
Today:
− Amortized Analysis (examples)
− Multithreaded Algs.

COSC 581, Algorithms
March 11, 2014

Many of these slides are adapted from several online sources

Reading Assignments
• Today’s class:

– Chapter 17 (Amortized analysis)
– Chapter 27 (Multithreaded algs)

• Reading assignment for next class:
– Chapter 27 (continued)

• Announcement: Exam #2 on Tuesday, April 1

– Will cover greedy algorithms, amortized analysis
– HW 6-9

Recall from last time: In-Class Exercise
Suppose we perform a sequence of n operations on a data structure in
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1
otherwise. Let c𝑖 be the cost of the 𝑖th operation. Use aggregate
analysis to determine the amortized costs per operation.

𝑐𝑖 = �𝑖 if 𝑖 is an exact power of 2
1 otherwise

Operation Cost
1 1
2 2

3 1
4 4

5 1

6 1
7 1

8 8
9 1

10 1

… …

Cost of n operations:

�𝑐𝑖 ≤ 𝑛
𝑛

𝑖=1

+ � 2𝑗
lg 𝑛

𝑗=0

 = 𝑛 +
2lg 𝑛+1 − 1

2 − 1
 = 𝑛 + 2𝑛 − 1

 < 3𝑛

Thus, average cost of operations = Total cost
operations

 < 3.

By aggregate analysis, the amortized cost per
operation = O(1)

Variant: In-Class Exercise #1
Suppose we perform a sequence of n operations on a data structure in
which the 𝑖th operation costs 𝑖 if 𝑖 is an exact power of 2, and 1
otherwise. Let c𝑖 be the cost of the 𝑖th operation. Use accounting
method to determine the amortized costs per operation.

In-Class Exercise #2
Suppose we wish not only to increment a counter but also to reset it to 0 (i.e., make
all bits in it 0). Counting the time to examine or modify a bit as Θ(1), show how to
implement a counter as an array of bits so that any sequence of n INCREMENT and
RESET operations takes time O(n) on an initially zero counter.
(Hint: Keep a pointer to the high-order 1.)

Multithreaded Algorithms

Motivation
• We have discussed serial algorithms that are suitable for running on

a uniprocessor computer. We will now extend our model to parallel
algorithms that can run on a multiprocessor computer.

Computational Model
• There exist many competing models of parallel computation that

are essentially different. For example, one can have shared or
distributed memory.

• Since multicore processors are ubiquitous, we focus on a parallel
computing model with shared memory.

Dynamic Multithreading
• Programming a shared-memory parallel computer can be difficult

and error-prone. In particular, it is difficult to partition the work
among several threads so that each thread approximately has the
same load.

• A concurrency platform is a software layer that coordinates,
schedules, and manages parallel-computing resources. We will use
a simple extension of the serial programming model that uses the
concurrency instructions parallel, spawn, and sync.

Spawn
• Spawn: If spawn proceeds a procedure call, then the procedure

instance that executes the spawn (the parent) may continue to
execute in parallel with the spawned subroutine (the child), instead
of waiting for the child to complete.

• The keyword spawn does not say that a procedure must execute
concurrently, but simply that it may.

• At runtime, it is up to the scheduler to decide which sub-
computations should run concurrently.

Sync
• The keyword sync indicates that the procedure must wait for all its

spawned children to complete.

Parallel
• Many algorithms contain loops, where all iterations can operate in

parallel. If the parallel keyword proceeds a for loop, then this
indicates that the loop body can be executed in parallel.

Fibonacci Numbers – Definition
• The Fibonacci numbers are defined by the recurrence:

F0 = 0
F1 = 1
Fi = Fi-1 + Fi-2 for i > 1.

Naive Algorithm

• Computing the Fibonacci numbers can be done with the
following algorithm:

FIB(n)

if n ≤ 1 then return n;
x = FIB (n-1);
y = FIB (n-2) ;

return x + y;

Caveat: Running Time

• Let T(n) denote the running time of FIB(n). Since this
procedure contains two recursive calls and a constant
amount of extra work, we get

• T(n) = T(n-1) + T(n-2) + θ(1)

 which yields T(n) = Θ 1+ 5
2

𝑛

• Since this is an exponential growth in n, this is a
particularly bad way to calculate Fibonacci numbers.

• But, to illustrate the principles of parallel
programming, we will use this naive (bad) algorithm
anyway

Parallelization of Fibonacci
• Parallel algorithm to compute Fibonacci numbers:

P-FIB(n)

if n ≤ 1 return n;
else x = spawn P-FIB (n-1); // parallel execution
 y = spawn P-FIB (n-2) ; // parallel execution
 sync; // wait for results of x and y

 return x + y;

Computation DAG (Prelim)

• Multithreaded computation can be better
understood with the help of a computation
directed acyclic graph G=(V,E).

• The vertices V in the graph are the instructions.
• The edges E represent dependencies between

instructions.
• An edge (u,v) ∈E means that the instruction u

must execute before instruction v.
• [Problem: Somewhat too detailed. We will group

the instructions into strands.]

Strands

• A sequence of instructions containing no parallel
control (spawn, sync, return from spawn, parallel)
can be grouped into a single strand.

Computation DAG

• A computation DAG=(V,E) consists a vertex set V
that comprises the strands of the program.

• The edge set E contains an edge (u,v) if and only
if the strand u needs to execute before strand v.

• If there is an edge between strand u and v, then
they are said to be (logically) in series. If there is
no edge, then they are said to be (logically) in
parallel.

Edge Classification

• A continuation edge (u,v) connects a strand u to its
successor v within the same procedure instance.

• When a strand u spawns a new strand v, then (u,v) is
called a spawn edge.

• When a strand v returns to its calling procedure and
x is the strand following the parallel control, then the
return edge (v,x) is included in the graph.

Fibonacci Example
• Parallel algorithm to compute Fibonacci numbers:

P-FIB(n)

if n ≤ 1 return n; // initial strand
else x = spawn P-FIB (n-1); // next lower strand
 y = spawn P-FIB (n-2) ; // second strand // lower strand
 sync; // final strand

 return x + y;

Fibonacci Computation DAG
continuation edge

initial strand

spawn edge

return edge

final strand

Performance Measures

• The work of a multithreaded computation is the total
time to execute the entire computation on one
processor.

• Work = sum of the times taken by each strand

Performance Measures

• The span is the longest time to execute the strands
along any path of the computational directed acyclic
graph.

Performance Measure for P-FIB(4)

• What is work?
• What is span?

Performance Measure Example

• In P-Fib(4), we have:
– 17 vertices = 17

threads.
– 8 vertices on longest

path.

• Assuming unit time for
each thread, we get:
– work = 17 time units
– span = 8 time units

Taking into account # processors…
• The actual running time of a multithreaded

computation depends not just on its work and span,
but also on how many processors (cores) are
available, and how the scheduler allocates strands to
processors.

• Running time on P processors is indicated by
subscript:

𝑇1 running time on a single processor
𝑇𝑃 running time on P processors
𝑇∞ running time on unlimited processors

Work Law

• An ideal parallel computer with P processors can do
at most P units of work. Total work to do is 𝑇1.

• Thus, 𝑃𝑇𝑃 ≥ 𝑇1

• The work law is:

𝑇𝑃 ≥
𝑇1
𝑃

Span Law

• A P-processor ideal parallel computer cannot run
faster than a machine with unlimited number of
processors.

• However, a computer with unlimited number of
processors can emulate a P-processor machine by
using simply P of its processors. Therefore,

𝑇𝑃 ≥ 𝑇∞

• This is called the span law.

Speedup and Parallelism

• The speed up of a computation on P processors is
defined as: 𝑇1

𝑇𝑃

• The parallelism of a multithreaded computation is

given by: 𝑇1
𝑇∞

Scheduling

• The performance depends not just on the work and
span. Additionally, the strands must be scheduled
efficiently.

• The strands must be mapped to static threads, and
the operating system schedules the threads on the
processors themselves.

• The scheduler must schedule the computation with
no advance knowledge of when the strands will be
spawned or when they will complete; it must operate
online.

Greedy Scheduler

• We will assume a greedy scheduler in our analysis,
since this keeps things simple. A greedy scheduler
assigns as many strands to processors as possible in
each time step.

• On P processors, if at least P strands are ready to
execute during a time step, then we say that the step
is a complete step; otherwise we say that it is an
incomplete step.

Greedy Scheduler Theorem

• On an ideal parallel computer with P processors, a greedy
scheduler executes a multithreaded computation with
work 𝑇1 and span 𝑇∞ in time:

𝑇𝑃 ≤
𝑇1
𝑃

+ 𝑇∞

• Given the fact the best we can hope for on P processors

is 𝑇𝑃 = 𝑇1
𝑃� by the work law, and 𝑇𝑃 = 𝑇∞ by the span

law, the sum of these two gives the lower bounds

Reading Assignments

• Today’s class:
– Chapter 17

• Reading assignment for next class:

– Chapter 17 (continued)
– (Later) Chapter 27 (Multithreaded algs)

• Announcement: Exam #2 on Tuesday, April 1

– Will cover greedy algorithms, amortized analysis,
multi-threaded algorithms

– HW 6-9

	Today: �− Amortized Analysis (examples)�− Multithreaded Algs.
	Reading Assignments
	Recall from last time: In-Class Exercise
	Variant: In-Class Exercise #1
	In-Class Exercise #2
	Multithreaded Algorithms
	Motivation
	Computational Model
	Dynamic Multithreading
	Spawn
	Sync
	Parallel
	Fibonacci Numbers – Definition
	Naive Algorithm
	Caveat: Running Time
	Parallelization of Fibonacci
	Computation DAG (Prelim)
	Strands
	Computation DAG
	Edge Classification
	Fibonacci Example
	Fibonacci Computation DAG
	Performance Measures
	Performance Measures
	Performance Measure for P-Fib(4)
	Performance Measure Example
	Taking into account # processors…
	Work Law
	Span Law
	Speedup and Parallelism
	Scheduling
	Greedy Scheduler
	Greedy Scheduler Theorem
	Reading Assignments

