Today: - Multithreaded Algs.

COSC 581, Algorithms

March 13, 2014

Reading Assignments

- Today's class:
- Chapter 27.1-27.2
- Reading assignment for next class:
- Chapter 27.3
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

Scheduling

- The performance depends not just on the work and span. Additionally, the strands must be scheduled efficiently.
- The strands must be mapped to static threads, and the operating system schedules the threads on the processors themselves.
- The scheduler must schedule the computation with no advance knowledge of when the strands will be spawned or when they will complete; it must operate online.

Greedy Scheduler

- We will assume a greedy scheduler in our analysis, since this keeps things simple. A greedy scheduler assigns as many strands to processors as possible in each time step.
- On P processors, if at least P strands are ready to execute during a time step, then we say that the step is a complete step; otherwise we say that it is an incomplete step.

Greedy Scheduler Theorem

- On an ideal parallel computer with P processors, a greedy scheduler executes a multithreaded computation with work T_{1} and span T_{∞} in time:

$$
T_{P} \leq \frac{T_{1}}{P}+T_{\infty}
$$

- Given the fact the best we can hope for on P processors is $T_{P}=T_{1} / P$ by the work law, and $T_{P}=T_{\infty}$ by the span law, the sum of these two gives the lower bounds

Proof (1/3)

- Let's consider the complete steps. In each complete step, the P processors perform a total of P work.
- Seeking a contradiction, we assume that the number of complete steps exceeds ${ }^{T_{1}} / P$. Then the total work of the complete steps is at least

$$
\begin{aligned}
P\left(\left\lfloor T_{1} / P\right\rfloor+1\right) & =P\left\lfloor T_{1} / P\right\rfloor+P \\
& =T_{1}-\left(T_{1} \bmod P\right)+P \\
& >T_{1}
\end{aligned}
$$

- Since this exceeds the total work required by the computation, this is impossible.

Proof (2/3)

- Now consider an incomplete step. Let G be the DAG representing the entire computation. W.l.o.g. assume that each strand takes unit time (otherwise replace longer strands by a chain of unit-time strands).
- Let G^{\prime} be the subgraph of G that has yet to be executed at the start of the incomplete step, and let $\mathrm{G}^{\prime \prime}$ be the subgraph remaining to be executed after the completion of the incomplete step.

Proof (3/3)

- A longest path in a DAG must necessarily start at a vertex with in-degree 0 . Since an incomplete step of a greedy scheduler executes all strands with in-degree 0 in G^{\prime}, the length of the longest path in $G^{\prime \prime}$ must be 1 less than the length of the longest path in G^{\prime}.
- Put differently, an incomplete step decreases the span of the unexecuted DAG by 1. Thus, the number of incomplete steps is at most T_{∞}.
- Since each step is either complete or incomplete, the theorem follows.

Corollary

- The running time of any multithreaded computation scheduled by a greedy scheduler on an ideal parallel computer with P processors is within a factor of 2 of optimal.
- Proof: Let $T_{P}{ }^{*}$ be the running time produced by an optimal scheduler. Let T_{1} be the work and T_{∞} be the span of the computation. We know from work and span laws that:

$$
T_{P}^{*} \geq \max \left(T_{1} / P, T_{\infty}\right) .
$$

- By the theorem,

$$
T_{P} \leq T_{1} /{ }_{P}+T_{\infty} \leq 2 \max \left({ }^{T_{1}} /{ }_{P}, T_{\infty}\right) \leq 2 T_{P}^{*}
$$

Slackness

- The parallel slackness of a multithreaded computation executed on an ideal parallel computer with P processors is the ratio of parallelism by P.
- Slackness $=\left(T_{1} / T_{\infty}\right) / \mathrm{P}$
- If the slackness is less than 1 , we cannot hope to achieve a linear speedup.

Achieving Near-Perfect Speedup

- Let T_{P} be the running time of a multithreaded computation produced by a greedy scheduler on an ideal computer with P processors. Let T_{1} be the work and T_{∞} be the span of the computation. If the slackness is big, $P \ll\left(T_{1} / T_{\infty}\right)$, then
T_{P} is approximately $T_{1} / P \quad$ [i.e, near-perfect speedup]
- Proof: If $P \ll\left(T_{1} / T_{\infty}\right)$, then $T_{\infty} \ll T_{1} / P$. Thus, by the theorem, $T_{P} \leq T_{1} / P+T_{\infty} \approx T_{1} / P$. By the work law, $T_{P} \geq T_{1} / P$. Hence, $T_{P} \approx T_{1} / P$, as claimed.

$$
\text { Here, "big" means slackness of } 10 \text { - i.e., at least } 10
$$ times more parallelism than processors

Analyzing multithreaded algs.

- Analyzing work is no different than for serial algorithms
- Analyzing span is more involved...
- Two computations in series means their spans add

- Two computations in parallel means you take maximum of individual spans

Work: $T_{1}(A \cup B)=T_{1}(A)+T_{1}(B)$
Span: $T_{\infty}(A \cup B)=\max \left(T_{\infty}(A), T_{\infty}(B)\right)$

Analyzing Parallel Fibonacci Computation

- Parallel algorithm to compute Fibonacci numbers:

P-FIB(n)
if $\mathrm{n} \leq 1$ return n ;
else $x=$ spawn P-FIB ($\mathrm{n}-1$); // parallel execution $\mathrm{y}=$ spawn P-FIB (n-2) ; // parallel execution sync; // wait for results of x and y return $\mathrm{x}+\mathrm{y}$;

Work of Fibonacci

- We want to know the work and span of the Fibonacci computation, so that we can compute the parallelism (work/span) of the computation.
- The work T_{1} is straightforward, since it amounts to computing the running time of the serialized algorithm:

$$
\begin{aligned}
\mathrm{T}_{1} & =\mathrm{T}(n-1)+\mathrm{T}(n-2)+\theta(1) \\
& =\Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

Span of Fibonacci

- Recall that the span T_{∞} is the longest path in the computational DAG. Since FIB(n) spawns
$\operatorname{FIB}(n-1)$ and $\operatorname{FIB}(n-2)$,
we have:

$$
\begin{aligned}
T_{\infty}(n) & =\max \left(T_{\infty}(n-1), T_{\infty}(n-2)\right)+\Theta(1) \\
& =T_{\infty}(n-1)+\Theta(1) \\
& =\Theta(n)
\end{aligned}
$$

Parallelism of Fibonacci

- The parallelism of the Fibonacci computation is:

$$
\frac{T_{1}(n)}{T_{\infty}(n)}=\Theta\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n} / n\right)
$$

which grows dramatically as n gets large.

- Therefore, even on the largest parallel computers, a modest value of n suffices to achieve near perfect linear speedup, since we have considerable parallel slackness.

Parallel Loops

- Consider multiplying $n \times n$ matrix A by an n-vector x :

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

- Can be calculated by computing all entries of y in parallel:

```
Mat-Vec(A, x)
n = A.rows
let }y\mathrm{ be a new vector of length }
parallel for i=1 to }
    yi}=
parallel for i=1 to n
    for j=1 to n
        yi}=\mp@subsup{y}{i}{}+\mp@subsup{a}{ij}{}\mp@subsup{x}{j}{
return y
```

Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested parallelism

Parallel Loops - Implementation

$\operatorname{Mat-Vec}(A, x)$
$n=A$.rows
let y be a new vector of length n parallel for $i=1$ to n

$$
y_{i}=0
$$

parallel for $i=1$ to n for $j=1$ to n

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

return y

Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested parallelism

Mat-Vec-Main-Loop($\left.A, x, y, n, i, i^{\prime}\right)$
if $i==i^{\prime}$
for $j=1$ to n $y_{i}=y_{i}+a_{i j} x_{j}$
else mid $=\left\lfloor\left(i+i^{\prime}\right) / 2\right\rfloor$
spawn Mat-Vec-Main-Loop(A, x, y, n, i, mid $)$
Mat-Vec-Main-Loop $\left(A, x, y, n, m i d+1, i^{\prime}\right)$
sync

Parallel Loops - Implementation

Mat-Vec (A, x)
$n=A$.rows
let y be a new vector of length n parallel for $i=1$ to n

$$
y_{i}=0
$$

parallel for $i=1$ to n for $j=1$ to n
return y

Work:

Span:

Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested parallelism

Mat-Vec-Main-Loop $\left(A, x, y, n, i, i^{\prime}\right)$

$$
\text { if } i==i^{\prime}
$$

$$
\text { for } j=1 \text { to } n
$$

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

else mid $=\left\lfloor\left(i+i^{\prime}\right) / 2\right\rfloor$
spawn Mat-Vec-Main-Loop $(A, x, y, n, i, m i d)$
Mat-Vec-Main-Loop $\left(A, x, y, n, m i d+1, i^{\prime}\right)$
sync

Parallel Loops - Implementation

Mat-Vec (A, x)
$n=A$.rows
let y be a new vector of length n parallel for $i=1$ to n

$$
y_{i}=0
$$

parallel for $i=1$ to n for $j=1$ to n
return y
Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested parallelism

$$
\text { Mat-Vec-Main-Loop }\left(A, x, y, n, i, i^{\prime}\right)
$$

Work: $T_{1}(n)=\Theta\left(n^{2}\right)$

$$
\text { if } i==i^{\prime}
$$

$$
\text { for } j=1 \text { to } n
$$

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

Span:
else mid $=\left\lfloor\left(i+i^{\prime}\right) / 2\right\rfloor$
spawn Mat-Vec-Main-Loop $(A, x, y, n, i$, mid $)$
Mat-Vec-Main-Loop $\left(A, x, y, n, m i d+1, i^{\prime}\right)$
sync

Parallel Loops - Implementation

Mat-Vec (A, x)
$n=A$.rows
let y be a new vector of length n parallel for $i=1$ to n

$$
y_{i}=0
$$

parallel for $i=1$ to n for $j=1$ to n $y_{i}=y_{i}+a_{i j} x_{j}$
return y
Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested

$$
\text { Mat-Vec-Main-Loop }\left(A, x, y, n, i, i^{\prime}\right)
$$

$$
\text { if } i==i^{\prime}
$$

$$
\text { for } j=1 \text { to } n
$$

Work: $T_{1}(n)=\Theta\left(n^{2}\right)$
Span: $T_{\infty}(n)=\Theta(\lg n)+\Theta(\lg n)+\Theta(n)$

$$
=\Theta(n)
$$

parallelism

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

else mid $=\left\lfloor\left(i+i^{\prime}\right) / 2\right\rfloor$
spawn Mat-Vec-Main-Loop $(A, x, y, n, i$, mid $)$
Mat-Vec-Main-Loop $\left(A, x, y, n\right.$, mid $\left.+1, i^{\prime}\right)$
sync

Parallel Loops - Implementation

Mat-Vec (A, x)
$n=A$.rows
let y be a new vector of length n parallel for $i=1$ to n

$$
y_{i}=0
$$

parallel for $i=1$ to n for $j=1$ to n $y_{i}=y_{i}+a_{i j} x_{j}$
return y
Here, parallel for is implemented by the compiler as a divide-andconquer subroutine using nested parallelism

$$
\text { Mat-Vec-Main-Loop }\left(A, x, y, n, i, i^{\prime}\right)
$$

$$
\text { if } i==i^{\prime}
$$

$$
\text { for } j=1 \text { to } n
$$

Work: $T_{1}(n)=\Theta\left(n^{2}\right)$

$$
y_{i}=y_{i}+a_{i j} x_{j}
$$

Span: $T_{\infty}(n)=\Theta(\lg n)+\Theta(\lg n)+\Theta(n)$

$$
=\Theta(n)
$$

Parallelism $=\Theta\left(n^{2}\right) / \Theta(n)=\Theta(n)$

Race Conditions

- A multithreaded algorithm is deterministic if and only if does the same thing on the same input, no matter how the instructions are scheduled.
- A multithreaded algorithm is nondeterministic if its behavior might vary from run to run.
- Often, a multithreaded algorithm that is intended to be deterministic fails to be.

Determinacy Race

- A determinacy race occurs when two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

$$
\begin{aligned}
& \text { RACE-EXAMPLE() } \\
& x=0
\end{aligned}
$$

parallel for $\mathrm{i}=1$ to 2

$$
x=x+1
$$

print x

Determinacy Race

- When a processor increments x, the operation is not indivisible, but composed of a sequence of instructions:

1) Read x from memory into one of the processor's registers
2) Increment the value of the register
3) Write the value in the register back into x in memory

Determinacy Race

$\mathrm{x}=0$
assign r1 = 0
incr $r 1$, so $r 1=1$
assign r2 $=0$
incr $r 2$, so r2 = 1
write back $x=r 1$
write back $x=r 2$
print $x / /$ now prints 1 instead of 2

Example: Using work, span for design

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32}=65$ to $T_{32}^{\prime}=40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.
- Analysis for 32 processors:

Original:

$$
\begin{aligned}
& T_{1}=2048 \\
& T_{\infty}=1 \\
& T_{P}=T_{1} / P+T_{\infty} \\
& \quad \Rightarrow T_{32}=2048 / 32+1=65
\end{aligned}
$$

- Analysis for 512 processors:

Original:

$$
\begin{aligned}
T_{1} & =2048 \\
T_{\infty} & =1 \\
T_{P} & =T_{1} / P+T_{\infty} \\
& \Rightarrow T_{512}=2048 / 512+1=5
\end{aligned}
$$

Optimized:

$$
\begin{aligned}
T_{1}^{\prime} & =1024 \\
T_{\infty}^{\prime} & =8 \\
T_{P}^{\prime} & =T^{\prime}{ }_{1} / P+T_{\infty}^{\prime} \\
& \Rightarrow T^{\prime}{ }_{32}=1024 / 32+8=40
\end{aligned}
$$

Optimized:

$$
\begin{aligned}
T_{1}^{\prime} & =1024 \\
T^{\prime} & =8 \\
T^{\prime} & =T^{\prime} \\
& 1 / P+T_{\infty}^{\prime} \\
& \Rightarrow T^{\prime}{ }_{512}=1024 / 512+8=10
\end{aligned}
$$

In-Class Exercise

Prof. Karan measures her deterministic multithreaded algorithm on 4, 10, and 64 processors of an ideal parallel computer using a greedy scheduler. She claims that the 3 runs yielded T_{4} $=80$ seconds, $\mathrm{T}_{10}=42$ seconds, and $\mathrm{T}_{64}=10$ seconds. Are these runtimes believable?

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-Square-Matrix-Multiply(A, B)
$n=A$. rows
let C be a new $n \times n$ matrix
parallel for $i=1$ to n
parallel for $j=1$ to n

$$
c_{i j}=0
$$

$$
\text { for } k=1 \text { to } n
$$

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-Square-Matrix-Multiply(A, B)
$n=A$. rows
let C be a new $n \times n$ matrix parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=0
$$

$$
\text { for } k=1 \text { to } n
$$

> Work:

Span:

Parallelism:

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:

P-Square-Matrix-Multiply(A, B) $n=A$. rows
let C be a new $n \times n$ matrix parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=0
$$

$$
\text { for } k=1 \text { to } n
$$

Work: $T_{1}(n)=\Theta\left(n^{3}\right)$
Span:

Parallelism:

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:
P-Square-Matrix-Multiply(A, B) n=A.rows
let C be a new $n \times n$ matrix parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=0
$$

for $k=1$ to n

$$
\begin{aligned}
& \text { Work: } T_{1}(n)=\Theta\left(n^{3}\right) \\
& \text { Span: } T_{\infty}(n)=\Theta(\lg n)+\Theta(\lg n)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

Parallelism:

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C

Multithreaded Matrix Multiplication

First, parallelize Square-Matrix-Multiply:
P-Square-Matrix-Multiply(A, B) n=A.rows
let C be a new $n \times n$ matrix parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=0
$$

for $k=1$ to n

$$
\text { Parallelism }=\Theta\left(n^{3}\right) / \Theta(n)=\Theta\left(n^{2}\right)
$$

$$
\begin{aligned}
& \text { Work: } T_{1}(n)=\Theta\left(n^{3}\right) \\
& \text { Span: } T_{\infty}(n)=\Theta(\lg n)+\Theta(\lg n)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

$$
c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}
$$

return C

Now, let's try divide-and-conquer

- Remember: Basic divide and conquer method:

To multiply two $n \times n$ matrices, $A \times B=C$, divide into sub-matrices:

$$
\begin{aligned}
& \left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right| \cdot\left|\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right|=\left|\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right| \\
& C_{11}=A_{11} B_{11}+A_{12} B_{21} \\
& C_{12}=A_{11} B_{12}+A_{12} B_{22} \\
& C_{21}=A_{21} B_{11}+A_{22} B_{21} \\
& C_{22}=A_{21} B_{12}+A_{22} B_{22}
\end{aligned}
$$

Parallelized Divide-and-Conquer Matrix Multiplication

```
P-Matrix-Multiply-Recursive(C, A, B):
\(n=A . r o w s\)
if \(n==1\) :
    \(c_{11}=a_{11} b_{11}\)
else:
    allocate a temporary matrix \(\mathrm{T}[1 \ldots n, 1 \ldots n]\)
    partition \(A, B, C\), and \(T\) into \((n / 2) \times(n / 2)\) submatrices
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{C}_{11}, \mathrm{~A}_{11}, \mathrm{~B}_{11}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{C}_{12}, \mathrm{~A}_{11}, \mathrm{~B}_{12}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{C}_{21}, \mathrm{~A}_{21}, \mathrm{~B}_{11}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{C}_{22}, \mathrm{~A}_{21}, \mathrm{~B}_{12}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{T}_{11}, \mathrm{~A}_{12}, \mathrm{~B}_{21}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{T}_{12}, \mathrm{~A}_{12}, \mathrm{~B}_{22}\) )
    spawn P-Matrix-Multiply-Recursive ( \(\mathrm{T}_{21}, \mathrm{~A}_{22}, \mathrm{~B}_{21}\) )
    P-Matrix-Multiply-Recursive ( \(\mathrm{T}_{22}, \mathrm{~A}_{22}, \mathrm{~B}_{22}\) )
    sync
    parallel for \(i=1\) to \(n\)
        parallel for \(j=1\) to \(n\)
            \(c_{i j}=c_{i j}+t_{i j}\)
                    \(\begin{aligned}\left(\begin{array}{ll}C_{11} & C_{12} \\ C_{21} & C_{22}\end{array}\right) & =\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right) \\ & =\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}\end{array}\right)\end{aligned}\)
```


Parallelized Divide-and-Conquer Matrix Multiplication

P-Matrix-Multiply-Recursive(C, A, B):

$$
n=\text { A.rows }
$$

if $n==1$:
$c_{11}=a_{11} b_{11}$
else:
allocate a temporary matrix $\mathrm{T}[1 \ldots n, 1 \ldots n]$
partition $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and T into $(n / 2) \times(n / 2)$ submatrices spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{11}, \mathrm{~A}_{11}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{12}, \mathrm{~A}_{11}, \mathrm{~B}_{12}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{21}, \mathrm{~A}_{21}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{22}, \mathrm{~A}_{21}, \mathrm{~B}_{12}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{11}, \mathrm{~A}_{12}, \mathrm{~B}_{21}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{12}, \mathrm{~A}_{12}, \mathrm{~B}_{22}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{21}, \mathrm{~A}_{22}, \mathrm{~B}_{21}$)
Work:

Span:

Parallelism:
P-MAtrix-Multiply-Recursive ($\mathrm{T}_{22}, \mathrm{~A}_{22}, \mathrm{~B}_{22}$)

sync

parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=c_{i j}+t_{i j}
$$

$$
\begin{aligned}
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

Parallelized Divide-and-Conquer Matrix Multiplication

```
P-Matrix-Multiply-Recursive(C, A, B):
\(n\) = A.rows
if \(n==1\) :
    \(c_{11}=a_{11} b_{11}\)
else:
```

 allocate a temporary matrix \(\mathrm{T}[1 \ldots n, 1 \ldots n]\)
 partition \(A, B, C\), and \(T\) into \((n / 2) \times(n / 2)\) submatrices
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{C}_{11}, \mathrm{~A}_{11}, \mathrm{~B}_{11}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{C}_{12}, \mathrm{~A}_{11}, \mathrm{~B}_{12}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{C}_{21}, \mathrm{~A}_{21}, \mathrm{~B}_{11}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{C}_{22}, \mathrm{~A}_{21}, \mathrm{~B}_{12}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{T}_{11}, \mathrm{~A}_{12}, \mathrm{~B}_{21}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{T}_{12}, \mathrm{~A}_{12}, \mathrm{~B}_{22}\))
 spawn P-Matrix-Multiply-Recursive (\(\mathrm{T}_{21}, \mathrm{~A}_{22}, \mathrm{~B}_{21}\))
 P-MAtrix-Multiply-Recursive (\(\mathrm{T}_{22}, \mathrm{~A}_{22}, \mathrm{~B}_{22}\))
 Work:

$$
\begin{aligned}
T_{1}(n)= & 8 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

Parallelism:

$$
\begin{aligned}
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-Matrix-Multiply-Recursive(C, A, B):
$n=$ A. rows
if $n==1$:
$c_{11}=a_{11} b_{11}$
else:
allocate a temporary matrix $\mathrm{T}[1 \ldots n, 1 \ldots n]$
partition $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and T into $(n / 2) \times(n / 2)$ submatrices spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{11}, \mathrm{~A}_{11}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{12}, \mathrm{~A}_{11}, \mathrm{~B}_{12}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{21}, \mathrm{~A}_{21}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{22}, \mathrm{~A}_{21}, \mathrm{~B}_{12}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{11}, \mathrm{~A}_{12}, \mathrm{~B}_{21}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{12}, \mathrm{~A}_{12}, \mathrm{~B}_{22}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{21}, \mathrm{~A}_{22}, \mathrm{~B}_{21}$)
P-Matrix-Multiply-Recursive ($\mathrm{T}_{22}, \mathrm{~A}_{22}, \mathrm{~B}_{22}$)

sync

parallel for $i=1$ to n parallel for $j=1$ to n

$$
c_{i j}=c_{i j}+t_{i j}
$$

Work:

$$
\begin{aligned}
T_{1}(n)= & 8 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n)= & T_{\infty}\left(\frac{n}{2}\right)+\Theta(\lg n) \\
& =\Theta\left(l^{2} n\right)
\end{aligned}
$$

Parallelism:

$$
\begin{aligned}
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

Parallelized Divide-and-Conquer Matrix Multiplication

P-Matrix-Multiply-Recursive(C, A, B):
$n=$ A. rows
if $n==1$:
$c_{11}=a_{11} b_{11}$
else:
allocate a temporary matrix $\mathrm{T}[1 \ldots n, 1 \ldots n]$
partition A, B, C, and T into $(n / 2) \times(n / 2)$ submatrices spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{11}, \mathrm{~A}_{11}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{12}, \mathrm{~A}_{11}, \mathrm{~B}_{12}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{21}, \mathrm{~A}_{21}, \mathrm{~B}_{11}$)
spawn P-Matrix-Multiply-Recursive ($\mathrm{C}_{22}, \mathrm{~A}_{21}, \mathrm{~B}_{12}$) spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{11}, \mathrm{~A}_{12}, \mathrm{~B}_{21}$) spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{12}, \mathrm{~A}_{12}, \mathrm{~B}_{22}$) spawn P-Matrix-Multiply-Recursive ($\mathrm{T}_{21}, \mathrm{~A}_{22}, \mathrm{~B}_{21}$) P-Matrix-Multiply-Recursive ($\mathrm{T}_{22}, \mathrm{~A}_{22}, \mathrm{~B}_{22}$)

Work:

$$
\begin{aligned}
T_{1}(n)= & 8 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{3}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n)= & T_{\infty}\left(\frac{n}{2}\right)+\Theta(\lg n) \\
& =\Theta\left(\lg ^{2} n\right)
\end{aligned}
$$

Parallelism: $\Theta\left(n^{3} / \lg ^{2} n\right)$

$$
\begin{aligned}
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22}
\end{array}\right)
\end{aligned}
$$

Multithreading Strassen’s Alg

- Remember how Strassen works?

Strassen's Matrix Multiplication

Strassen observed [1969] that the product of two matrices can be computed in general as follows:

$$
\begin{aligned}
\left(\begin{array}{l|l}
C_{11} & C_{12} \\
\hline C_{21} & C_{22}
\end{array}\right) & =\left(\begin{array}{ll}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right) *\left(\begin{array}{r|r}
\mathrm{B}_{11} & B_{12} \\
\hline \mathrm{~B}_{21} & B_{22}
\end{array}\right) \\
& =\left(\begin{array}{lr}
P_{5}+P_{4}-P_{2}+P_{6} & P_{1}+P_{2} \\
P_{3}+P_{4} & P_{5}+P_{1}-P_{3}-P_{7}
\end{array}\right.
\end{aligned}
$$

Formulas for Strassen's Algorithm

$$
\begin{aligned}
& P_{1}=A_{11} *\left(B_{12}-B_{22}\right) \\
& P_{2}=\left(A_{11}+A_{12}\right) * B_{22} \\
& P_{3}=\left(A_{21}+A_{22}\right) * B_{11} \\
& P_{4}=A_{22} *\left(B_{21}-B_{11}\right) \\
& P_{5}=\left(A_{11}+A_{22}\right) *\left(B_{11}+B_{22}\right) \\
& P_{6}=\left(A_{12}-A_{22}\right) *\left(B_{21}+B_{22}\right) \\
& P_{7}=\left(A_{11}-A_{21}\right) *\left(B_{11}+B_{12}\right)
\end{aligned}
$$

Multi-threaded version of Strassen's Algorithm

$$
\begin{aligned}
& P_{1}=A_{11} *\left(\mathrm{~B}_{12}-\mathrm{B}_{22}\right) \\
& \mathrm{P}_{2}=\left(\mathrm{A}_{11}+\mathrm{A}_{12}\right) * \mathrm{~B}_{22} \\
& \mathrm{P}_{3}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}\right) * \mathrm{~B}_{11} \\
& \mathrm{P}_{4}=\mathrm{A}_{22} *\left(\mathrm{~B}_{21}-\mathrm{B}_{11}\right) \\
& \mathrm{P}_{5}=\left(\mathrm{A}_{11}+\mathrm{A}_{22}\right) *\left(\mathrm{~B}_{11}+\mathrm{B}_{22}\right) \\
& \mathrm{P}_{6}=\left(\mathrm{A}_{12}-\mathrm{A}_{22}\right) *\left(\mathrm{~B}_{21}+\mathrm{B}_{22}\right) \\
& \mathrm{P}_{7}=\left(\mathrm{A}_{11}-\mathrm{A}_{21}\right) *\left(\mathrm{~B}_{11}+\mathrm{B}_{12}\right)
\end{aligned}
$$

First, create 10 matrices, each of which is $n / 2 \times n / 2$.

Work $=\Theta\left(n^{2}\right)$
Span $=\Theta(\lg n)$,
using doubly-nested parallel for loops

Formulas for Strassen's Algorithm

$$
\begin{aligned}
& \mathrm{P}_{1}=\mathrm{A}_{11} *\left(\mathrm{~B}_{12}-\mathrm{B}_{22}\right) \\
& \mathrm{P}_{2}=\left(\mathrm{A}_{11}+\mathrm{A}_{12}\right) * \mathrm{~B}_{22} \\
& \mathrm{P}_{3}=\left(\mathrm{A}_{21}+\mathrm{A}_{22}\right) \| * \mathrm{~B}_{11} \\
& \mathrm{P}_{4}=\mathrm{A}_{22} *\left(\mathrm{~B}_{21}-\mathrm{B}_{11}\right) \\
& \mathrm{P}_{5}=\left(\mathrm{A}_{11}+\mathrm{A}_{22}\right) \mid *\left(\mathrm{~B}_{11}+\mathrm{B}_{22}\right) \\
& \mathrm{P}_{6}=\left(\mathrm{A}_{12}-\mathrm{A}_{22}\right) \cdot *\left(\mathrm{~B}_{21}+\mathrm{B}_{22}\right) \\
& \mathrm{P}_{7}=\left(\mathrm{A}_{11}-\mathrm{A}_{21}\right) \cdot *\left(\mathrm{~B}_{11}+\mathrm{B}_{12}\right)
\end{aligned}
$$

First, create 10 matrices, each of which is $n / 2 \times n / 2$.

Work $=\Theta\left(n^{2}\right)$

Then, recursively compute 7 matrix products

Then add together, using doubly-nested parallel for loops

$$
\begin{aligned}
&\left(\begin{array}{l|l}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{l|l}
A_{11} & A_{12} \\
\hline A_{21} & A_{22}
\end{array}\right) *\left(\begin{array}{c|c}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right) \\
&=\begin{array}{lr}
P_{5}+P_{4}-P_{2}+P_{6} \\
P_{3}+P_{4}+P_{2} \\
\hline
\end{array}
\end{aligned}
$$

Work $=\Theta\left(n^{2}\right)$

Span $=\Theta(\lg n)$,

Resulting Runtime for Multithreaded Strassens' Alg

Work:

$$
\begin{aligned}
T_{1}(n) & =\Theta(1)+\Theta\left(n^{2}\right)+7 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right) \\
& =7 T_{1}\left(\frac{n}{2}\right)+\Theta\left(n^{2}\right) \\
& =\Theta\left(n^{\lg 7}\right)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =T_{\infty}\left(\frac{n}{2}\right)+\Theta(\lg n) \\
& =\Theta\left(\lg ^{2} n\right)
\end{aligned}
$$

Parallelism: $\Theta\left(n^{\lg 7} / \lg ^{2} n\right)$

Reading Assignments

- Reading assignment for next class:
- Chapter 27.3
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

