Today: – Multithreaded Algs.

COSC 581, Algorithms March 25, 2014

Many of these slides are adapted from several online sources

Reading Assignments

- Today's class:
 Chapter 27.3
- Reading assignment for next class:
 Chapter 29.1
- Announcement: Exam #2 on Tuesday, April 1

 Will cover greedy algorithms, amortized analysis
 HW 6-9

Remember Example from last time?

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32} = 65$ to $T'_{32} = 40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.

Remember Example from last time?

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32} = 65$ to $T'_{32} = 40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.

Question: For how many processors do the 2 versions of the program run equally fast?

In-Class Exercise #1

Consider the following procedures:

Proc-1(x) n = x.lengthlet y[1..n] be a new array Proc-SUB(x, y, 1, n) return y

PROC-SUB(x, y, i, j) if i = j y[i] = x[i]else $k = \lfloor (i + j)/2 \rfloor$ spawn PROC-SUB(x, y, i, k) PROC-SUB(x, y, k + 1, j) sync parallel for l = k + 1 to j y[l] = y[k] + y[l] What is the work of PROC-1?

What is the span of PROC-1?

What is the parallelism of PROC-1?

In-Class Exercise #2a

Consider the following multithreaded algorithm:

P-FUNC(X, Y, N) if N = 1 then Y[1,1] \leftarrow X[1,1] Else Partition X into 4 (N/2) × (N/2) submatrices X₁₁, X₁₂, X₂₁, X₂₂ Partition Y into four (N/2) × (N/2) submatrices Y₁₁, Y₁₂, Y₂₁, Y₂₂ spawn P-FUNC (X₁₁, Y₁₁, N/2) spawn P-FUNC (X₁₂, Y₂₁, N/2) spawn P-FUNC (X₂₁, Y₁₂, N/2) spawn P-FUNC (X₂₂, Y₂₂, N/2) sync What is the work of P-Func?

What is the span of P-Func?

What is the parallelism of P-Func?

In-Class Exercise #2b

Consider the following revised version of the multithreaded algorithm:

```
P-FUNC-REV(X, Y, N)
    if N = 1
    then Y[1,1] \leftarrow X[1,1]
    else
           Partition X into four (N/2) \times (N/2)
                     submatrices X<sub>11</sub>, X<sub>12</sub>, X<sub>21</sub>, and X<sub>22</sub>
           Partition Y into four (N/2) \times (N/2)
                    submatrices Y<sub>11</sub>, Y<sub>12</sub>, Y<sub>21</sub>, and Y<sub>22</sub>
          spawn P-FUNC-REV (X<sub>11</sub>, Y<sub>11</sub>, N/2)
          sync
          spawn P-FUNC-REV (X<sub>12</sub>, Y<sub>21</sub>, N/2)
          sync
          spawn P-FUNC-REV (X<sub>21</sub>, Y<sub>12</sub>, N/2)
          P-FUNC-REV (X<sub>22</sub>, Y<sub>22</sub>, N/2)
          sync
```

What is the work of P-FUNC-REV?

What is the span of P-FUNC-REV?

What is the parallelism of P-FUNC-REV?

MERGE-SORT'(A, p, r) if p < r $q = \lfloor (p + r)/2 \rfloor$ spawn MERGE-SORT'(A, p, q) MERGE-SORT'(A, q + 1, r) sync MERGE(A, p, q, r)

$$\begin{array}{l} \text{MERGE-SORT}'(A, p, r) \\ \text{if } p < r \\ q = \lfloor (p+r)/2 \rfloor \\ \text{spawn MERGE-SORT}'(A, p, q) \\ \text{MERGE-SORT}'(A, q+1, r) \\ \text{sync} \\ \text{MERGE}(A, p, q, r) \end{array} \begin{array}{l} \begin{array}{l} \text{Analysis} \\ \text{Work:} \\ T_1(n) = 2T_1\left(\frac{n}{2}\right) + \Theta(n) \\ = \Theta(n \lg n) \\ \text{Span:} \\ T_{\infty}(n) = T_{\infty}\left(\frac{n}{2}\right) + \Theta(n) \\ = \Theta(n) \\ \end{array}$$

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Parallelization:

$$\begin{array}{l} \text{MERGE-SORT}'(A, p, r) \\ \text{if } p < r \\ q = \lfloor (p + r)/2 \rfloor \\ \text{spawn MERGE-SORT}'(A, p, q) \\ \text{MERGE-SORT}'(A, q + 1, r) \\ \text{sync} \\ \text{MERGE}(A, p, q, r) \end{array} \begin{array}{l} \begin{array}{l} \text{Analysis} \\ \text{Work:} \\ T_1(n) = 2T_1\left(\frac{n}{2}\right) + \Theta(n) \\ = \Theta(n \lg n) \\ \end{array} \\ \begin{array}{l} \text{Spam:} \\ T_{\infty}(n) = T_{\infty}\left(\frac{n}{2}\right) + \Theta(n) \\ = \Theta(n) \\ \end{array}$$

Parallelization:

 $\Theta(n \lg n)$

 $\Theta(\lg n)$

Problem with Merge

- Serial MERGE is dominating the performance
- How can we parallelize MERGE?

Problem with Merge

- Serial MERGE is dominating the performance
- How can we parallelize MERGE?
- Divide-and-conquer:
 - Put the middle element, z, of the larger of the two lists in the correct position
 - Merge the subarrays containing elements smaller than z
 - Merge the subarrays containing elements greater than z

Parallel Merge Idea

Recursively merge into 2 sub-arrays)

Parallel Merge

```
P-MERGE(T, p_1, r_1, p_2, r_2, A, p_3)

n_1 = r_1 - p_1 + 1

n_2 = r_2 - p_2 + 1

if n_1 > n_2

swap P's, r's and n's

if n_1 == 0

return
```

else

$$q_{1} = \lfloor (p_{1} + r_{1})/2 \rfloor$$

$$q_{2} = \text{BINARY} - \text{SEARCH} (T[q_{1}], T, p_{2}, r_{2})$$

$$q_{3} = p_{3} + (q_{1} - p_{1}) + (q_{2} - p_{2}) // \text{Where to put } T[q_{1}]$$

$$A[q_{3}] = T[q_{1}]$$
spawn P-MERGE(T, p_{1}, q_{1} - 1, p_{2}, q_{2} - 1, A, p_{3})
P-MERGE(T, q_{1} + 1, r_{1}, q_{2}, r_{2}, A, q_{3} + 1)
sync

Parallel Merge Analysis

- Span:
 - Identify the maximum number of elements in the largest call to P-MERGE
 - The worst case merges $n_1/2$ elements (from the larger subarray) with all n_2 elements (from the smaller subarray):

$$[n_1/2] + n_2 \le \frac{n_1}{2} + \frac{n_2}{2} + \frac{n_2}{2}$$
$$= \frac{n_1 + n_2}{2} + \frac{n_2}{2}$$
$$\le \frac{n}{2} + \frac{n}{4}$$
$$= 3n/4$$

$$T_{\infty}(n) = T_{\infty}\left(\frac{3n}{4}\right) + \Theta(\lg n)$$
$$= \Theta(\lg^2 n)$$

Parallel Merge Analysis

• Work:

$$T_1(n) = T_1(\alpha n) + T_1((1 - \alpha)n) + O(\lg n)$$

where $\frac{1}{4} \le \alpha \le \frac{3}{4}$

Can show that $T_1(n) \le c_1 n - c_2 \lg n$ for constants c_1, c_2 , and thus prove that $T_1(n) = \Theta(n)$

P-MergeSort(A, p, r, B, s)	Analysis
n = r - p + 1	
if n == 1	Work:
B[s] = A[p]	
else	
let T[n] be a new array	
$q = \lfloor (p+r)/2 \rfloor$	Span:
q' = q - p + 1	
<pre>spawn P-Merge-Sort(A, p, q, T, 1)</pre>	
P-Merge-Sort(A, q + 1, r, T, q' +1)	
sync	Parallelization:
P-Merge(T, 1, q′,q′ +1, n, B, s)	

P-MergeSort(A, p, r, B, s)		
n = r – p + 1		
if n == 1		W
B[s] = A[p]		
else		
let T[n] be a new array		
$q = \lfloor (p+r)/2 \rfloor$		
q' = q - p + 1		Sp
<pre>spawn P-Merge-Sort(A, p, q, T, 1)</pre>		
P-Merge-Sort(A, q + 1, r, T, q' +1)		
sync		
P-Merge(T, 1, q′,q′ +1, n, B, s)		Pa

P-MergeSort(A, p, r, B, s)
n = r – p + 1
if n == 1
B[s] = A[p]
else
let T[n] be a new array
$q = \lfloor (p+r)/2 \rfloor$
q' = q - p + 1
<pre>spawn P-Merge-Sort(A, p, q, T, 1)</pre>
P-Merge-Sort(A, q + 1, r, T, q' +1)
sync
P-Merge(T, 1, q′,q′ +1, n, B, s)

<u>Analysis</u>
Work: $T_1(n) = 2T_1\left(\frac{n}{2}\right) + \Theta(n)$ $= \Theta(n \lg n)$
Span: $T_{\infty}(n) = T_{\infty}\left(\frac{n}{2}\right) + \Theta(\lg^2 n)$ $= \Theta(\lg^3 n)$
Parallelization:

· · · · · · · · · · · · · · · · · · ·
P-MergeSort(A, p, r, B, s)
n = r - p + 1
if n == 1
B[s] = A[p]
else
let T[n] be a new array
$q = \lfloor (p+r)/2 \rfloor$
q' = q - p + 1
<pre>spawn P-Merge-Sort(A, p, q, T, 1)</pre>
P-Merge-Sort(A, q + 1, r, T, q' +1)
sync
P-Merge(T, 1, q′,q′ +1, n, B, s)

<u>Analysis</u>
Work:
$T_1(n) = 2T_1\left(\frac{n}{2}\right) + \Theta(n)$
$= \Theta(n \operatorname{lg} n)$
Span:
$T_{\infty}(n) = T_{\infty}\left(\frac{n}{2}\right) + \Theta(\lg^2 n)$
$= \Theta(\lg^{\overline{3}}n)$
Parallelization:
$=\frac{\Theta(n \lg n)}{\Theta(1 = 3n)} = \Theta(n/1 g^2 n)$
$(\operatorname{Ig}^{\circ}n) (\operatorname{Ig}^{\circ}n)$

Summary of Multithreading

We've looked at the following:

- How to create a computation dag, and analyze it in terms of work and span.
- How to write parallel code using parallel, spawn, and sync.
- How to analyze parallel code in terms of work, span, and parallelism.
- How to determine whether code has a race condition.
- Parallel algorithms for:
 - multithreaded matrix multiplication
 - multithreaded merge sort

Reading Assignments

- Reading assignment for next class:
 - Chapter 29.1

Announcement: Exam #2 on Tuesday, April 1

 Will cover greedy algorithms, amortized analysis
 HW 6-9