
Today:  
− Max Flow Proofs 

COSC 581, Algorithms 
March 4, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 26 

 

• Reading assignment for next class: 
– Chapter 17 (Amortized analysis) 

 



In-Class Exercise #1 
• Find the maximum flow in the following flow 

network: 
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In-Class Exercise #1 
• Find the maximum flow in the following flow 

network: 
 What does residual graph look like (at the beginning) after updating flow 

from s→v1 → v2 → t? 
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In-Class Exercise #1 
• Find the maximum flow in the following flow 

network: 
 What does residual graph look like (at the beginning) after updating flow 

along augmenting path from s→v1 → v2 → t? 
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What happened to distance from s to v2? 



In-Class Exercise #1 
• Find the maximum flow in the following flow 

network: 
 What does residual graph look like (at the beginning) after updating flow 

along augmenting path from s→v1 → v2 → t? 
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What happened to distance from s to v2?  It increased by at least a distance of 1.    
                                                                               (Remember this for next proof!) 



Edmonds Karp = Ford-Fulkerson Method 
implemented to select shortest augmenting path 

• Take shortest path (in terms of number of edges) as an 
augmenting path – Edmonds-Karp algorithm 
– How do we find such a shortest path? 
– Running time O(VE2), because the number of augmentations 

is O(VE) 
– To prove this we need to prove that: 

• The length of the shortest path does not decrease 
• Each edge can become critical at most ~ V/2 times. Edge 

(u,v) on an augmenting path p is critical if it has the 
minimum residual capacity in the path:  

  cf(u,v) = cf(p)  
 
 

 



Non-decreasing shortest paths  

• Why does the length of a shortest path from s 
to any v does not decrease? 
– Observation: Augmentation may add some edges 

to residual network or remove some. 
– Only the added edges (“shortcuts”) may 

potentially decrease the length of a shortest path. 
– Let’s suppose (s,…,v) is the shortest decreased-

length path and let’s derive a contradiction  



Number of augmentations 
• Why does each edge become critical at most ~V/2 times? 

– Scenario for edge (u,v), for u, v ∉ {s, t}: 
• Critical the first time: (u,v) on an augmenting path 
• Disappears from the network 
• Reappears on the network: (v,u) has to be on an augmenting path 
• We can show that in between these events the distance from s to u 

increased by at least 2. 
• This can happen at most V/2 times, because the distance from s to u 

can never be more than |V|-2 
• Since there are |E| pairs of vertices with edge in residual network, the 

total # of critical edges during alg. execution is O(VE) (i.e., O(VE) 
iterations). 

• Each iteration requires |E| work to find shortest path. 
• Thus, we have proved that the running time of Edmonds-

Karp is O(VE2). 



Defining Flow, Capacity Across Cuts 

• If f is a flow, then the net flow f(S,T) across the cut (S,T) is 
defined to be: 

𝑓 𝑆,𝑇 = ��𝑓 𝑢, 𝑣 −��𝑓(𝑣,𝑢)
𝑣∈𝑇𝑢∈𝑆𝑣∈𝑇𝑢∈𝑆

 

 
• The capacity of the cut (S,T) is: 

𝑐 𝑆,𝑇 = ��𝑐 𝑢, 𝑣
𝑣∈𝑇𝑢∈𝑆
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Proving Max Flow  

• Weak duality lemma:  Let f be any flow, and let (S, T) be any s-t 
cut.  Then the value of the flow is at most the capacity of the cut. 
 

Cut capacity = 30   ⇒    Flow value ≤ 30  
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Weak duality lemma:  Let f be any flow.  Then, for any s-t cut  

    (S, T) we have 
           |f| = f(S,T) ≤ cap(S, T). 
 

• Proof: 

 

Flows and Cuts 
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Certificate of Optimality 
• Corollary: Let f be any flow, and let (S, T) be any cut. 

If |f| = cap(S, T), then f is a max flow and (S, T) is a min cut. 
 

 Value of flow = 28 
Cut capacity  = 28   ⇒    Flow value ≤ 28 
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Max-Flow Min-Cut Theorem 
• Augmenting path theorem:  Flow f is a max flow iff there are no 

augmenting paths.  
 

• Max-flow min-cut theorem:  [Ford-Fulkerson 1956]  The value of 
the max flow is equal to the value of the min cut. 
 

• Proof strategy:  We prove both simultaneously by showing the 
following are equal: 
    (i)  There exists a cut (S, T) such that |f| = cap(S, T). 
   (ii)  Flow f is a max flow. 
  (iii)  There is no augmenting path relative to f. 
 

• (i)  ⇒ (ii)  This was the corollary to weak duality lemma.  
 

• (ii)  ⇒ (iii)  We show contrapositive. 
– Let f be a flow. If there exists an augmenting path, then we 

can improve f by sending flow along path. 



Proof of Max-Flow Min-Cut Theorem 

• (iii)  ⇒ (i) 
– Let f be a flow with no augmenting paths. 
– Let A be set of vertices reachable from s in residual 

graph. 
– By definition of S, s ∈ S. 
– By definition of f, t ∉ S. 
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In-Class Exercise #2 
You are given a standard flow network G = (V, E) with source s and sink t, in which 
each edge (u, v) ∈ E has a positive integral capacity c(u, v).  We define an edge in this 
flow network to be sensitive if it crosses some minimum cut (S, T) of the network.  We 
define an edge in this flow network to be saturated if its flow equals its capacity. 
Are all saturated edges also (necessarily) sensitive?  Explain your answer. 
 
 
 



In-Class Exercise #3 
Updating Maximum Flow:  Let G = (V, E) be a flow network with source s, sink t, and integer 
capacities.  Suppose that we are given a maximum flow in G, and the capacity of a single 
edge (u, v) ∈ E is decreased by 1.  Give an O(V + E)-time algorithm to update the maximum 
flow.  
 
 



Reading Assignments 

 

• Reading assignment for next class: 
– Chapter 17 (Amortized analysis) 
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