Merge Sort and Recurrences

COSC 581, Algorithms January 14, 2014

Reading Assignments

- Today's class:
- Chapter 2, 4.0, 4.4
- Reading assignment for next class:
- Chapter 4.2, 4.5

3 Common Algorithmic Techniques

- Divide and Conquer
- Dynamic Programming
- Greedy Algorithms

Divide and Conquer

- Recursive in structure
- Divide the problem into sub-problems that are similar to the original but smaller in size
- Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- Combine the solutions to create a solution to the original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge Sort - Example

Original Sequence

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A OUTPUT: an ordered sequence of n numbers

MergeSort ($\boldsymbol{A}, \boldsymbol{p}, \boldsymbol{r}$) // sort $A[p . . r]$ by divide \& conquer
1 if $p<r$
$2 \quad$ then $q \leftarrow\lfloor(p+r) / 2\rfloor$
$3 \quad \operatorname{MergeSort}(A, p, q)$
$4 \quad$ MergeSort $(A, q+1, r)$ $\operatorname{Merge}(A, p, q, r) / /$ merges $A[p . . q]$ with $A[q+1 . . r]$

Initial Call: MergeSort($A, 1, n$)

Procedure Merge

Merge - Example

Correctness of Merge

Merge(A, p, q, r)	
$1 n_{1} \leftarrow q-p+1$	
	$\leftarrow r-q$
3	for $i \leftarrow 1$ to n_{1}
4	do $L[i] \leftarrow A[p+i-1]$
5	for $j \leftarrow 1$ to n_{2}
6	do $R[j] \leftarrow A[q+j]$
7	$L\left[n_{1}+1\right] \leftarrow \infty$
8	$R\left[n_{2}+1\right] \leftarrow \infty$
9	$i \leftarrow 1$
10	$j \leftarrow 1$
11	for $k \leftarrow p$ to r
12	do if $L[i] \leq R[j]$
13	then $A[k] \leftarrow L[i]$
14	$i \leftarrow i+1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j+1$

Loop Invariant for the for loop

At the start of each iteration of the for loop:

Subarray $A[p . . k-1]$
contains the $k-p$ smallest elements of L and R in sorted order.
$L[i]$ and $R[j]$ are the smallest elements of
L and R that have not been copied back into A.

Initialization:

Before the first iteration:

- $A[p . . k-1]$ is empty.
$\cdot i=j=1$.
$\cdot L[1]$ and $R[1]$ are the smallest elements of L and R not copied to A.

Correctness of Merge

Merge (A, p, q, r)	
$1 n_{1} \leftarrow q-p+1$	
$2 n_{2} \leftarrow r-q$	
3	for $i \leftarrow 1$ to n_{1}
4	do $L[i] \leftarrow A[p+i-1]$
5	for $j \leftarrow 1$ to n_{2}
6	do $R[j] \leftarrow A[q+j]$
7	$L\left[n_{1}+1\right] \leftarrow \infty$
8	$R\left[n_{2}+1\right] \leftarrow \infty$
9	$i \leftarrow 1$
10	$j \leftarrow 1$
11	for $k \leftarrow p$ to r
12	do if $L[i] \leq R[j]$
13	then $A[k] \leftarrow L[i]$
14	$\quad i \leftarrow i+1$
15	else $A[k] \leftarrow R[j]$
16	$j \leftarrow j+1$

Maintenance:

Case 1: $L[i] \leq R[j]$
-By LI, A contains $p-k$ smallest elements of L and R in sorted order.

- By LI, $L[i]$ and $R[j]$ are the smallest elements of L and R not yet copied into A.
-Line 13 results in A containing $p-k+1$ smallest elements (again in sorted order). Incrementing i and k reestablishes the LI for the next iteration.
Similarly for $L[i]>R[j]$.

Termination:

- On termination, $k=r+1$.
- By LI, A contains $r-p+1$ smallest elements of L and R in sorted order.
- L and R together contain $r-p+3$ elements. All but the two sentinels have been copied back into A.

Analysis of Merge Sort

- Running time $\boldsymbol{T}(n)$ of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 subproblems takes $2 T(n / 2)$
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

$\Rightarrow T(n)=\Theta(n \lg n)(C L R S$, Chapter 4)

Recurrences

- Recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs
- Often used to define a recursive algorithm's runtime
- Example: $T(n)=2 T(n / 2)+n$

Recurrence Relations

- Equation or an inequality that characterizes a function by its values on smaller inputs.
- Solution Methods (Chapter 4)
- Substitution Method.
- Recursion-tree Method.
- Master Method.
- Recurrence relations arise when we analyze the running time of iterative or recursive algorithms.
- Ex: Divide and Conquer.

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n \leq c \\
T(n)=a T(n / b)+D(n)+C(n) & \text { otherwise }
\end{array}
$$

Substitution Method

- Guess the form of the solution, then use mathematical induction to show it correct.
- Substitute guessed answer for the function when the inductive hypothesis is applied to smaller values hence, the name.
- Works well when the solution is easy to guess.
- No general way to guess the correct solution.

Example 1 - Exact Function

Recurrence: $T(n)=1$

$$
T(n)=2 T(n / 2)+n \quad \text { if } \quad n>1
$$

- Guess: $T(n)=n \lg n+n$.
- Induction:
-Basis: $n=1 \Rightarrow n \lg n+n=1=T(n)$.
-Hypothesis: $T(k)=k \lg k+k$ for all $k<n$.
-Inductive Step: $T(n)=2 T(n / 2)+n$

$$
\begin{aligned}
& =2((n / 2) \lg (n / 2)+(n / 2))+n \\
& =n(\lg (n / 2))+2 n \\
& =n \lg n-n+2 n \\
& =n \lg n+n
\end{aligned}
$$

Recursion-tree Method

- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
- Recursion Trees
- Show successive expansions of recurrences using trees.
- Keep track of the time spent on the subproblems of a divide and conquer algorithm.
- Help organize the algebraic bookkeeping necessary to solve a recurrence.

Recursion Tree - Example

- Running time of Merge Sort:

$$
\begin{array}{ll}
T(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}
$$

- Rewrite the recurrence as

$$
\begin{array}{ll}
T(n)=\boldsymbol{c} & \text { if } n=1 \\
T(n)=2 T(n / 2)+\boldsymbol{c n} & \text { if } n>1
\end{array}
$$

$c>0$: Running time for the base case and time per array element for the divide and combine steps.

Recursion Tree for Merge Sort

For the original problem, we have a cost of $c n$, plus two subproblems each of size ($n / 2$) and running time $T(n / 2)$.

Each of the size $n / 2$ problems has a cost of $\mathrm{cn} / 2$ plus two subproblems, each costing $T(n / 4)$.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .
$\lg n$

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

- Each level has total cost cn.
- Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves \Rightarrow cost per level remains the same.
- There are $\lg n+1$ levels, height is $\lg n$. (Assuming n is a power of 2.)
- Can be proved by induction.
- Total cost = sum of costs at each level $=(\lg n+1) c n=c n l g n+c n=$ $\Theta(n \lg n)$.

Recursion Trees - Caution Note

- Recursion trees only generate guesses.
- Verify guesses using substitution method.
- A small amount of "sloppiness" can be tolerated. Why?
- If careful when drawing out a recursion tree and summing the costs, can be used as direct proof.

Summing up Cost of Recursion Trees

- Evaluate:
- Cost of individual node at depth i
- Number of nodes at depth i
- Total height of tree

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

- Cost of node at depth $i=\frac{c n}{2^{i}}$
- Number of nodes at depth $i=2^{i}$
- Depth of tree
= \# times can divide cn by 2^{i} until we get value of 1

$$
=\lg n+1
$$

- Putting together:

$$
\sum_{i=0}^{\lg n+1} 2^{i} \frac{c n}{2^{i}}=\sum_{i=0}^{\lg n+1} c n
$$

$$
=\Theta(n \lg n)
$$

Can also write out algebraically...

$$
\begin{aligned}
T(n) & =c n+2 T\left(\frac{n}{2}\right) \\
& =c n+2\left(c n / 2+2 T\left(\frac{n}{4}\right)\right) \\
& =c n+2 c n / 2+2\left(2 c n / 4+2 T\left(\frac{n}{8}\right)\right) \\
& =\ldots \\
& =\sum_{i=0}^{\lg n+1} 2^{i} \frac{c n}{2^{i}}=\sum_{i=0}^{\lg n+1} c n \\
& =\Theta(n \lg n)
\end{aligned}
$$

Example 2

- Formulate (and solve) recursion tree for: $T(n)=2 T(n-1)+c$

Example \#3

- Insertion sort can be expressed as a recursive procedure as follows:
- In order to sort $A[1 . . n]$, we recursively sort $A[1 . . n-1]$ and then insert $A[n]$ into the sorted array $A[1 . . n-1]$. Write a recurrence for the running time of this recursive version of insertion sort.

Example \#4

- Argue that the solution to the recurrence:

$$
T(n)=T\left(\frac{n}{3}\right)+T\left(\frac{2 n}{3}\right)+c n
$$

where c is constant,
is $\Omega(n \lg n)$ by appealing to a recursion tree.

Recall 3 Methods for Solving Recurrence Relations

- Solution Methods (Chapter 4)
- Substitution Method -- Today
- Recursion-tree Method -- Today
- Master Method -- Next time

Next Time: The Master Method

- Based on the Master theorem.
- "Cookbook" approach for solving recurrences of the form

$$
T(n)=a T(n / b)+f(n)
$$

- $a \geq 1, b>1$ are constants.
- $f(n)$ is asymptotically positive.
- n / b may not be an integer, but we ignore floors and ceilings. Why?
- Requires memorization of three cases.

Reading Assignments

- Reading assignment for next class:
- Chapter 4.2, 4.5

