
Today:  
− Multithreaded Algs. 

COSC 581, Algorithms 
March 25, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 27.3 

 
• Reading assignment for next class: 

– Chapter 29.1 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 



Remember Example from last time?   
• Consider a program prototyped on 32-processor computer, but aimed to run 

on supercomputer with 512 processors 
• Designers incorporated an optimization to reduce run time of benchmark on 

32-processor machine, from 𝑇32 = 65 to 𝑇′32 = 40  
• But, can show that this optimization made overall runtime on 512 processors 

slower than the original!  Thus, optimization didn’t help. 
• Analysis for 32 processors: 

Original:                  
𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇32 = 2048 32⁄ + 1 = 65 
 

• Analysis for 512 processors: 
Original:                  

𝑇1  = 2048 
𝑇∞ = 1 

𝑇𝑃  = 𝑇1
𝑃� + 𝑇∞ 

      ⇒ 𝑇512 = 2048 512⁄ + 1 = 5 
 

 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′32 = 1024 32⁄ + 8 = 40 
 

Optimized: 
𝑇′1  = 1024 
𝑇′∞  = 8 

𝑇′𝑃   = 𝑇′1
𝑃� + 𝑇′∞ 

          ⇒ 𝑇′512 = 1024 512⁄ + 8 = 10 
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Question:  For how many processors do the 2 versions of the program run equally fast? 



In-Class Exercise #1 
Consider the following procedures: 
  
PROC-1(x) 
 n = x.length 
  let y[1..n] be a new array 
 PROC-SUB(x, y, 1, n) 
 return y 
  
PROC-SUB(x, y, i, j) 
 if i = = j 
 y[i] = x[i] 
 else k = (𝑖 + 𝑗)/2  
  spawn PROC-SUB(x, y, i, k) 
  PROC-SUB(x, y, k + 1, j) 
  sync 
  parallel for l = k  + 1 to j 
   y[l] = y[k] + y[l] 
  
   

 What is the work of PROC-1?  
 
 
  
 What is the span of PROC-1?  
 
 
What is the parallelism of PROC-1? 
 
 
 



In-Class Exercise #2a 

Consider the following multithreaded 
algorithm: 
  
P-FUNC(X, Y, N) 
 if N = 1 
           then Y[1,1] ← X[1,1] 
           Else  Partition X into 4 (N/2) × (N/2) 
     submatrices X11, X12, X21, X22 
 Partition Y into four (N/2) × (N/2) 
      submatrices Y11, Y12, Y21, Y22 
 spawn P-FUNC (X11, Y11, N/2) 
 spawn P-FUNC (X12, Y21, N/2) 
 spawn P-FUNC (X21, Y12, N/2) 
 spawn P-FUNC (X22, Y22, N/2) 
 sync 
 

What is the work of P-FUNC?  
  
  
What is the span of P-FUNC?  
  
  
What is the parallelism of P-FUNC?  
  



In-Class Exercise #2b 
Consider the following revised version of the 
multithreaded algorithm: 
  
P-FUNC-REV(X, Y, N) 
 if N = 1 
 then Y[1,1] ← X[1,1] 
 else  
  Partition X into four (N/2) × (N/2)  
                       submatrices X11, X12, X21, and X22 
  Partition Y into four (N/2) × (N/2)  
        submatrices Y11, Y12, Y21, and Y22 
  spawn P-FUNC-REV (X11, Y11, N/2) 
  sync 
  spawn P-FUNC-REV (X12, Y21, N/2) 
  sync 
  spawn P-FUNC-REV (X21, Y12, N/2) 
  P-FUNC-REV (X22, Y22, N/2) 
  sync 
 

What is the work of P-FUNC-REV?  
  
  
What is the span of P-FUNC-REV?  
  
  
What is the parallelism of P-FUNC-REV?  
  



Multithreaded Merge Sort 

MERGE-SORT′(A, p, r) 
 if p < r 
   q = ⌊(𝑝 + 𝑟)/2⌋ 
 spawn MERGE-SORT′(A, p, q) 
 MERGE-SORT′(A, q +1, r) 
 sync 
 MERGE(A, p, q, r) 

Same as original merge-sort, except we 
execute the 2 recursive calls in parallel 
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Problem with Merge 

• Serial MERGE is dominating the performance 
• How can we parallelize MERGE? 



Problem with Merge 

• Serial MERGE is dominating the performance 
• How can we parallelize MERGE? 
• Divide-and-conquer: 

– Put the middle element, z, of the larger of the two 
lists in the correct position 

– Merge the subarrays containing elements smaller 
than z 

– Merge the subarrays containing elements greater 
than z 

 



Parallel Merge Idea 

Sorted subarray 1 Sorted subarray 2 

Median of first subarray 

Recursively merge into 2 sub-arrays) 



Parallel Merge 
P-MERGE(T, p1, r1, p2, r2, A, p3) 
n1 = r1 – p1 + 1 
n2 = r2 – p2 + 1 
if n1 > n2  
 swap P’s, r’s and n’s 
if n1 == 0 
 return 
else 
     𝑞1= (𝑝1 + 𝑟1)/2  
     𝑞2 = BIN A R Y‒ SE A R C H (𝑇 𝑞1 ,𝑇,𝑝2, 𝑟2) 
     𝑞3 = 𝑝3 + 𝑞1 − 𝑝1 + 𝑞2 − 𝑝2           // Where to put 𝑇[𝑞1] 
     𝐴 𝑞3 = 𝑇[𝑞1] 
     spawn P-MERGE(T, p1, 𝑞1 − 1, p2, 𝑞2 − 1, A, 𝑝3) 
     P-MERGE(T, 𝑞1 + 1, r1, q2, r2, A, 𝑞3 + 1) 
     sync 
 
 



Parallel Merge Analysis 
• Span: 

– Identify the maximum number of elements in the largest call to 
P-MERGE 

– The worst case merges 𝑛1 2⁄  elements (from the larger subarray) 
with all 𝑛2elements (from the smaller subarray): 
 

𝑛1/2 + 𝑛2 ≤
𝑛1
2

+ 𝑛2
2

 + 𝑛2
2

 
 = 𝑛1+𝑛2

2
+ 𝑛2

2
 

 ≤ 𝑛
2

+ 𝑛
4

 
 = 3𝑛/4 
 

𝑇∞ 𝑛 = 𝑇∞
3𝑛
4 + Θ lg𝑛  

 = Θ(lg2𝑛) 



Parallel Merge Analysis 

• Work: 
 
𝑇1 𝑛 = 𝑇1 𝛼 𝑛 + 𝑇1 1 − 𝛼 𝑛 + 𝑂(lg𝑛) 

 where 1 4⁄ ≤ 𝛼 ≤ 3
4⁄  

  
Can show that 𝑇1 𝑛 ≤ 𝑐1𝑛 − 𝑐2 lg𝑛  for 
constants 𝑐1, 𝑐2, and thus prove that 
𝑇1 𝑛 = Θ(𝑛) 



Parallel Merge Sort 
P-MERGESORT(A, p, r, B, s) 
n = r – p + 1 
if n == 1 
 B[s] = A[p] 
else 
     let T[n] be a new array 
     𝑞 = (𝑝 + 𝑟)/2  
     𝑞′ = q − p + 1 
 spawn P-MERGE-SORT(A, p, q, T, 1) 
     P-MERGE-SORT(A, q + 1, r, T, q′ +1) 
     sync 
 P-MERGE(T, 1, q′,q′ +1, n, B, s) 

 

Analysis 
 
Work:  
 
 
 
Span: 
 
 
 
Parallelization: 
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Summary of Multithreading 
We’ve looked at the following: 
 
• How to create a computation dag, and analyze it in terms of 

work and span. 
• How to write parallel code using parallel, spawn, and sync. 
• How to analyze parallel code in terms of work, span, and 

parallelism. 
• How to determine whether code has a race condition. 
• Parallel algorithms for: 

– multithreaded matrix multiplication 
– multithreaded merge sort 

 



Reading Assignments 

• Reading assignment for next class: 
– Chapter 29.1 

 
 

• Announcement:  Exam #2 on Tuesday, April 1 
– Will cover greedy algorithms, amortized analysis 
– HW 6-9 
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