Today:

- Linear Programming

COSC 581, Algorithms March 27, 2014

Reading Assignments

- Today's class:
- Chapter 29.1
- Reading assignment for next Thursday's class:
- Chapter 29.2-3
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

Linear Programming Example: A Political problem

Suppose a politician is trying to win an election
3 types of areas --- urban, suburban, rural
Certain issues --- roads, gun control, farm subsidies, gasoline tax
Politician wants to find out the minimum amount of money he/she needs to win 50,000 urban, 100,000 suburban, 25,000 rural votes.

The effects of policies on votes:

Policy	urban	suburban	rural
Build roads	-2	5	3
Gun control	8	2	-5
Farm subsidies	0	0	10
Gasoline tax	10	0	-2

How to Solve?

Define 4 variables :
x_{1} is the \# of thousands of dollars spent on advertising on building roads x_{2} is the \# of thousands of dollars spent on advertising on gun control x_{3} is the \# of thousands of dollars spent on advertising on farm subsidies x_{4} is the \# of thousands of dollars spent on advertising on gasoline tax

We format this problem as a linear program:

Minimize: x_{1}	+	x_{2}		x_{3}	+	x_{4}	// Total spent
Subject to: $-2 \mathrm{x}_{1}$	+	$8{ }_{2}$	+	$0 x_{3}$	+	$10 x_{4} \geq 50$	// urban votes
$5 x_{1}$	+	$2 x_{2}$	+	$0 x_{3}$	+	$0 x_{4} \geq 100$	// suburb. vote
$3 x_{1}$	-	$5 \mathrm{x}_{2}$	+	10x	-	$2 x_{4} \geq 25$	// rural votes
				thav	ativ		

Applications of Linear Programming

LP is a widely used Mathematical Optimization Model:

- Used frequently in management science (operations research), engineering, technology, industry, commerce, economics.
- Efficient resource allocation technique:
- Airline transportation
- Communication networks - e.g., optimize transmission routing
- Factory inventory/production control
- Fund management, stock portfolio optimization
- Can be used to approximate hard optimization problems

History of LP

\square 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry \& algebra]
Egypt: polyhedra \& pyramids.
India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]
China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)
[Precursor of Gauss-Jordan elimination method on linear equations]
Greece: Pythagoras, Euclid, Archimedes, ...
$\square 825$ AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):
"Al-Maqhaleh fi Hisab al-jabr w'almoqhabeleh" (An essay on Algebra and equations)
"Kitab al-Jam'a wal-Tafreeq bil Hisab al-Hindi" (Book on Hindu Arithmetic).
originated the words algebra \& algorithm for solution procedures of algebraic systems.
\square Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]

- Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930’s], Kantorovich [1939], Gale [1960] [LP duality theory \& precursor of Simplex]

George Dantzig [1947]: Simplex algorithm.

Exponential time in the worst case, but effective in practice.
Leonid Khachiyan [1979]: Ellipsoid algorithm.
The first weakly polynomial-time LP algorithm: poly(n,d,L).
\square Narendra Karmarkar [1984]: Interior Point Method.
Also weakly polynomial-time. IPM variations are very well studied.
\square Megiddo-Dyer [1984]: Prune-\&-Search method.
$O(n)$ time if the dimension is a fixed constant. Super-exponential on dimension.

The General LP Problem

maximize $C_{1} X_{1}+C_{2} X_{2}+\cdots+C_{d} X_{d} \longleftarrow$ Linear objective function subject to: as inequalities)

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 d} x_{d} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 d} x_{d} \leq b_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n d} x_{d} \leq b_{n}
\end{gathered}
$$

sonet terninolooy

- Objective function: value measure used to rank alternatives; either minimize or maximize this objective
- Decision variables: the quantities you can control to improve your objective function; should completely describe the set of decisions to be made
- Constraints: limitations on the values of the decision variables
- Linear program: a mathematical program in which the objective function is a linear function and the constraints are linear equalities or inequalities
- Objective value: value of objective function at a particular point
- Feasible solution: satisfies all the constraints
- Infeasible solution: doesn't satisfy the constraints
- Optimal solution: best feasible solution
- Unbounded solution: solution to LP does not have finite objective value

General Idea of LP - via another example

LP Idea: Minimize or maximize a linear objective, Subject to linear equalities and inequalities

Example: Bubba is in a pie eating contest that lasts 1 hour. Each torte that he eats takes 2 minutes. Each apple pie that he eats takes 3 minutes. He receives 4 points for each torte and 5 points for each pie. What should Bubba eat so as to get the most points?

Step 1: Determine the decision variables:
Let x be the number of tortes eaten by Bubba
Let y be the number of pies eaten by Bubba

General Idea of LP - (con't)

Step 2: Determine the objective function: Maximize $z=4 x+5 y$

Step 3: Determine the constraints:
$2 x+3 y \leq 60 \quad / /$ time constraints
$x \geq 0 ; y \geq 0 \quad / /$ non-negativity constraints - i.e., can't eat negative amounts

Visualizing LP -- Example in 2D

$\max x_{1}+8 x_{2}$
subject to:
(1) $x_{1} \quad \geq 3$
(2) $\quad x_{2} \geq 2$
(3) $-3 x_{1}+4 x_{2} \leq 14$
(4) $4 x_{1}-3 x_{2} \leq 25$
(5) $x_{1}+x_{2} \leq 15$

$$
\begin{aligned}
& x_{1}=46 / 7 \\
& x_{2}=59 / 7
\end{aligned}
$$

optimal

Each constraint is represented by a line and a direction. Intersection of constraints is feasible region.

Visualizing LP -- Example in 3D

maximize Z

subject to:

$$
\begin{aligned}
& x+y+z \leq 3 \\
& y \leq 2 \\
& x \geq 0 \\
& y \geq 0 \\
& z \geq 0
\end{aligned}
$$

Multi-dimensional cases (beyond 3D)

- Can't visualize beyond 3D, but same idea holds
- Each constraint defines half-space in n-dimensional space
- The objective function is a hyperplane
- Feasible region is area formed by intersection of half-spaces
- This region is called a simplex

Important Observation:

Optimal Solutions are at a Vertex or Line Segment

- Intersection of objective function and feasible region is either vertex or line segment

- Feasible region is convex - makes optimization much easier!
- Simplex algorithm finds LP solution by:
- Starting at some vertex
- Moving along edge of simplex to neighbor vertex whose value is at least as large
- Terminates when it finds local maximum
- Convexity ensures this local maximum is globally optimal

Recall - History of LP

\square 3000-200 BC: Egypt, Babylon, India, China, Greece: [geometry \& algebra]
Egypt: polyhedra \& pyramids.
India: Sulabha suutrah (Easy Solution Procedures) [2 equations, 2 unknowns]
China: Jiuzhang suanshu (9 Chapters on the Mathematical Art)
[Precursor of Gauss-Jordan elimination method on linear equations]
Greece: Pythagoras, Euclid, Archimedes, ...
$\square 825$ AD: Persia: Muhammad ibn-Musa Alkhawrazmi (author of 2 influential books):
"Al-Maqhaleh fi Hisab al-jabr w'almoqhabeleh" (An essay on Algebra and equations)
"Kitab al-Jam'a wal-Tafreeq bil Hisab al-Hindi" (Book on Hindu Arithmetic).
originated the words algebra \& algorithm for solution procedures of algebraic systems.
\square Fourier [1826], Motzkin [1933] [Fourier-Motzkin elimination method on linear inequalities]

- Minkowski [1896], Farkas [1902], De la Vallée Poussin [1910], von Neumann [1930’s],

Kantorovich [1939], Gale [1960] [LP duality theory \& precursor of Simplex]
George Dantzig [1947] Simplex algorithm.
Exponential time in the worst case, but effective in practice.
Leonid Khachiyan [1979]: Ellipsoid algorithm.
The first weakly polynomial-time LP algorithm: poly(n,d,L).
\square Narendra Karmarkar [1984]: Interior Point Method.
Also weakly polynomial-time. IPM variations are very well studied.
\square Megiddo-Dyer [1984]: Prune-\&-Search method.
$O(n)$ time if the dimension is a fixed constant. Super-exponential on dimension.

In-Class exercise

Consider the following linear programming problem:

Maximize: $x+y$
Subject to:

$$
\begin{aligned}
-x+y & \leq 2 \\
2 x+y & \leq 6 \\
x+2 y & \leq 6 \\
x, y & \geq 0
\end{aligned}
$$

What does the feasible region look like?

What is the optimal solution?

Two Canonical Forms for LP: Standard and Slack

- An LP is in standard form if it is the maximization of a linear function subject to linear inequalities
- An LP is in slack form if it is the maximization of a linear function subject to linear equalities

Standard Form

- We're given:
n real numbers $c_{1}, c_{2}, \ldots c_{n}$ m real numbers $b_{1}, b_{2}, \ldots b_{m}$
$m n$ real numbers $a_{i j}$, for $i=1,2, \ldots, m$ and $j=1,2, \ldots n$
- We want to find:
n real numbers $x_{1}, x_{2}, \ldots x_{n}$ that:
Maximize: $\sum_{j=1}^{n} c_{j} x_{j}$
Subject to:

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 \text { for } j=1,2, \ldots, n
\end{gathered}
$$

Compact Version of Standard Form

- Let: $A=\left(a_{i j}\right)$ be $m \times n$ matrix

$$
\begin{aligned}
& b=\left(b_{i}\right) \text { be an } m \text {-vector } \\
& c=\left(c_{j}\right) \text { be an } n \text {-vector } \\
& x=\left(x_{j}\right) \text { be an } n \text {-vector }
\end{aligned}
$$

- Rewrite LP as:

Maximize: $c^{T} x$
Subject to:

$$
\begin{aligned}
A x & \leq b \\
x & \geq 0
\end{aligned}
$$

- Now, we can concisely specify LP in standard form as (A, b, c)

Converting LP to Standard Form

4 reasons an LP might not be in standard form:

1) Objective function might be a minimization instead of maximization
2) There might be variables w/o non-negativity constraints
3) There might be equality constraints
4) There might be inequality constraints that are " \geq " instead of " \leq "

We can convert any LP into an equivalent standard form

Step 1: Change min LP to max LP

- To convert a minimization linear program L into an equivalent maximization linear program L^{\prime}, we simply negate the coefficients in the objective function.

$$
\begin{aligned}
& \text { Example: } \quad \begin{array}{l}
\text { minimize }-2 x_{1}+3 x_{2} \\
\hline
\end{array} \\
& \begin{aligned}
x_{1}+x_{2} & =7 \\
x_{1}-2 x_{2} & \leq 4 \\
x_{1} & \geq 0
\end{aligned} \\
& \text { minimize } 2 x_{1}-3 x_{2} \\
& \text { subject to } \\
& \begin{aligned}
x_{1}+x_{2} & =7 \\
x_{1}-2 x_{2} & \leq 4 \\
x_{1} & \geq 0 .
\end{aligned}
\end{aligned}
$$

and we negate the coefficients of the objective function, we obtain

Step 2: Dealing with missing non-negativity constraints

- Suppose that some variable x_{j} does not have a nonnegativity constraint.
- Then:
- We replace each occurrence of x_{j} by $x_{j}^{\prime}-x$

Step 3: Converting equality

 constraints into inequality constraints

 constraints into inequality constraints}

- Suppose that a linear program has an equality constraint $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$.
- Since $x=y$ if and only if both $x \geq y$ and $x \leq y$, we can replace $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=b$ by: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq b$ and $f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq b$.

Step 4: Convert " \geq " constraints to " \leq " constraints

- We can convert the " \geq " constraints to " \leq " constraints by multiplying these constraints through by -1 .
- That is, any inequality of the form:

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}
$$

is equivalent to:

$$
\sum_{j=1}^{n}-a_{i j} x_{j} \leq-b_{i}
$$

Slack Form - Useful for Simplex

- In slack form, the only inequality constraints are the nonnegativity constraints
- All other constraints are equality constraints
- Let:

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}
$$

be an inequality constraint

- Introduce new variable s, and rewrite as:

$$
\begin{aligned}
& s=b_{i}-\sum_{j=1}^{n} a_{i j} x_{j} \\
& s \geq 0
\end{aligned}
$$

- s is a slack variable; it represents difference between left-hand and right-hand sides

Slack Form (con't.)

- In general, we'll use x_{n+i} (instead of s) to denote the slack variable associated with the i th inequality.
- The i th constraint is therefore:

$$
x_{n+i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{i}
$$

along with the non-negativity constraint $x_{n+i} \geq 0$

Example

Standard form:

Maximize $2 x_{1}-3 x_{2}+3 x_{3}$ subject to:

$$
\begin{gathered}
x_{1}+x_{2}-x_{3} \leq 7 \\
-\mathrm{x}_{1}-\mathrm{x}_{2}+\mathrm{x}_{3} \leq-7 \\
\mathrm{x}_{1}-2 \mathrm{x}_{2}+2 \mathrm{x}_{3} \leq 4 \\
\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \geq 0
\end{gathered}
$$

Slack form:

Maximize $2 x_{1}-3 x_{2}+3 x_{3}$ subject to:

$$
\begin{gathered}
x_{4}=7-x_{1}-x_{2}+x_{3} \\
x_{5}=-7+x_{1}+x_{2}-x_{3} \\
x_{6}=4-x_{1}+2 x_{2}-2 x_{3} \\
x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{gathered}
$$

About Slack Form...

Slack form:

Maximize $2 x_{1}-3 x_{2}+3 x_{3}$
subject to:

Basic variables - variables
Non-basic variables on left-hand side

Concise Representation of Slack Form

- Can eliminate "maximize", "subject to", and non-negativity constraints (all are implicit)
- And, introduce z as value of objective function:

$$
\begin{aligned}
& z=2 x_{1}-3 x_{2}+3 x_{3} \\
& x_{4}=7-x_{1}-x_{2}+x_{3} \\
& x_{5}=-7+x_{1}+x_{2}-x_{3} \\
& x_{6}=4-x_{1}+2 x_{2}-2 x_{3}
\end{aligned}
$$

- Then, define slack form of LP as tuple (N, B, A, b, c, v)
where $N=$ indices of nonbasic variables
$B=$ indices of basic variables
- We can rewrite LP as:

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B
\end{aligned}
$$

In-Class Exercise

A bank is open Monday-Friday from 9am to 5pm. From past experience, the bank knows that it needs (at least) the following number of tellers:

Time period:	$9: 00-$ $10: 00$	$10: 00-$ $11: 00$	$11: 00-$ $12: 00$	$12: 00-$ $1: 00$	$1: 00-$ $2: 00$	$2: 00-$ $3: 00$	$3: 00-$ $4: 00$	$4: 00-0$ $5: 00$
Tellers required:	4	3	4	6	5	6	8	8

The bank hires two types of tellers. Full time tellers work 9-5 every day, except for 1 hour off for lunch. (The bank determines when a full time teller takes lunch hour, but it must be either 12-1 or 1-2.) Full time employees are paid $\$ 8$ per hour (this includes payment for the lunch hour).

The bank can also hire part time tellers. Each part time teller must work exactly 3 consecutive hours each day, and gets paid $\$ 5$ per hour. To maintain quality of service, at most 5 part time tellers can be hired.

Formulate a LP to minimize the cost of the bank to meet teller requirements.

Reading Assignments

- Reading assignment for next Thursday's class:
- Chapter 29.2-3
- Announcement: Exam \#2 on Tuesday, April 1
- Will cover greedy algorithms, amortized analysis
- HW 6-9

