
Today:  
− Theory behind Min. Spanning Tree 
− Max Flow (as time allows)  

COSC 581, Algorithms 
February 27, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 23, (if time) Ch. 26 

 

• Reading assignment for next class: 
– Chapter 26 

 



Growing a MST – Generic Approach 
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• Grow a set A of edges (initially 
empty) 

• Incrementally add edges to A such 
that they would belong  

    to a MST 

 

 
– An edge (u, v) is safe for A if and only if 

A ∪ {(u, v)} is also a subset of some 
MST 

Idea: add only “safe” edges 



Generic MST algorithm 

1. A ←  ∅ 

2. while A is not a spanning tree 

3.          do find an edge (u, v) that is safe for A 

4.               A ← A ∪ {(u, v)}  

5. return A 

 

How do we find safe edges? 
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S 

V - S 

Finding Safe Edges 

• Let’s look at edge (h, g) 

– Is it safe for A initially? 

• Later on: 

– Let S ⊂ V be any set of vertices that includes h but not g 
(so that g is in V - S) 

– In any MST, there has to be one edge (at least) that 
connects S with V - S  

– Why not choose the edge with minimum weight (h,g)?  
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Definitions 
 

• A cut (S, V - S)  

 is a partition of vertices  

 into disjoint sets S and V - S 

• An edge crosses the cut 

 (S, V - S) if one endpoint is in S  

 and the other in V – S 
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Definitions (cont’d) 
• A cut respects a set A  
   of edges ⇔ no edge  
   in A crosses the cut 
• An edge is a light edge  
   crossing a cut ⇔ its weight is minimum over 

all edges crossing the cut 
– Note that for a given cut, there can be > 1 light  
   edges crossing it 
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Theorem 
• Let A be a subset of some MST (i.e., T), (S, V - S) be a cut that 

respects A, and (u, v) be a light edge crossing (S, V-S). Then (u, 
v) is safe for A . 

Proof: 
• Let T be an MST that includes A 

– edges in A are shaded 

• Case1: If T includes (u,v), then  
    it would be safe for A 
• Case2: Suppose T does not include 
 the edge (u, v) 
• Idea: construct another MST T’ 
 that includes A ∪ {(u, v)} 
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Theorem - Proof 
• T contains a unique path p between u and v 

• Path p must cross the  

    cut (S, V - S) at least  

 once: let (x, y) be that edge 

• Let’s remove (x,y) ⇒ breaks  

    T into two components. 

• Adding (u, v) reconnects the components  

  T’ = T - {(x, y)} ∪ {(u, v)} 

x 

y 

p 



Theorem – Proof (cont.) 
T′ = T - {(x, y)} ∪ {(u, v)} 

Have to show that T′ is a MST: 

• (u, v) is a light edge  

 ⇒ w(u, v) ≤ w(x, y) 

• w(T′) = w(T) - w(x, y) + w(u, v) 

     ≤ w(T)  

• Since T  is a spanning tree 

 w(T) ≤ w(T′) ⇒ T′  must be an MST as well 
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Theorem – Proof (cont.) 
Need to show that (u, v) is safe for A: 

i.e., (u, v) can be a part of a MST 

• A ⊆ T and (x, y) ∉ T ⇒  

  (x, y) ∉ A ⇒ A ⊆T′ 

• A ∪ {(u, v)} ⊆ T′ 

• Since T′  is a MST  

 ⇒ (u, v) is safe for A 
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Prim’s Algorithm 

• The edges in set A always form a single tree 

• Starts from an arbitrary “root”: VA = {a} 

• At each step: 

– Find a light edge crossing (VA, V - VA) 

– Add this edge to A 

– Repeat until the tree spans all vertices 
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How to Find Light Edges Quickly? 
Use a priority queue Q: 

• Contains vertices not yet  

 included in the tree, i.e., (V – VA) 

– VA = {a}, Q = {b, c, d, e, f, g, h, i} 

• We associate a key with each vertex v: 

  key[v] = minimum weight of any edge (u, v)    
    connecting v to VA 
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Key[a]=min(w1,w2) 

a 



How to Find Light Edges Quickly? (cont.) 
• After adding a new node to VA we update the weights of all the 

nodes adjacent to it 
             e.g., after adding a to the tree, k[b]=4 and k[h]=8 

• Key of v is ∞ if v is not adjacent to any vertices in VA 
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PRIM(V, E, w, r) 
1.  Q ←  ∅ 

2.  for each u ∈ V 

3.        do key[u] ← ∞ 

4.             π[u] ← NIL 

5.             INSERT(Q, u) 

6.  DECREASE-KEY(Q, r, 0)         ► key[r] ← 0 

7.  while Q ≠ ∅   

8.             do u ← EXTRACT-MIN(Q) 

9.                  for each v ∈ Adj[u] 

10.                        do if v ∈ Q and w(u, v) < key[v] 

11.                                 then π[v] ← u 

12.                                          DECREASE-KEY(Q, v, w(u, v)) 

O(V) if Q is implemented as 
a min-heap 

Executed |V| times 

Takes O(lgV) 

Min-heap 
operations: 
O(VlgV) 

Executed O(E) times total 

Constant 

Takes O(lgV) 

O(ElgV) 

Total time: O(VlgV + ElgV) = O(ElgV) 

O(lgV)  



A different instance of the 
 generic approach 

• A is a forest containing connected 
components 
– Initially, each component is a single 

vertex 
• Any safe edge merges two of these 

components into one 
– Each component is a tree 
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Kruskal’s Algorithm 
• How is it different from Prim’s algorithm? 

– Prim’s algorithm grows one  
    tree all the time 
– Kruskal’s algorithm grows  
    multiple trees  (i.e., a forest)  
    at the same time. 
– Trees are merged together  
    using safe edges 
– Since an MST has exactly |V| - 1  
    edges, after |V| - 1 merges,  
    we would have only one component 
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We would add 
edge (c, f) 
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Kruskal’s Algorithm 
• Start with each vertex being its 

own component 
• Repeatedly merge two 

components into one by choosing 
the light edge that connects them 

• Which components to consider at 
each iteration? 
– Scan the set of edges in 

monotonically increasing order by 
weight 



1. A ←  ∅ 
2. for each vertex v ∈ V 
3.          do MAKE-SET(v) 
4. sort E into non-decreasing order by w 
5. for each (u, v) taken from the sorted list 
6.       do if FIND-SET(u) ≠ FIND-SET(v) 
7.                then A ← A ∪ {(u, v)}  
8.                        UNION(u, v) 
9. return A 
Running time: O(V+ElgE+ElgV)=O(ElgE) – dependent on the 

implementation of the disjoint-set data structure 

KRUSKAL(V, E, w) 

O(V) 

O(ElgE) 

O(E) 

O(lgV) 



1. A ←  ∅ 
2. for each vertex v ∈ V 
3.          do MAKE-SET(v) 
4. sort E into non-decreasing order by w 
5. for each (u, v) taken from the sorted list 
6.       do if FIND-SET(u) ≠ FIND-SET(v) 
7.                then A ← A ∪ {(u, v)}  
8.                        UNION(u, v) 
9. return A 
- Running time: O(V+ElgE+ElgV)=O(ElgE) 
- Since E=O(V2), we have lgE=O(2lgV)=O(lgV) 

KRUSKAL(V, E, w) (cont.) 

O(V) 

O(ElgE) 

O(E) 

O(lgV) 

O(ElgV) 



In-Class Exercise/Question #1 
• Suppose that some of the weights in a 

connected graph G are negative. Will Prim’s 
algorithm still work? What about Kruskal’s 
algorithm? Justify your answers. 



In-Class Exercise/Question #2 
• Find an algorithm for the “maximum” spanning tree. 

That is, given an undirected weighted graph G, find a 
spanning tree of G of maximum cost. Prove the 
correctness of your algorithm. 

 



In-class Exercise 
You are given a set {x1, x2, … xn} of points that all lie on the same 
real line.  Let us define a “unit-length closed interval” to be a line 
segment of length 1 that lies on the same real line as the points 
in the given set.  This line segment “contains” all the points that 
lie along the segment, including the end points.   
Describe a greedy algorithm that determines the smallest set of 
unit-length closed intervals that contains all of the given points. 

 



Maximum Flow 

Chapter 26 



Flow Graph 
• A common scenario is to use a graph to represent a 

“flow network” and use it to answer questions about 
material flows 

• Flow is the rate that material moves through the 
network 

• Each directed edge is a conduit for the material with 
some stated capacity 

• Vertices are connection points but do not collect 
material 
– Flow into a vertex must equal the flow leaving the vertex, 

flow conservation 



Sample Networks 

communication 

Network 

telephone exchanges, 
computers, satellites 

Nodes Arcs 

cables, fiber optics, 
microwave relays 

Flow 

voice, video, 
packets 

circuits gates, registers, 
processors wires current 

mechanical joints rods, beams, springs heat, energy 

hydraulic 
reservoirs, pumping 
stations, lakes pipelines fluid, oil 

financial stocks, companies transactions money 

transportation airports, rail yards, 
street intersections 

highways, railbeds, 
airway routes 

freight, 
vehicles, 
passengers 

chemical sites bonds energy 



Flow Concepts 
 
• Source vertex s  

– where material is produced 

• Sink vertex t  
– where material is consumed 

• For all other vertices – what goes in must go out 
– Flow conservation 

• Goal: determine maximum rate of material flow 
from source to sink 
 



Multiple Sources or Sinks 

• What if you have a problem with more than one source and 
more than one sink? 

• Modify the graph to create a single supersource and supersink 
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Formal Max Flow Problem 

– Graph G=(V,E) – a flow network 
• Directed, each edge has capacity c(u,v) ≥ 0 
• Two special vertices: source s, and sink t 
• For any other vertex v, there is a path s→… → v → … → t 

– Flow – a function f : V ×V → R 
• Capacity constraint: For all u, v ∈ V:  f(u,v) ≤ c(u,v) 
• Skew symmetry: For all u, v ∈ V:  f(u,v) = –f(v,u) 
• Flow conservation: For all u ∈ V – {s, t}: 
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Cancellation of flows 

• We would like to avoid two positive flows in 
opposite directions between the same pair of 
vertices 
– Such flows cancel (maybe partially) each other due to 

skew symmetry 
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Max Flow 

• We want to find a flow of maximum value 
from the source to the sink 
– Denoted by |f| 

 

Lucky Puck Distribution Network Max Flow, |f| = 19 
Or is it? 
Best we can do? 



Ford-Fulkerson method 

• Contains several algorithms: 
– Residual networks 
– Augmenting paths 

• Find a path p from s to t (augmenting path), such that there is some 
value x > 0, and for each edge (u,v) in p we can add x units of flow 

– f(u,v) + x  ≤ c(u,v) 
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Residual Network 

• To find augmenting path we can find any path in the residual 
network: 
– Residual capacities: cf(u,v) = c(u,v) – f(u,v) 

• i.e. the actual capacity minus the net flow from u to v 
• Net flow may be negative 

– Residual network: Gf =(V,Ef), where  
 Ef = {(u,v) ∈ V × V : cf(u,v) > 0} 

– Observation – edges in Ef are either edges in E or their reversals:       
|Ef| ≤ 2|E| 
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Residual Capacity and Augmenting Path 

• Finding an Augmenting Path: 
– Find a path from s to t in the residual graph 
– The residual capacity of a path p in Gf: 
 cf(p) = min{cf(u,v): (u,v) is in p} 

• i.e. find the minimum capacity along p 
– Doing augmentation:  for all (u,v) in p, we just add 

this cf(p) to f(u,v) (and subtract it from f(v,u)) 
– Resulting flow is a valid flow with a larger value.  

 



Residual network and augmenting path 



The Ford-Fulkerson method 

Ford-Fulkerson(G,s,t)  
1 for each edge (u,v) in G.E do  
2    f(u,v) ← f(v,u) ← 0  
3 while there exists a path p from s to t in residual 

network Gf do 
4    cf = min{cf(u,v): (u,v) is in p}  
5    for each edge (u,v) in p do 
6        f(u,v) ← f(u,v) + cf 
7        f(v,u) ← -f(u,v) 
8 return f 

The algorithms based on this method differ in how they choose p in step 3. 
If chosen poorly the algorithm might not terminate. 



Cuts 
• Does the method find the minimum flow? 

– Yes, if we get to the point where the residual graph has no path from s to t 
– A cut is a partition of V into S and T = V – S, such that s ∈ S and t ∈ T 
– The net flow (f(S,T)) through the cut is the sum of flows f(u,v), where  s ∈ S 

and t ∈ T 
• Includes negative flows back from T to S 

– The capacity (c(S,T)) of the cut is the sum of capacities c(u,v), where  s ∈ S 
and t ∈ T 

• The sum of positive capacities 
– Minimum cut – a cut with the smallest capacity of all cuts. 
 |f|= f(S,T)  i.e. the value of a max flow is equal to the capacity of a min cut. 
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Max Flow / Min Cut Theorem 
1. Since |f| ≤ c(S,T) for all cuts of (S,T) then if            

|f| = c(S,T) then c(S,T) must be the min cut of G 
 

2. This implies that f is a maximum flow of G 
 

3. This implies that the residual network Gf contains 
no augmenting paths. 

• If there were augmenting paths this would contradict 
that we found the maximum flow of G 

• 1231  … and from 23 we have that the Ford 
Fulkerson method finds the maximum flow if the residual 
graph has no augmenting paths. 

 



Worst Case Running Time 

• Assuming integer flow 
• Each augmentation increases the value of the flow by some 

positive amount. 
• Augmentation can be done in O(E). 
• Total worst-case running time O(E|f*|), where f* is the max-

flow found by the algorithm. 
• Example of worst case: 

Augmenting path of 1 Resulting Residual Network Resulting Residual Network 



Edmonds Karp 

• Take shortest path (in terms of number of 
edges) as an augmenting path – Edmonds-
Karp algorithm 
– How do we find such a shortest path? 
– Running time O(VE2), because the number of 

augmentations is O(VE) 
– Skipping the proof here 
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