
Today:  
− Amortized Analysis (examples) 
− Multithreaded Algs. 

COSC 581, Algorithms 
March 11, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 
• Today’s class:  

– Chapter 17 (Amortized analysis) 
– Chapter 27 (Multithreaded algs) 

 
 

• Reading assignment for next class: 
– Chapter 27 (continued) 

 
• Announcement:  Exam #2 on Tuesday, April 1 

– Will cover greedy algorithms, amortized analysis 
– HW 6-9 



Recall from last time:  In-Class Exercise 
Suppose we perform a sequence of n operations on a data structure in 
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1 
otherwise.  Let c𝑖 be the cost of the 𝑖th operation.  Use aggregate 
analysis to determine the amortized costs per operation. 

𝑐𝑖 = �𝑖 if 𝑖 is an exact power of 2
1 otherwise

 

Operation Cost 
1 1 
2 2 

3 1 
4 4 

5 1 

6 1 
7 1 

8 8 
9 1 

10 1 

… … 

Cost of n operations: 

�𝑐𝑖 ≤ 𝑛
𝑛

𝑖=1

+ � 2𝑗
lg 𝑛

𝑗=0

 

                         = 𝑛 +  
2lg 𝑛+1 − 1

2 − 1  
                     = 𝑛 + 2𝑛 − 1  

                           < 3𝑛 

Thus, average cost of operations = Total cost
# operations

 < 3. 

 
By aggregate analysis, the amortized cost per 
operation = O(1) 



Variant:  In-Class Exercise #1 
Suppose we perform a sequence of n operations on a data structure in 
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1 
otherwise.  Let c𝑖 be the cost of the 𝑖th operation.  Use accounting 
method to determine the amortized costs per operation. 



In-Class Exercise #2 
Suppose we wish not only to increment a counter but also to reset it to 0 (i.e., make 
all bits in it 0).  Counting the time to examine or modify a bit as Θ(1), show how to 
implement a counter as an array of bits so that any sequence of n INCREMENT and 
RESET operations takes time O(n) on an initially zero counter.   
(Hint:  Keep a pointer to the high-order 1.) 
 



Multithreaded Algorithms 



Motivation 
• We have discussed serial algorithms that are suitable for running on 

a uniprocessor computer. We will now extend our model to parallel 
algorithms that can run on a multiprocessor computer.  

 



Computational Model 
• There exist many competing models of parallel computation that 

are essentially different. For example, one can have shared or 
distributed memory.  
 

• Since multicore processors are ubiquitous, we focus on a parallel 
computing model with shared memory.  
 



Dynamic Multithreading 
• Programming a shared-memory parallel computer can be difficult 

and error-prone. In particular, it is difficult to partition the work 
among several threads so that each thread approximately has the 
same load.  
 

• A concurrency platform is a software layer that coordinates, 
schedules, and manages parallel-computing resources. We will use 
a simple extension of the serial programming model that uses the 
concurrency instructions parallel, spawn, and sync. 
 



Spawn 
• Spawn: If spawn proceeds a procedure call, then the procedure 

instance that executes the spawn (the parent) may continue to 
execute in parallel with the spawned subroutine (the child), instead 
of waiting for the child to complete.  
 

• The keyword spawn does not say that a procedure must execute 
concurrently, but simply that it may. 
 

• At runtime, it is up to the scheduler to decide which sub-
computations should run concurrently.  



Sync 
• The keyword sync indicates that the procedure must wait for all its 

spawned children to complete.   



Parallel 
• Many algorithms contain loops, where all iterations can operate in 

parallel. If the parallel keyword proceeds a for loop, then this 
indicates that the loop body can be executed in parallel. 
 
 



Fibonacci Numbers – Definition 
• The Fibonacci numbers are defined by the recurrence:  
 

F0 = 0  
F1 = 1 
Fi = Fi-1 + Fi-2  for i > 1.  



Naive Algorithm 

• Computing the Fibonacci numbers can be done with the 
following algorithm:  
 
FIB(n) 

if n ≤ 1 then return n;  
x = FIB (n-1);       
y = FIB (n-2) ;                              

return x + y;  



Caveat: Running Time 

• Let T(n) denote the running time of FIB(n). Since this 
procedure contains two recursive calls and a constant 
amount of extra work, we get  

• T(n) = T(n-1) + T(n-2) + θ(1) 

 which yields T(n) = Θ 1+ 5
2

𝑛
 

• Since this is an exponential growth in n, this is a 
particularly bad way to calculate Fibonacci numbers. 

• But, to illustrate the principles of parallel 
programming, we will use this naive (bad) algorithm 
anyway 



Parallelization of Fibonacci 
• Parallel algorithm to compute Fibonacci numbers: 

 
P-FIB(n) 

if n ≤ 1   return n;  
else x = spawn P-FIB (n-1);   // parallel execution 
         y = spawn P-FIB (n-2) ;  // parallel execution 
         sync;  // wait for results of x and y                          

               return x + y;  



Computation DAG (Prelim) 

• Multithreaded computation can be better 
understood with the help of a computation 
directed acyclic graph G=(V,E).  

• The vertices V in the graph are the instructions.  
• The edges E represent dependencies between 

instructions. 
• An edge (u,v) ∈E means that the instruction u 

must execute before instruction v.  
• [Problem: Somewhat too detailed. We will group 

the instructions into strands.]  
 



Strands 

• A sequence of instructions containing no parallel 
control (spawn, sync, return from spawn, parallel) 
can be grouped into a single strand.  
 
 
 



Computation DAG 

• A computation DAG=(V,E) consists a vertex set V 
that comprises the strands of the program.  
 

• The edge set E contains an edge (u,v) if and only 
if the strand u needs to execute before strand v.  
 

• If there is an edge between strand u and v, then 
they are said to be (logically) in series. If there is 
no edge, then they are said to be (logically) in 
parallel.   
 



Edge Classification 

• A continuation edge (u,v) connects a strand u to its 
successor v within the same procedure instance.  
 

• When a strand u spawns a new strand v, then (u,v) is 
called a spawn edge.  
 

• When a strand v returns to its calling procedure and 
x is the strand following the parallel control, then the 
return edge (v,x) is included in the graph.  



Fibonacci Example 
• Parallel algorithm to compute Fibonacci numbers: 

 
 
P-FIB(n) 

if n ≤ 1   return n;          // initial strand 
else x = spawn P-FIB (n-1);     // next lower strand 
         y = spawn P-FIB (n-2) ;  // second strand    // lower strand 
         sync;         // final strand 

               return x + y;      



Fibonacci Computation DAG 
continuation edge 

initial strand 

spawn edge 

return edge 

final strand 



Performance Measures 

• The work of a multithreaded computation is the total 
time to execute the entire computation on one 
processor. 
 

• Work = sum of the times taken by each strand 



Performance Measures 

• The span is the longest time to execute the strands 
along any path of the computational directed acyclic 
graph.  
 
 



Performance Measure for P-FIB(4) 

• What is work? 
• What is span? 



Performance Measure Example 

• In P-Fib(4), we have: 
– 17 vertices = 17 

threads.  
– 8 vertices on longest 

path. 
 

• Assuming unit time for 
each thread, we get: 
– work = 17 time units 
– span = 8 time units 



Taking into account # processors… 
• The actual running time of a multithreaded 

computation depends not just on its work and span, 
but also on how many processors (cores) are 
available, and how the scheduler allocates strands to 
processors.  
 

• Running time on P processors is indicated by 
subscript: 

𝑇1  running time on a single processor 
𝑇𝑃  running time on P processors 
𝑇∞ running time on unlimited processors  



Work Law 

• An ideal parallel computer with P processors can do 
at most P units of work. Total work to do is 𝑇1.  
 

• Thus, 𝑃𝑇𝑃 ≥ 𝑇1 
 

• The work law is: 

𝑇𝑃 ≥
𝑇1
𝑃

 



Span Law 

• A P-processor ideal parallel computer cannot run 
faster than a machine with unlimited number of 
processors.  
 

• However, a computer with unlimited number of 
processors can emulate a P-processor machine by 
using simply P of its processors. Therefore,  

𝑇𝑃 ≥ 𝑇∞ 
 

• This is called the span law.  



Speedup and Parallelism 

• The speed up of a computation on P processors is 
defined as:   𝑇1

𝑇𝑃
 

 
• The parallelism of a multithreaded computation is 

given by:   𝑇1
𝑇∞

  



Scheduling 

• The performance depends not just on the work and 
span. Additionally, the strands must be scheduled 
efficiently.  

• The strands must be mapped to static threads, and 
the operating system schedules the threads on the 
processors themselves.  

• The scheduler must schedule the computation with 
no advance knowledge of when the strands will be 
spawned or when they will complete; it must operate 
online. 



Greedy Scheduler 

• We will assume a greedy scheduler in our analysis, 
since this keeps things simple. A greedy scheduler 
assigns as many strands to processors as possible in 
each time step.  
 

• On P processors, if at least P strands are ready to 
execute during a time step, then we say that the step 
is a complete step; otherwise we say that it is an 
incomplete step.  
 



Greedy Scheduler Theorem 

• On an ideal parallel computer with P processors, a greedy 
scheduler executes a multithreaded computation with 
work 𝑇1 and span 𝑇∞ in time: 
 

𝑇𝑃 ≤
𝑇1
𝑃

+ 𝑇∞ 

 
• Given the fact the best we can hope for on P processors 

is 𝑇𝑃 = 𝑇1
𝑃�  by the work law, and 𝑇𝑃    = 𝑇∞  by the span 

law, the sum of these two gives the lower bounds  



Reading Assignments 

• Today’s class:  
– Chapter 17 

 
• Reading assignment for next class: 

– Chapter 17 (continued) 
– (Later) Chapter 27 (Multithreaded algs) 

 
• Announcement:  Exam #2 on Tuesday, April 1 

– Will cover greedy algorithms, amortized analysis, 
multi-threaded algorithms 

– HW 6-9 
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