COSC 581, Algorithms
February 27, 2014

Many of these slides are adapted from several online sources

Reading Assignments

• Today’s class:
– Chapter 23, (if time) Ch. 26

• Reading assignment for next class:
– Chapter 26

Growing a MST – Generic Approach

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

• Grow a set A of edges (initially
empty)

• Incrementally add edges to A such
that they would belong

 to a MST

– An edge (u, v) is safe for A if and only if

A ∪ {(u, v)} is also a subset of some
MST

Idea: add only “safe” edges

Generic MST algorithm

1. A ← ∅

2. while A is not a spanning tree

3. do find an edge (u, v) that is safe for A

4. A ← A ∪ {(u, v)}

5. return A

How do we find safe edges?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

5

S

V - S

Finding Safe Edges

• Let’s look at edge (h, g)

– Is it safe for A initially?

• Later on:

– Let S ⊂ V be any set of vertices that includes h but not g
(so that g is in V - S)

– In any MST, there has to be one edge (at least) that
connects S with V - S

– Why not choose the edge with minimum weight (h,g)?

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Definitions

• A cut (S, V - S)

 is a partition of vertices

 into disjoint sets S and V - S

• An edge crosses the cut

 (S, V - S) if one endpoint is in S

 and the other in V – S

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S 
S

 V- S

Definitions (cont’d)
• A cut respects a set A
 of edges ⇔ no edge
 in A crosses the cut
• An edge is a light edge
 crossing a cut ⇔ its weight is minimum over

all edges crossing the cut
– Note that for a given cut, there can be > 1 light
 edges crossing it

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

S

V- S 
S

 V- S

Theorem
• Let A be a subset of some MST (i.e., T), (S, V - S) be a cut that

respects A, and (u, v) be a light edge crossing (S, V-S). Then (u,
v) is safe for A .

Proof:
• Let T be an MST that includes A

– edges in A are shaded

• Case1: If T includes (u,v), then
 it would be safe for A
• Case2: Suppose T does not include
 the edge (u, v)
• Idea: construct another MST T’
 that includes A ∪ {(u, v)}

u

v

S

V - S

u

v

S

V - S

Theorem - Proof
• T contains a unique path p between u and v

• Path p must cross the

 cut (S, V - S) at least

 once: let (x, y) be that edge

• Let’s remove (x,y) ⇒ breaks

 T into two components.

• Adding (u, v) reconnects the components

 T’ = T - {(x, y)} ∪ {(u, v)}

x

y

p

Theorem – Proof (cont.)
T′ = T - {(x, y)} ∪ {(u, v)}

Have to show that T′ is a MST:

• (u, v) is a light edge

 ⇒ w(u, v) ≤ w(x, y)

• w(T′) = w(T) - w(x, y) + w(u, v)

 ≤ w(T)

• Since T is a spanning tree

 w(T) ≤ w(T′) ⇒ T′ must be an MST as well

u

v

S

V - S

x

y

p

Theorem – Proof (cont.)
Need to show that (u, v) is safe for A:

i.e., (u, v) can be a part of a MST

• A ⊆ T and (x, y) ∉ T ⇒

 (x, y) ∉ A ⇒ A ⊆T′

• A ∪ {(u, v)} ⊆ T′

• Since T′ is a MST

 ⇒ (u, v) is safe for A

u

v

S

V - S

x

y

p

Prim’s Algorithm

• The edges in set A always form a single tree

• Starts from an arbitrary “root”: VA = {a}

• At each step:

– Find a light edge crossing (VA, V - VA)

– Add this edge to A

– Repeat until the tree spans all vertices

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

How to Find Light Edges Quickly?
Use a priority queue Q:

• Contains vertices not yet

 included in the tree, i.e., (V – VA)

– VA = {a}, Q = {b, c, d, e, f, g, h, i}

• We associate a key with each vertex v:

 key[v] = minimum weight of any edge (u, v)
 connecting v to VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

w1

w2

Key[a]=min(w1,w2)

a

How to Find Light Edges Quickly? (cont.)
• After adding a new node to VA we update the weights of all the

nodes adjacent to it
 e.g., after adding a to the tree, k[b]=4 and k[h]=8

• Key of v is ∞ if v is not adjacent to any vertices in VA

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

PRIM(V, E, w, r)
1. Q ← ∅

2. for each u ∈ V

3. do key[u] ← ∞

4. π[u] ← NIL

5. INSERT(Q, u)

6. DECREASE-KEY(Q, r, 0) ► key[r] ← 0

7. while Q ≠ ∅

8. do u ← EXTRACT-MIN(Q)

9. for each v ∈ Adj[u]

10. do if v ∈ Q and w(u, v) < key[v]

11. then π[v] ← u

12. DECREASE-KEY(Q, v, w(u, v))

O(V) if Q is implemented as
a min-heap

Executed |V| times

Takes O(lgV)

Min-heap
operations:
O(VlgV)

Executed O(E) times total

Constant

Takes O(lgV)

O(ElgV)

Total time: O(VlgV + ElgV) = O(ElgV)

O(lgV)

A different instance of the
 generic approach

• A is a forest containing connected
components
– Initially, each component is a single

vertex
• Any safe edge merges two of these

components into one
– Each component is a tree

u

v

S

V - S

u

v

tree1

tree2

(instance 1)

(instance 2)

Kruskal’s Algorithm
• How is it different from Prim’s algorithm?

– Prim’s algorithm grows one
 tree all the time
– Kruskal’s algorithm grows
 multiple trees (i.e., a forest)
 at the same time.
– Trees are merged together
 using safe edges
– Since an MST has exactly |V| - 1
 edges, after |V| - 1 merges,
 we would have only one component

u

v

tree1

tree2

We would add
edge (c, f)

a

b c d

e

h g f

i

4

8 7

8

11

1 2

7

2

4 14

9

10
6

Kruskal’s Algorithm
• Start with each vertex being its

own component
• Repeatedly merge two

components into one by choosing
the light edge that connects them

• Which components to consider at
each iteration?
– Scan the set of edges in

monotonically increasing order by
weight

1. A ← ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)}
8. UNION(u, v)
9. return A
Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on the

implementation of the disjoint-set data structure

KRUSKAL(V, E, w)

O(V)

O(ElgE)

O(E)

O(lgV)

1. A ← ∅
2. for each vertex v ∈ V
3. do MAKE-SET(v)
4. sort E into non-decreasing order by w
5. for each (u, v) taken from the sorted list
6. do if FIND-SET(u) ≠ FIND-SET(v)
7. then A ← A ∪ {(u, v)}
8. UNION(u, v)
9. return A
- Running time: O(V+ElgE+ElgV)=O(ElgE)
- Since E=O(V2), we have lgE=O(2lgV)=O(lgV)

KRUSKAL(V, E, w) (cont.)

O(V)

O(ElgE)

O(E)

O(lgV)

O(ElgV)

In-Class Exercise/Question #1
• Suppose that some of the weights in a

connected graph G are negative. Will Prim’s
algorithm still work? What about Kruskal’s
algorithm? Justify your answers.

In-Class Exercise/Question #2
• Find an algorithm for the “maximum” spanning tree.

That is, given an undirected weighted graph G, find a
spanning tree of G of maximum cost. Prove the
correctness of your algorithm.

In-class Exercise
You are given a set {x1, x2, … xn} of points that all lie on the same
real line. Let us define a “unit-length closed interval” to be a line
segment of length 1 that lies on the same real line as the points
in the given set. This line segment “contains” all the points that
lie along the segment, including the end points.
Describe a greedy algorithm that determines the smallest set of
unit-length closed intervals that contains all of the given points.

Maximum Flow

Chapter 26

Flow Graph
• A common scenario is to use a graph to represent a

“flow network” and use it to answer questions about
material flows

• Flow is the rate that material moves through the
network

• Each directed edge is a conduit for the material with
some stated capacity

• Vertices are connection points but do not collect
material
– Flow into a vertex must equal the flow leaving the vertex,

flow conservation

Sample Networks

communication

Network

telephone exchanges,
computers, satellites

Nodes Arcs

cables, fiber optics,
microwave relays

Flow

voice, video,
packets

circuits gates, registers,
processors wires current

mechanical joints rods, beams, springs heat, energy

hydraulic
reservoirs, pumping
stations, lakes pipelines fluid, oil

financial stocks, companies transactions money

transportation airports, rail yards,
street intersections

highways, railbeds,
airway routes

freight,
vehicles,
passengers

chemical sites bonds energy

Flow Concepts

• Source vertex s

– where material is produced

• Sink vertex t
– where material is consumed

• For all other vertices – what goes in must go out
– Flow conservation

• Goal: determine maximum rate of material flow
from source to sink

Multiple Sources or Sinks

• What if you have a problem with more than one source and
more than one sink?

• Modify the graph to create a single supersource and supersink

13

11

5 4

15

10

14

13

3

s t 9

a b

c d
13

11

5 4

15

10

14

13

3

x y 9

e f

g h

4

13

11

5 4

15

10

14

13

3

9

a b

c d
13

11

5 4

15

10

14

13

3

9

e f

g h

4 s

i

j

k

l

t
∞

∞

∞

∞

Formal Max Flow Problem

– Graph G=(V,E) – a flow network
• Directed, each edge has capacity c(u,v) ≥ 0
• Two special vertices: source s, and sink t
• For any other vertex v, there is a path s→… → v → … → t

– Flow – a function f : V ×V → R
• Capacity constraint: For all u, v ∈ V: f(u,v) ≤ c(u,v)
• Skew symmetry: For all u, v ∈ V: f(u,v) = –f(v,u)
• Flow conservation: For all u ∈ V – {s, t}:
 , or(,) (,) 0

(,) (,) 0
v V

v V

f u v f u V

f v u f V u
∈

∈

= =

= =

∑

∑2/5

2/15

5/14

4/19

3/3

s t 0/9

a

b

Cancellation of flows

• We would like to avoid two positive flows in
opposite directions between the same pair of
vertices
– Such flows cancel (maybe partially) each other due to

skew symmetry

5/5

2/15

5/14

5/19

2/3

s t 2/9

a

b

3/5

2/15

5/14

5/19

2/3

s t 0/9

a

b

Max Flow

• We want to find a flow of maximum value
from the source to the sink
– Denoted by |f|

Lucky Puck Distribution Network Max Flow, |f| = 19
Or is it?
Best we can do?

Ford-Fulkerson method

• Contains several algorithms:
– Residual networks
– Augmenting paths

• Find a path p from s to t (augmenting path), such that there is some
value x > 0, and for each edge (u,v) in p we can add x units of flow

– f(u,v) + x ≤ c(u,v)

8/13

8/11

5/5 2/4

10/15

10

6/14

13/19

3/3

s t 9

a b

c d

Augmenting Path?

Residual Network

• To find augmenting path we can find any path in the residual
network:
– Residual capacities: cf(u,v) = c(u,v) – f(u,v)

• i.e. the actual capacity minus the net flow from u to v
• Net flow may be negative

– Residual network: Gf =(V,Ef), where
 Ef = {(u,v) ∈ V × V : cf(u,v) > 0}

– Observation – edges in Ef are either edges in E or their reversals:
|Ef| ≤ 2|E|

0/14

5/15

a b

19

10

a b
Sub-graph
with
c(u,v) and
f(u,v)

Residual
Sub-Graph

c

5/6

c

1

5

Residual Capacity and Augmenting Path

• Finding an Augmenting Path:
– Find a path from s to t in the residual graph
– The residual capacity of a path p in Gf:
 cf(p) = min{cf(u,v): (u,v) is in p}

• i.e. find the minimum capacity along p
– Doing augmentation: for all (u,v) in p, we just add

this cf(p) to f(u,v) (and subtract it from f(v,u))
– Resulting flow is a valid flow with a larger value.

Residual network and augmenting path

The Ford-Fulkerson method

Ford-Fulkerson(G,s,t)
1 for each edge (u,v) in G.E do
2 f(u,v) ← f(v,u) ← 0
3 while there exists a path p from s to t in residual

network Gf do
4 cf = min{cf(u,v): (u,v) is in p}
5 for each edge (u,v) in p do
6 f(u,v) ← f(u,v) + cf
7 f(v,u) ← -f(u,v)
8 return f

The algorithms based on this method differ in how they choose p in step 3.
If chosen poorly the algorithm might not terminate.

Cuts
• Does the method find the minimum flow?

– Yes, if we get to the point where the residual graph has no path from s to t
– A cut is a partition of V into S and T = V – S, such that s ∈ S and t ∈ T
– The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where s ∈ S

and t ∈ T
• Includes negative flows back from T to S

– The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where s ∈ S
and t ∈ T

• The sum of positive capacities
– Minimum cut – a cut with the smallest capacity of all cuts.
 |f|= f(S,T) i.e. the value of a max flow is equal to the capacity of a min cut.

8/13

8/11

5/5 2/4

10/15

10

6/14

13/19

3/3

s t 9

a b

c d
Cut capacity = 24 Min Cut capacity = 21

Max Flow / Min Cut Theorem
1. Since |f| ≤ c(S,T) for all cuts of (S,T) then if

|f| = c(S,T) then c(S,T) must be the min cut of G

2. This implies that f is a maximum flow of G

3. This implies that the residual network Gf contains
no augmenting paths.

• If there were augmenting paths this would contradict
that we found the maximum flow of G

• 1231 … and from 23 we have that the Ford
Fulkerson method finds the maximum flow if the residual
graph has no augmenting paths.

Worst Case Running Time

• Assuming integer flow
• Each augmentation increases the value of the flow by some

positive amount.
• Augmentation can be done in O(E).
• Total worst-case running time O(E|f*|), where f* is the max-

flow found by the algorithm.
• Example of worst case:

Augmenting path of 1 Resulting Residual Network Resulting Residual Network

Edmonds Karp

• Take shortest path (in terms of number of
edges) as an augmenting path – Edmonds-
Karp algorithm
– How do we find such a shortest path?
– Running time O(VE2), because the number of

augmentations is O(VE)
– Skipping the proof here

	Today: �− Theory behind Min. Spanning Tree�− Max Flow (as time allows)
	Reading Assignments
	Growing a MST – Generic Approach
	Generic MST algorithm
	Finding Safe Edges
	Definitions
	Definitions (cont’d)
	Theorem
	Theorem - Proof
	Theorem – Proof (cont.)
	Theorem – Proof (cont.)
	Prim’s Algorithm
	How to Find Light Edges Quickly?
	How to Find Light Edges Quickly? (cont.)
	PRIM(V, E, w, r)
	A different instance of the� generic approach
	Kruskal’s Algorithm
	Kruskal’s Algorithm
	KRUSKAL(V, E, w)
	KRUSKAL(V, E, w) (cont.)
	In-Class Exercise/Question #1
	In-Class Exercise/Question #2
	In-class Exercise
	Maximum Flow
	Flow Graph
	Sample Networks
	Flow Concepts
	Multiple Sources or Sinks
	Formal Max Flow Problem
	Cancellation of flows
	Max Flow
	Ford-Fulkerson method
	Residual Network
	Residual Capacity and Augmenting Path
	Residual network and augmenting path
	The Ford-Fulkerson method
	Cuts
	Max Flow / Min Cut Theorem
	Worst Case Running Time
	Edmonds Karp

