
Merge Sort and Recurrences 

COSC 581, Algorithms 
January 14, 2014 



Reading Assignments 

• Today’s class:  
– Chapter 2, 4.0, 4.4 

 
• Reading assignment for next class: 

– Chapter 4.2, 4.5 



3 Common Algorithmic Techniques 

• Divide and Conquer 
• Dynamic Programming 
• Greedy Algorithms 



Divide and Conquer 
• Recursive in structure   

– Divide the problem into sub-problems that are 
similar to the original but smaller in size 

– Conquer the sub-problems by solving them 
recursively.  If they are small enough, just solve 
them in a straightforward manner. 

– Combine the solutions to create a solution to 
the original problem 



An Example:  Merge Sort 
Sorting Problem: Sort a sequence of n elements into 

non-decreasing order. 
 
• Divide:  Divide the n-element sequence to be 

sorted into two subsequences of n/2 elements 
each 

 

• Conquer:  Sort the two subsequences recursively 
using merge sort. 

 

• Combine:  Merge the two sorted subsequences to 
produce the sorted answer. 



Merge Sort – Example  
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Merge-Sort (A, p, r) 
INPUT: a sequence of n numbers stored in array A 
OUTPUT: an ordered sequence of n numbers 
 

MergeSort (A, p, r)   // sort A[p..r] by divide & conquer 
1 if p < r 
2     then q ← (p+r)/2 
3          MergeSort (A, p, q) 
4          MergeSort (A, q+1, r) 
5          Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]  

Initial Call: MergeSort(A, 1, n) 



Procedure Merge 
Merge(A, p, q, r) 
1  n1 ← q – p + 1 
2  n2 ← r – q 
3 for i ← 1 to n1  
4     do L[i] ← A[p + i – 1] 
5 for j ← 1 to n2  
6     do R[j] ← A[q + j] 
7 L[n1+1] ← ∞ 
8 R[n2+1] ← ∞ 
9 i ← 1 
10 j ← 1 
11 for k ←p to r 
12     do if L[i] ≤ R[j] 
13         then A[k] ← L[i] 
14                  i ← i + 1 
15         else A[k] ← R[j] 
16                  j ← j + 1 

 
 
 

   

Input: Array containing 
sorted subarrays A[p..q] 
and A[q+1..r]. 

Output: Merged sorted 
subarray in A[p..r]. 

Sentinels, to avoid having to 
check if either subarray is 
fully copied at each step. 



  j  

Merge – Example  
 6   8  26 32  1   9  42 43    …    … A 
k                                                    

 6   8  26 32  1   9  42 43 

       k                                                            k                                                           k                                                           k                                                                 k                                                                  k                                                                    k              

i                                   i                                          i                                  i    

 ∞   ∞  

                           i            j                                      j                                  j                                  j  

 6   8  26 32  1   9  42 43 

 1   6   8   9  26 32 42 43 

                                                         k              

L R 



Correctness of Merge 
Merge(A, p, q, r) 
1  n1 ← q – p + 1 
2  n2 ← r – q 
3 for i ← 1 to n1  
4     do L[i] ← A[p + i – 1] 
5 for j ← 1 to n2  
6     do R[j] ← A[q + j] 
7 L[n1+1] ← ∞ 
8 R[n2+1] ← ∞ 
9 i ← 1 
10 j ← 1 
11 for k ←p to r 
12     do if L[i] ≤ R[j] 
13         then A[k] ← L[i] 
14                  i ← i + 1 
15         else A[k] ← R[j] 
16                  j ← j + 1 

 
 
 

   

Loop Invariant for the for loop 
At the start of each iteration of the    
for loop:  
                      Subarray A[p..k – 1]  
contains the k – p smallest elements 
of L and R in sorted order.  
L[i] and R[j] are the smallest elements of  
L and R that have not been copied back into  
A. 

Initialization: 
Before the first iteration:  
•A[p..k – 1] is empty. 
•i = j = 1. 
•L[1] and R[1] are the smallest  
 elements of L and R not copied to A.  



Correctness of Merge 
Merge(A, p, q, r) 
1  n1 ← q – p + 1 
2  n2 ← r – q 
3 for i ← 1 to n1  
4     do L[i] ← A[p + i – 1] 
5 for j ← 1 to n2  
6     do R[j] ← A[q + j] 
7 L[n1+1] ← ∞ 
8 R[n2+1] ← ∞ 
9 i ← 1 
10 j ← 1 
11 for k ←p to r 
12     do if L[i] ≤ R[j] 
13         then A[k] ← L[i] 
14                  i ← i + 1 
15         else A[k] ← R[j] 
16                  j ← j + 1 

 
 
 

   

Maintenance: 
Case 1: L[i] ≤ R[j] 
•By LI, A contains p – k smallest elements    
of L and R in sorted order. 
•By LI, L[i] and R[j] are the smallest 
elements of L and R not yet copied into A. 
•Line 13 results in A containing p – k + 1 
smallest elements (again in sorted order). 
Incrementing i and k reestablishes the LI 
for the next iteration. 
Similarly for L[i] > R[j]. 
Termination: 
•On termination, k = r + 1. 
•By LI, A contains r – p + 1 smallest 
  elements of L and R in sorted order. 
•L and R together contain r – p + 3 elements. 
 All but the two sentinels have been copied  
 back into A. 



Analysis of Merge Sort 
• Running time T(n) of Merge Sort: 
• Divide: computing the middle takes Θ(1)  
• Conquer: solving 2 subproblems takes 2T(n/2)  
• Combine: merging n elements takes Θ(n)  
• Total: 

T(n) = Θ(1)    if n = 1 
T(n) = 2T(n/2) + Θ(n)  if n > 1 

 

⇒ T(n) = Θ(n lg n)  (CLRS, Chapter 4) 



Recurrences 

• Recurrence is an equation or inequality that 
describes a function in terms of its value on 
smaller inputs 

• Often used to define a recursive algorithm’s 
runtime 

• Example: T(n) = 2T(n/2) + n  



Recurrence Relations 
• Equation or an inequality that characterizes a 

function by its values on smaller inputs. 
• Solution Methods (Chapter 4) 

– Substitution Method. 
– Recursion-tree Method. 
– Master Method. 

• Recurrence relations arise when we analyze the 
running time of iterative or recursive algorithms. 
– Ex: Divide and Conquer. 

T(n) = Θ(1)    if n ≤  c 
T(n) = a T(n/b) + D(n) + C(n)    otherwise 



Substitution Method 
• Guess the form of the solution, then  

use mathematical induction to show it correct. 
– Substitute guessed answer for the function when the 

inductive hypothesis is applied to smaller values – 
hence, the name. 

• Works well when the solution is easy to guess. 

• No general way to guess the correct solution. 



Example 1 – Exact Function 
Recurrence:  T(n) = 1                         if   n = 1 
                      T(n) = 2T(n/2) + n         if   n > 1 
Guess:  T(n) = n lg n + n. 
Induction:  

•Basis: n = 1 ⇒ n lgn + n = 1 = T(n). 
•Hypothesis: T(k) = k lg k + k for all k < n. 
•Inductive Step: T(n)  = 2 T(n/2) + n 
                                       = 2 ((n/2)lg(n/2) + (n/2)) + n 
                                       = n (lg(n/2)) + 2n 
                                       = n lg n – n + 2n 
                                       = n lg n + n 



Recursion-tree Method 
• Making a good guess is sometimes difficult with 

the substitution method. 
• Use recursion trees to devise good guesses. 
• Recursion Trees 

– Show successive expansions of recurrences using 
trees. 

– Keep track of the time spent on the subproblems of 
a divide and conquer algorithm. 

– Help organize the algebraic bookkeeping necessary 
to solve a recurrence. 
 

 



Recursion Tree – Example  

• Running time of Merge Sort: 
T(n) = Θ(1)    if n = 1 
T(n) = 2T(n/2) + Θ(n)  if n > 1 

• Rewrite the recurrence as 
T(n) = c    if n = 1 
T(n) = 2T(n/2) + cn    if n > 1 

c > 0:  Running time for the base case and 
     time per array element for the divide and 
     combine steps. 

 



Recursion Tree for Merge Sort 
For the original problem, 
we have a cost of cn, 
plus two subproblems 
each of size (n/2) and 
running time T(n/2). 

cn 

T(n/2) T(n/2) 

Each of the size n/2 problems 
has a cost of cn/2 plus two 
subproblems, each costing 
T(n/4). 

cn 

cn/2 cn/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

Cost of divide and 
merge.  

Cost of sorting 
subproblems.  



Recursion Tree for Merge Sort 
Continue expanding until the problem size reduces to 1. 

cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

c c c c c c 

lg n 

cn 

cn 

cn 

cn 
Total           : cnlgn+cn 



Recursion Tree for Merge Sort 
Continue expanding until the problem size reduces to 1. 

cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

c c c c c c 

• Each level has total cost cn. 
• Each time we go down one level, 

the number of subproblems 
doubles, but the cost per 
subproblem halves  ⇒ cost per 
level remains the same. 

• There are lg n + 1 levels, height is 
lg n. (Assuming n is a power of 
2.) 

• Can be proved by induction. 
• Total cost = sum of costs at each 

level = (lg n + 1)cn = cnlgn + cn = 
Θ(n lgn). 

 



Recursion Trees – Caution Note 

• Recursion trees only generate guesses. 
– Verify guesses using substitution method. 

• A small amount of “sloppiness” can be 
tolerated. Why? 

• If careful when drawing out a recursion tree 
and summing the costs, can be used as direct 
proof. 
 



Summing up Cost of Recursion Trees 

• Evaluate: 
– Cost of individual node at depth i 
– Number of nodes at depth i 
– Total height of tree 

 



Recursion Tree for Merge Sort 
Continue expanding until the problem size reduces to 1. 

cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

c c c c c c 

• Cost of node at depth i = 𝑐𝑐
2𝑖

 
• Number of nodes at depth i = 2𝑖 
• Depth of tree  

= # times can divide cn by 2𝑖 
until we get value of 1 

= lg 𝑛+ 1 
 

• Putting together: 
 

� 2𝑖
𝑐𝑐
2𝑖

lg 𝑛+1

𝑖=0

 =  � 𝑐𝑐
lg 𝑛+1

𝑖=0

 

 
= Θ(𝑛 lg𝑛) 

 



Can also write out algebraically… 

𝑇 𝑛 = 𝑐𝑐 + 2𝑇
𝑛
2

 

 = 𝑐𝑐 + 2 𝑐𝑐/2 + 2𝑇 𝑛
4

 

 = 𝑐𝑐 + 2𝑐𝑐/2 + 2 2𝑐𝑐/4 + 2𝑇 𝑛
8

 
 = … 

 = ∑ 2𝑖 𝑐𝑐
2𝑖

lg 𝑛+1
𝑖=0  =  ∑ 𝑐𝑐lg 𝑛+1

𝑖=0  
 

= Θ(𝑛 lg𝑛) 



Example 2 

• Formulate (and solve) recursion tree for: 
𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑐 



Example #3 

• Insertion sort can be expressed as a recursive 
procedure as follows: 
– In order to sort A[1..n], we recursively sort       

A[1.. n–1] and then insert A[n] into the sorted 
array A[1..n–1].  Write a recurrence for the 
running time of this recursive version of insertion 
sort. 

 

 



Example #4 
•  Argue that the solution to the recurrence: 

𝑇 𝑛 = 𝑇
𝑛
3

+ 𝑇
2𝑛
3

+ 𝑐𝑐 

where c is constant,  

is Ω(𝑛 lg𝑛) by appealing to a recursion tree. 



Recall 3 Methods for Solving 
Recurrence Relations 

• Solution Methods (Chapter 4) 
– Substitution Method       -- Today 
– Recursion-tree Method    -- Today 
– Master Method    -- Next time 



Next Time:  The Master Method 
• Based on the Master theorem. 
• “Cookbook” approach for solving recurrences of 

the form 
    T(n) = aT(n/b) + f(n) 

• a ≥ 1, b > 1 are constants. 
• f(n) is asymptotically positive. 
• n/b may not be an integer, but we ignore floors and 

ceilings. Why? 

• Requires memorization of three cases. 



Reading Assignments 

 
• Reading assignment for next class: 

– Chapter 4.2, 4.5 
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