Today: - Multithreaded Algs.

COSC 581, Algorithms

March 25, 2014

Reading Assignments

- Today's class:
- Chapter 27.3
- Reading assignment for next class:
- Chapter 29.1
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

Remember Example from last time?

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32}=65$ to $T_{32}^{\prime}=40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.
- Analysis for 32 processors:

Original:

$$
\begin{aligned}
& T_{1}=2048 \\
& T_{\infty}=1 \\
& T_{P}=T_{1} / P+T_{\infty} \\
& \quad \Rightarrow T_{32}=2048 / 32+1=65
\end{aligned}
$$

- Analysis for 512 processors:

Original:

$$
\begin{align*}
T_{1} & =2048 \\
T_{\infty} & =1 \\
T_{P} & =T_{1} / P+T_{\infty} \\
& \Rightarrow T_{512}=2048 / 512+1= \tag{5}
\end{align*}
$$

Optimized:

$$
\begin{aligned}
T_{1}^{\prime} & =1024 \\
T_{\infty}^{\prime} & =8 \\
T_{P}^{\prime} & =T^{\prime}{ }_{1} / P+T_{\infty}^{\prime} \\
& \Rightarrow T^{\prime}{ }_{32}=1024 / 32+8=
\end{aligned}
$$

Optimized:

$$
\begin{aligned}
T_{1}^{\prime} & =1024 \\
T^{\prime} & =8 \\
T^{\prime} & = \\
& =T^{\prime}{ }_{1} / P+T_{\infty}^{\prime} \\
& \Rightarrow T^{\prime}{ }_{512}=1024 / 512+8=10
\end{aligned}
$$

Remember Example from last time?

- Consider a program prototyped on 32-processor computer, but aimed to run on supercomputer with 512 processors
- Designers incorporated an optimization to reduce run time of benchmark on 32-processor machine, from $T_{32}=65$ to $T_{32}^{\prime}=40$
- But, can show that this optimization made overall runtime on 512 processors slower than the original! Thus, optimization didn't help.
- Analysis for 32 processors:

Original:

$$
\begin{aligned}
& T_{1}=2048 \\
& T_{\infty}=1 \\
& T_{P}=T_{1} / P+T_{\infty} \\
& \quad \Rightarrow T_{32}=2048 / 32+1=65
\end{aligned}
$$

Optimized:

$$
\begin{aligned}
T^{\prime}{ }_{1} & =1024 \\
T_{\infty}^{\prime} & =8 \\
T^{\prime}{ }_{P} & =T^{\prime}{ }_{1} / P+T_{\infty}^{\prime} \\
& \Rightarrow T^{\prime}{ }_{32}=1024 / 32+8=40
\end{aligned}
$$

- Analysis for 512 processors:

Original:

$$
\begin{aligned}
T_{1} & =2048 \\
T_{\infty} & =1 \\
T_{P} & =T_{1} / P+T_{\infty} \\
& \Rightarrow T_{512}=2048 / 512+1=5
\end{aligned}
$$

Question: For how many processors do the 2 versions of the program run equally fast?

In-Class Exercise \#1

Consider the following procedures:

```
Proc-1(x)
    n = x.length
let y[1..n] be a new array
Proc-Sub(x, y, 1, n)
return y
```

```
Proc-Sub(x, y, i, j)
    if i== j
        y[i] =x[i]
    else k=\(i+j)/2\rfloor
        spawn Proc-Sub(x, y, i, k)
        Proc-Sub( }x,y,k+1,j
        sync
            parallel for }l=k+1\mathrm{ to }
                        y[l] = y[k]+y[l]
```

What is the span of Proc-1?

What is the parallelism of Proc-1?

In-Class Exercise \#2a

Consider the following multithreaded algorithm:

```
P-FuNC(X, Y, N)
    if N=1
        then }\textrm{Y}[1,1]\leftarrow\textrm{X}[1,1
        Else Partition X into 4 (N/2) \times (N/2)
            submatrices }\mp@subsup{X}{11}{},\mp@subsup{X}{12}{},\mp@subsup{X}{21}{},\mp@subsup{X}{22}{
            Partition Y into four (N/2) }\times(\textrm{N}/2
            submatrices }\mp@subsup{Y}{11}{},\mp@subsup{Y}{12}{},\mp@subsup{Y}{21}{},\mp@subsup{Y}{22}{
            spawn P-FunC ( }\mp@subsup{X}{11}{},\mp@subsup{Y}{11}{},N/2
            spawn P-Func ( }\mp@subsup{X}{12}{},\mp@subsup{Y}{21}{},N/2
            spawn P-Func ( }\mp@subsup{X}{21}{},\mp@subsup{Y}{12}{\prime2},N/2
            spawn P-Func ( }\mp@subsup{X}{22}{},\mp@subsup{Y}{22}{},N/2
            sync
```

What is the span of P-Func?

What is the parallelism of P-Func?

In-Class Exercise \#2b

Consider the following revised version of the multithreaded algorithm:

```
P-Func-Rev(X, Y, N)
    if N=1
    then Y[1,1]}\leftarrowX[1,1
    else
        Partition X into four (N/2) > (N/2)
            submatrices }\mp@subsup{X}{11}{},\mp@subsup{X}{12}{},\mp@subsup{X}{21}{}\mathrm{ , and }\mp@subsup{X}{22}{
    Partition Y into four (N/2) > (N/2)
            submatrices }\mp@subsup{Y}{11}{},\mp@subsup{Y}{12}{},\mp@subsup{Y}{21}{}\mathrm{ , and }\mp@subsup{Y}{22}{
    spawn P-Func-Rev ( }\mp@subsup{X}{11}{},\mp@subsup{Y}{11}{},N/2
    sync
    spawn P-FunC-Rev (X }\mp@subsup{1}{12}{},\mp@subsup{\textrm{Y}}{21}{},N/2
    sync
    spawn P-Func-Rev ( }\mp@subsup{X}{21}{},\mp@subsup{Y}{12}{},N/2
    P-Func-Rev ( }\mp@subsup{X}{22}{},\mp@subsup{Y}{22}{},N/2
    sync
```

What is the span of P-Func-Rev?

What is the parallelism of P-Func-Rev?

Multithreaded Merge Sort

$\operatorname{Merge-Sort}{ }^{\prime}(A, p, r)$

$$
\begin{aligned}
& \text { if } p<r \\
& \quad q=\lfloor(p+r) / 2\rfloor \\
& \operatorname{spawn} \operatorname{MeRGE-SORT}(A, p, q) \\
& \operatorname{MerGE-SORT}(A, q+1, r) \\
& \operatorname{sync} \\
& \operatorname{Merge}(A, p, q, r)
\end{aligned}
$$

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Multithreaded Merge Sort

$\operatorname{Merge-Sort}{ }^{\prime}(A, p, r)$
Analysis
if $p<r$
$\mathrm{q}=\lfloor(p+r) / 2\rfloor$
spawn Merge-Sort' (A, p, q) Merge-Sort' $(A, q+1, r)$
sync
$\operatorname{Merge}(A, p, q, r)$

Span:

Parallelization:

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Multithreaded Merge Sort

$\operatorname{Merge-Sort}{ }^{\prime}(A, p, r)$

$$
\text { if } p<r
$$

$$
\mathrm{q}=\lfloor(p+r) / 2\rfloor
$$

spawn Merge-Sort' (A, p, q) Merge-Sort' $(A, q+1, r)$
sync
$\operatorname{Merge}(A, p, q, r)$

Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

Parallelization:

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Multithreaded Merge Sort

$\operatorname{Merge-Sort}{ }^{\prime}(A, p, r)$

$$
\text { if } p<r
$$

$$
\mathrm{q}=\lfloor(p+r) / 2\rfloor
$$

spawn Merge-Sort' (A, p, q)
Merge-Sort' $(A, q+1, r)$
sync
$\operatorname{Merge}(A, p, q, r)$

Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =T_{\infty}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

Parallelization:

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Multithreaded Merge Sort

$\operatorname{Merge-Sort}{ }^{\prime}(A, p, r)$
if $p<r$

$$
\mathrm{q}=\lfloor(p+r) / 2\rfloor
$$

spawn Merge-Sort' (A, p, q) $\operatorname{Merge-Sort}{ }^{\prime}(A, q+1, r)$
sync
$\operatorname{Merge}(A, p, q, r)$

Same as original merge-sort, except we execute the 2 recursive calls in parallel

Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =T_{\infty}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n)
\end{aligned}
$$

Parallelization:

$$
=\frac{\Theta(n \lg n)}{\Theta(n)}=\Theta(\lg n)
$$

Problem with Merge

- Serial Merge is dominating the performance
- How can we parallelize Merge?

Problem with Merge

- Serial Merge is dominating the performance
- How can we parallelize Merge?
- Divide-and-conquer:
- Put the middle element, z, of the larger of the two lists in the correct position
- Merge the subarrays containing elements smaller than z
- Merge the subarrays containing elements greater than z

Parallel Merge Idea

Parallel Merge

P-Merge($\left.\mathrm{T}_{1} \mathrm{p}_{1}, \mathrm{r}_{1}, \mathrm{p}_{2}, \mathrm{r}_{2}, \mathrm{~A}, \mathrm{p}_{3}\right)$
$n_{1}=r_{1}-p_{1}+1$
$n_{2}=r_{2}-p_{2}+1$
if $\mathrm{n}_{1}>\mathrm{n}_{2}$
swap P's, r's and n's
if $\mathrm{n}_{1}=0$
return
else

$$
\begin{aligned}
& q_{1}=\left\lfloor\left(p_{1}+r_{1}\right) / 2\right\rfloor \\
& q_{2}=\operatorname{BinARY}-\operatorname{SEARCH}\left(T\left[q_{1}\right], T, p_{2}, r_{2}\right) \\
& q_{3}=p_{3}+\left(q_{1}-p_{1}\right)+\left(q_{2}-p_{2}\right) \quad / / \text { Where to put } T\left[q_{1}\right] \\
& A\left[q_{3}\right]=T\left[q_{1}\right] \\
& \operatorname{spawn} \operatorname{P-MERGE}\left(\mathrm{T}, \mathrm{p}_{1}, q_{1}-1, \mathrm{p}_{2}, q_{2}-1, \mathrm{~A}, p_{3}\right) \\
& \operatorname{P-MERGE}\left(\mathrm{T}, q_{1}+1, \mathrm{r}_{1}, \mathrm{q} 2, \mathrm{r}_{2}, \mathrm{~A}, q_{3}+1\right) \\
& \text { sync }
\end{aligned}
$$

Parallel Merge Analysis

- Span:
- Identify the maximum number of elements in the largest call to P-Merge
- The worst case merges ${ }^{n_{1} / 2}$ elements (from the larger subarray) with all n_{2} elements (from the smaller subarray):

$$
\begin{aligned}
\left\lfloor n_{1} / 2\right\rfloor+n_{2} & \leq \frac{n_{1}}{2}+\frac{n_{2}}{2}+\frac{n_{2}}{2} \\
& =\frac{n_{1}+n_{2}}{2}+\frac{n_{2}}{2} \\
& \leq \frac{n}{2}+\frac{n}{4} \\
& =3 n / 4 \\
T_{\infty}(n)= & T_{\infty}\left(\frac{3 n}{4}\right)+\Theta(\lg n) \\
& =\Theta\left(\lg ^{2} n\right)
\end{aligned}
$$

Parallel Merge Analysis

- Work:

$$
\begin{aligned}
& T_{1}(n)=T_{1}(\alpha n)+T_{1}((1-\alpha) n)+O(\lg n) \\
& \quad \text { where } 1 / 4 \leq \alpha \leq 3 / 4
\end{aligned}
$$

Can show that $T_{1}(n) \leq c_{1} n-c_{2} \lg n$ for constants c_{1}, c_{2}, and thus prove that $T_{1}(n)=\Theta(n)$

Parallel Merge Sort

```
P-MergeSort(A, p, r, B, s)
\(n=r-p+1\)
if \(n=1\)
    \(B[s]=A[p]\)
else
    let \(T[n]\) be a new array
    \(q=\lfloor(p+r) / 2\rfloor\)
    \(q^{\prime}=q-p+1\)
    spawn P-Merge-Sort(A, p, q, T, 1)
    P-Merge-Sort(A, q + 1, r, T, \(q^{\prime}+1\) )
    sync
    \(\operatorname{P-Merge}\left(T, 1, q^{\prime}, q^{\prime}+1, n, B, s\right)\)
```


Analysis

Work:

Span:

Parallelization:

Parallel Merge Sort

```
P-MergeSort(A, p, r, B, s)
\(n=r-p+1\)
if \(n=1\)
    \(B[s]=A[p]\)
else
    let \(T[n]\) be a new array
    \(q=\lfloor(p+r) / 2\rfloor\)
    \(q^{\prime}=q-p+1\)
    spawn P-Merge-Sort(A, p, q, T, 1)
    P-Merge-Sort(A, q + 1, r, T, \(q^{\prime}+1\) )
    sync
    \(\operatorname{P-Merge}\left(T, 1, q^{\prime}, q^{\prime}+1, n, B, s\right)\)
```


Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

Parallelization:

Parallel Merge Sort

```
P-MergeSort(A, p, r, B, s)
\(n=r-p+1\)
if \(n=1\)
    \(B[s]=A[p]\)
else
    let \(T[n]\) be a new array
    \(q=\lfloor(p+r) / 2\rfloor\)
    \(q^{\prime}=q-p+1\)
    spawn P-Merge-Sort(A, p, q, T, 1)
    \(\operatorname{P-Merge-Sort}\left(A, q+1, r, T, q^{\prime}+1\right)\)
    sync
    \(\operatorname{P-Merge}\left(T, 1, q^{\prime}, q^{\prime}+1, n, B, s\right)\)
```


Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =T_{\infty}\left(\frac{n}{2}\right)+\Theta\left(\lg ^{2} n\right) \\
& =\Theta\left(\lg ^{3} n\right)
\end{aligned}
$$

Parallelization:

Parallel Merge Sort

```
P-MergeSort(A, p, r, B, s)
\(n=r-p+1\)
if \(n=1\)
    \(B[s]=A[p]\)
else
    let \(T[n]\) be a new array
    \(q=\lfloor(p+r) / 2\rfloor\)
    \(q^{\prime}=q-p+1\)
    spawn P-Merge-Sort(A, p, q, T, 1)
    \(\operatorname{P-Merge-Sort}\left(A, q+1, r, T, q^{\prime}+1\right)\)
    sync
    \(\operatorname{P-Merge}\left(T, 1, q^{\prime}, q^{\prime}+1, n, B, s\right)\)
```


Analysis

Work:

$$
\begin{aligned}
T_{1}(n) & =2 T_{1}\left(\frac{n}{2}\right)+\Theta(n) \\
& =\Theta(n \lg n)
\end{aligned}
$$

Span:

$$
\begin{aligned}
T_{\infty}(n) & =T_{\infty}\left(\frac{n}{2}\right)+\Theta\left(\lg ^{2} n\right) \\
& =\Theta\left(\lg ^{3} n\right)
\end{aligned}
$$

Parallelization:

$$
=\frac{\Theta(n \lg n)}{\Theta\left(\lg ^{3} n\right)}=\Theta\left(n / \lg ^{2} n\right)
$$

Summary of Multithreading

We've looked at the following:

- How to create a computation dag, and analyze it in terms of work and span.
- How to write parallel code using parallel, spawn, and sync.
- How to analyze parallel code in terms of work, span, and parallelism.
- How to determine whether code has a race condition.
- Parallel algorithms for:
- multithreaded matrix multiplication
- multithreaded merge sort

Reading Assignments

- Reading assignment for next class:
- Chapter 29.1
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

