
Today:  
− Multithreaded Algs. 

COSC 581, Algorithms 
March 25, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 27.3 

 
• Reading assignment for next class: 

– Chapter 29.1 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 



Remember Example from last time?   
• Consider a program prototyped on 32-processor computer, but aimed to run 

on supercomputer with 512 processors 
• Designers incorporated an optimization to reduce run time of benchmark on 

32-processor machine, from 𝑇32 = 65 to 𝑇′32 = 40  
• But, can show that this optimization made overall runtime on 512 processors 

slower than the original!  Thus, optimization didn’t help. 
• Analysis for 32 processors: 

Original:                  
𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇32 = 2048 32⁄ + 1 = 65 
 

• Analysis for 512 processors: 
Original:                  

𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇512 = 2048 512⁄ + 1 = 5 
 

 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′32 = 1024 32⁄ + 8 = 40 
 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′512 = 1024 512⁄ + 8 = 10 
 



Remember Example from last time?   
• Consider a program prototyped on 32-processor computer, but aimed to run 

on supercomputer with 512 processors 
• Designers incorporated an optimization to reduce run time of benchmark on 

32-processor machine, from 𝑇32 = 65 to 𝑇′32 = 40  
• But, can show that this optimization made overall runtime on 512 processors 

slower than the original!  Thus, optimization didn’t help. 
• Analysis for 32 processors: 

Original:                  
𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇32 = 2048 32⁄ + 1 = 65 
 

• Analysis for 512 processors: 
Original:                  

𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇512 = 2048 512⁄ + 1 = 5 
 

 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′32 = 1024 32⁄ + 8 = 40 
 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′512 = 1024 512⁄ + 8 = 10 
 

Question:  For how many processors do the 2 versions of the program run equally fast? 



In-Class Exercise #1 
Consider the following procedures: 
  
PROC-1(x) 
 n = x.length 
  let y[1..n] be a new array 
 PROC-SUB(x, y, 1, n) 
 return y 
  
PROC-SUB(x, y, i, j) 
 if i = = j 
 y[i] = x[i] 
 else k = (𝑖 + 𝑗)/2  
  spawn PROC-SUB(x, y, i, k) 
  PROC-SUB(x, y, k + 1, j) 
  sync 
  parallel for l = k  + 1 to j 
   y[l] = y[k] + y[l] 
  
   

 What is the work of PROC-1?  
 
 
  
 What is the span of PROC-1?  
 
 
What is the parallelism of PROC-1? 
 
 
 



In-Class Exercise #2a 

Consider the following multithreaded 
algorithm: 
  
P-FUNC(X, Y, N) 
 if N = 1 
           then Y[1,1] ← X[1,1] 
           Else  Partition X into 4 (N/2) × (N/2) 
     submatrices X11, X12, X21, X22 
 Partition Y into four (N/2) × (N/2) 
      submatrices Y11, Y12, Y21, Y22 
 spawn P-FUNC (X11, Y11, N/2) 
 spawn P-FUNC (X12, Y21, N/2) 
 spawn P-FUNC (X21, Y12, N/2) 
 spawn P-FUNC (X22, Y22, N/2) 
 sync 
 

What is the work of P-FUNC?  
  
  
What is the span of P-FUNC?  
  
  
What is the parallelism of P-FUNC?  
  



In-Class Exercise #2b 
Consider the following revised version of the 
multithreaded algorithm: 
  
P-FUNC-REV(X, Y, N) 
 if N = 1 
 then Y[1,1] ← X[1,1] 
 else  
  Partition X into four (N/2) × (N/2)  
                       submatrices X11, X12, X21, and X22 
  Partition Y into four (N/2) × (N/2)  
        submatrices Y11, Y12, Y21, and Y22 
  spawn P-FUNC-REV (X11, Y11, N/2) 
  sync 
  spawn P-FUNC-REV (X12, Y21, N/2) 
  sync 
  spawn P-FUNC-REV (X21, Y12, N/2) 
  P-FUNC-REV (X22, Y22, N/2) 
  sync 
 

What is the work of P-FUNC-REV?  
  
  
What is the span of P-FUNC-REV?  
  
  
What is the parallelism of P-FUNC-REV?  
  



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 

Analysis 
 
Work:  
 
 
 
Span: 
 
 
 
Parallelization: 
 
 



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 
 
 
Parallelization: 
 



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 

𝑇∞ 𝑛  = 𝑇∞
𝑛
2 + Θ 𝑛  

               =  Θ(𝑛) 
 
Parallelization: 
 
 



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 

𝑇∞ 𝑛  = 𝑇∞
𝑛
2 + Θ 𝑛  

               =  Θ(𝑛) 
 
Parallelization: 

=
Θ(𝑛 lg 𝑛) 
Θ(𝑛) 

= Θ(lg𝑛) 



Problem with Merge 

• Serial MERGE is dominating the performance 
• How can we parallelize MERGE? 



Problem with Merge 

• Serial MERGE is dominating the performance 
• How can we parallelize MERGE? 
• Divide-and-conquer: 

– Put the middle element, z, of the larger of the two 
lists in the correct position 

– Merge the subarrays containing elements smaller 
than z 

– Merge the subarrays containing elements greater 
than z 

 



Parallel Merge Idea 

Sorted subarray 1 Sorted subarray 2 

Median of first subarray 

Recursively merge into 2 sub-arrays) 



Parallel Merge 
P-MERGE(T, p1, r1, p2, r2, A, p3) 
n1 = r1 – p1 + 1 
n2 = r2 – p2 + 1 
if n1 > n2  
 swap P’s, r’s and n’s 
if n1 == 0 
 return 
else 
     𝑞1= (𝑝1 + 𝑟1)/2  
     𝑞2 = BIN A R Y‒ SE A R C H (𝑇 𝑞1 ,𝑇,𝑝2, 𝑟2) 
     𝑞3 = 𝑝3 + 𝑞1 − 𝑝1 + 𝑞2 − 𝑝2           // Where to put 𝑇[𝑞1] 
     𝐴 𝑞3 = 𝑇[𝑞1] 
     spawn P-MERGE(T, p1, 𝑞1 − 1, p2, 𝑞2 − 1, A, 𝑝3) 
     P-MERGE(T, 𝑞1 + 1, r1, q2, r2, A, 𝑞3 + 1) 
     sync 
 
 



Parallel Merge Analysis 
• Span: 

– Identify the maximum number of elements in the largest call to 
P-MERGE 

– The worst case merges 𝑛1 2⁄  elements (from the larger subarray) 
with all 𝑛2elements (from the smaller subarray): 
 

𝑛1/2 + 𝑛2 ≤
𝑛1
2

+ 𝑛2
2

 + 𝑛2
2

 
 = 𝑛1+𝑛2

2
+ 𝑛2

2
 

 ≤ 𝑛
2

+ 𝑛
4

 
 = 3𝑛/4 
 

𝑇∞ 𝑛 = 𝑇∞
3𝑛
4 + Θ lg𝑛  

 = Θ(lg2𝑛) 



Parallel Merge Analysis 

• Work: 
 
𝑇1 𝑛 = 𝑇1 𝛼 𝑛 + 𝑇1 1 − 𝛼 𝑛 + 𝑂(lg𝑛) 

 where 1 4⁄ ≤ 𝛼 ≤ 3
4⁄  

  
Can show that 𝑇1 𝑛 ≤ 𝑐1𝑛 − 𝑐2 lg𝑛  for 
constants 𝑐1, 𝑐2, and thus prove that 
𝑇1 𝑛 = Θ(𝑛) 



Parallel Merge Sort 
P-MERGESORT(A, p, r, B, s) 
n = r – p + 1 
if n == 1 
 B[s] = A[p] 
else 
     let T[n] be a new array 
     𝑞 = (𝑝 + 𝑟)/2  
     𝑞′ = q − p + 1 
 spawn P-MERGE-SORT(A, p, q, T, 1) 
     P-MERGE-SORT(A, q + 1, r, T, q′ +1) 
     sync 
 P-MERGE(T, 1, q′,q′ +1, n, B, s) 

 

Analysis 
 
Work:  
 
 
 
Span: 
 
 
 
Parallelization: 
 
 



Parallel Merge Sort 
P-MERGESORT(A, p, r, B, s) 
n = r – p + 1 
if n == 1 
 B[s] = A[p] 
else 
     let T[n] be a new array 
     𝑞 = (𝑝 + 𝑟)/2  
     𝑞′ = q − p + 1 
 spawn P-MERGE-SORT(A, p, q, T, 1) 
     P-MERGE-SORT(A, q + 1, r, T, q′ +1) 
     sync 
 P-MERGE(T, 1, q′,q′ +1, n, B, s) 

 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 
 
 
 
Parallelization: 
 
 



Parallel Merge Sort 
P-MERGESORT(A, p, r, B, s) 
n = r – p + 1 
if n == 1 
 B[s] = A[p] 
else 
     let T[n] be a new array 
     𝑞 = (𝑝 + 𝑟)/2  
     𝑞′ = q − p + 1 
 spawn P-MERGE-SORT(A, p, q, T, 1) 
     P-MERGE-SORT(A, q + 1, r, T, q′ +1) 
     sync 
 P-MERGE(T, 1, q′,q′ +1, n, B, s) 

 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 

𝑇∞ 𝑛  = 𝑇∞
𝑛
2 + Θ lg2𝑛  

               =  Θ(lg3𝑛) 
 
Parallelization: 
 
 



Parallel Merge Sort 
P-MERGESORT(A, p, r, B, s) 
n = r – p + 1 
if n == 1 
 B[s] = A[p] 
else 
     let T[n] be a new array 
     𝑞 = (𝑝 + 𝑟)/2  
     𝑞′ = q − p + 1 
 spawn P-MERGE-SORT(A, p, q, T, 1) 
     P-MERGE-SORT(A, q + 1, r, T, q′ +1) 
     sync 
 P-MERGE(T, 1, q′,q′ +1, n, B, s) 

 

Analysis 
 
Work:  

𝑇1 𝑛 = 2𝑇1
𝑛
2 + Θ 𝑛  

 =  Θ(𝑛 lg 𝑛) 
 
Span: 

𝑇∞ 𝑛  = 𝑇∞
𝑛
2 + Θ lg2𝑛  

               =  Θ(lg3𝑛) 
 
Parallelization: 

=
Θ(𝑛 lg 𝑛) 
Θ(lg3𝑛) 

= Θ 𝑛
lg2𝑛�  



Summary of Multithreading 
We’ve looked at the following: 
 
• How to create a computation dag, and analyze it in terms of 

work and span. 
• How to write parallel code using parallel, spawn, and sync. 
• How to analyze parallel code in terms of work, span, and 

parallelism. 
• How to determine whether code has a race condition. 
• Parallel algorithms for: 

– multithreaded matrix multiplication 
– multithreaded merge sort 

 



Reading Assignments 

• Reading assignment for next class: 
– Chapter 29.1 

 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 

 


	Today: �− Multithreaded Algs.
	Reading Assignments
	Remember Example from last time?  
	Remember Example from last time?  
	In-Class Exercise #1
	In-Class Exercise #2a
	In-Class Exercise #2b
	Multithreaded Merge Sort
	Multithreaded Merge Sort
	Multithreaded Merge Sort
	Multithreaded Merge Sort
	Multithreaded Merge Sort
	Problem with Merge
	Problem with Merge
	Parallel Merge Idea
	Parallel Merge
	Parallel Merge Analysis
	Parallel Merge Analysis
	Parallel Merge Sort
	Parallel Merge Sort
	Parallel Merge Sort
	Parallel Merge Sort
	Summary of Multithreading
	Reading Assignments

