Merge Sort and Recurrences

COSC 581, Algorithms
January 14, 2014

Reading Assighments

e Today’s class:
— Chapter 2, 4.0, 4.4

e Reading assignment for next class:
— Chapter 4.2, 4.5

3 Common Algorithmic Techniques

e Divide and Conquer
* Dynamic Programming

 Greedy Algorithms

Divide and Conquer

e Recursive in structure

— Divide the problem into sub-problems that are
similar to the original but smaller in size

— Conquer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

— Combine the solutions to create a solution to
the original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into
non-decreasing order.

e Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements
each

* Conquer: Sort the two subsequences recursively
using merge sort.

e Combine: Merge the two sorted subsequences to
produce the sorted answer.

Merge Sort — Example

Original Sequence

Sorted Sequence

18

26 (32| 6 415\15 9 || 1

18]2632| 6 |43[25[of 1| [1|6 |9 [15]18]26]32]43
6 [43]15[9] 1 6%32 1]9|15]43
43|15} o 1] [18]26 y\sz 15] 43 1/k9
JANIVAN /
18| 26 32E6 43f15][9 1][18]|26][32] 6 [43] 15[o]

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer

1 ifp<r

2 then g « [(p+r)/2]

3 MergeSort (A, p, Q)

4 MergeSort (A, g+1, r)

5 Merge (A, p, g, r) // merges A[p..q] with A[g+1..r]

Initial Call: MergeSort(A, 1, n)

Procedure Merge

Input: Array containing
sorted subarrays A[p..q]
and A[g+1..r].

Output: Merged sorted
subarray in A[p..r].

Sentinels, to avoid having to

check if either subarray is
fully copied at each step.

Merge(A, p, q, 1)

1 n<qg—-p+l1l

2 ny<r—q

3 fori< 1ton,

4 do L[i] < Alp+i—1]

5 forj < 1ton,

6 do R[j] « Alg +]

7 L[n,+1] < o

8 R[n,+1] <— o0

9 i«1 \
10 j<«1

11 fork<«ptor \
12 doif L[i] £R[j] «

13 then A[k] < L[i]

14 i<i+1

15 else A[k] < RJj]

16 j<—j+1

Merge — Example

26

32

K

42

43] o

Correctness of Merge

Merge(A, p, q, 1)

1 n<qg—-p+l1l

2 ny<r—q

3 fori< 1ton,

4 do L[i] < A[p+i—1]
5 forj < 1ton,

6 do R[j] « Alg +]
7 L[n,+1] < o

8 R[n,+1] <— o0

9 <1

10 j<«1

11 fork<ptor

12 do if L[i] < R][j]

13 then A[k] < L]i]
14 i<—i+1
15 else A[k] < R[/]
16 j<—j+1

L_oop Invariant for the for loop
At the start of each iteration of the
for loop:

Subarray A[p..k — 1]
contains the k — p smallest elements
of L and R in sorted order.
L[i] and R[j] are the smallest elements of
L and R that have not been copied back into
A.

Initialization:

Before the first iteration:

*Al[p..k — 1] Is empty.

q :j = 1.

L[1] and R[1] are the smallest
elements of L and R not copied to A.

Correctness of Merge

Merge(A, p, q, 1)

1 n<qg—-p+l1l

2 ny<r—q

3 fori< 1ton,

4 do L[i] < A[p+i—1]
5 forj < 1ton,

6 do R[j] < Alqg +]]
7 L[n,+1] < o

8 R[n,+1] <— o0

9 <1

10 j<«1

11 fork<ptor

12 doif L[i] < R[]

13 then A[k] < L]i]
14 i< i+1
15 else A[k] < R[/]
16 j<—j+1

Maintenance:

Case 1. L[i] £ R[j]

*By LI, A contains p — k smallest elements
of L and R in sorted order.

By LI, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.
Line 13 results in A containingp -k +1
smallest elements (again in sorted order).
Incrementing i and k reestablishes the LI
for the next iteration.

Similarly for L[i] > R[j].

Termination:

*On termination, k =r + 1.

By LI, A contains r — p + 1 smallest
elements of L and R in sorted order.

L and R together contain r — p + 3 elements.
All but the two sentinels have been copied
back into A.

Analysis of Merge Sort

 Running time T(n) of Merge Sort:

e Divide: computing the middle takes ®(1)

e Conquer: solving 2 subproblems takes 27(n/2)
e Combine: merging n elements takes ®(n)

e Total:
T(n) = (1) ifn=1
T(n) =2T(n/2) + ®(n) ifn>1

= T(n) = ®(n lg n) (CLRS, Chapter 4)

Recurrences

e Recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs

e Often used to define a recursive algorithm’s
runtime

e Example: T(n) =2T(n/2) + n

Recurrence Relations

Equation or an inequality that characterizes a
function by its values on smaller inputs.

Solution Methods (Chapter 4)
— Substitution Method.

— Recursion-tree Method.
— Master Method.
Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
— Ex: Divide and Conquer.
T(n) = (1) ifn< c
T(n) = a T(n/b) + D(n) + C(n) otherwise

Substitution Method

* Guess the form of the solution, then
use mathematical induction to show it correct.

— Substitute guessed answer for the function when the
inductive hypothesis is applied to smaller values —
hence, the name.

 Works well when the solution is easy to guess.

* No general way to guess the correct solution.

Example 1 — Exact Function
Recurrence: T(n)=1 if n=1
T(n)=2T(n/2) + n if n>1
*Guess: T(nN)=nlgn+n.
+|nduction:
Basis:n=1=nlgn+n=1=T(n).
*Hypothesis: T(k) =k Ig k + k for all k <n.
eInductive Step: T(n) =2 T(n/2) +n
=2 ((n/2)Ig(n/2) + (n/2)) + n
=n (lg(n/2)) + 2n
=nlgn-n+2n
=nlgn+n

Recursion-tree Method
e Making a good guess is sometimes difficult with

the substitution method.
e Use recursion trees to devise good guesses.
e Recursion Trees

— Show successive expansions of recurrences using
trees.

— Keep track of the time spent on the subproblems of
a divide and conquer algorithm.

— Help organize the algebraic bookkeeping necessary
to solve a recurrence.

Recursion Tree — Example

 Running time of Merge Sort:
T(n) = (1) ifn=1
T(n) =2T(n/2) + ®(n) ifn>1
e Rewrite the recurrence as
T(n)=c ifn=1
T(n) =2T(n/2) +cn ifn>1
¢ > 0: Running time for the base case and
time per array element for the divide and
combine steps.

Recursion Tree for Merge Sort

For the original problem,
we have a cost of cn,
plus two subproblems
each of size (n/2) and
running time T(n/2).

Each of the size n/2 problems
has a cost of cn/2 plus two
subproblems, each costing
T(n/4).

Cost of divide and // \

2N

T(n/2) T(n/2)
\

cn/2 cn/2

/\ /\

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of sorting
subproblems.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

(04 (0 [OOSR cn
cn/2 0] > N

o / \ / \
7< 7/{(“]/4 7/4\ .. > cn
S e O O o

Total . cnlgn+cn

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

o » Each level has total cost cn.
« Each time we go down one level,
the number of subproblems

o/ cn/2 doubles, but the cost per

subproblem halves = cost per
/\ /\ level remains the same.
e There are Ig n + 1 levels, height is
cn/4 cn/4 cn/4 cn/4 Ig n. (Assuming n is a power of

AAAA S

e Total cost = sum of costs at each
level = (Ign + 1)cn =cnlgn + cn =
®(n Ign).

Recursion Trees — Caution Note

e Recursion trees only generate guesses.

— Verify guesses using substitution method.

A small amount of “sloppiness” can be
tolerated. Why?

* |f careful when drawing out a recursion tree

and summing the costs, can be used as direct
proof.

Summing up Cost of Recursion Trees

e Evaluate:
— Cost of individual node at depth i
— Number of nodes at depth i
— Total height of tree

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
» Cost of node at depth i = —

cn
/ \ « Number of nodes at depth i = 2¢
* Depth of tree

on/2 cn/2 = # times can divide cn by 2
until we get value of 1
cn/4 cn/4 cn/4d cn/4 o PUttlng together:

N AN e
I ;?%=zm

C C C CC C =0

= 0(nlgn)

Can also write out algebraically...

T(n) =cn+ 2T (g)

=cn+ 2 (CTl/2 + 27 (%))
=cn+2cn/2 + 2 (ch/4 ur (g))

_ Zlg n+1 Zl o _ Zlg n+1

= 0(nlgn)

Example 2

e Formulate (and solve) recursion tree for:
Tn)=2T(n—1) +c

Example #3

* |nsertion sort can be expressed as a recursive
procedure as follows:

— In order to sort A[1..n], we recursively sort
A[1l.. n—1] and then insert A[n] into the sorted
array A[1..n—1]. Write a recurrence for the

running time of this recursive version of insertion
sort.

Example #4

 Argue that the solution to the recurrence:

T(n):T(g)+T(2?n>+cn

where c is constant,

is (A(nlgn) by appealing to a recursion tree.

Recall 3 Methods for Solving
Recurrence Relations

e Solution Methods (Chapter 4)
— Substitution Method -- Today
— Recursion-tree Method -- Today
— Master Method -- Next time

Next Time: The Master Method

e Based on the Master theorem.

* “Cookbook” approach for solving recurrences of
the form
T(n) = aT(n/b) + f(n)
e g>1, b>1 are constants.
e f(n) is asymptotically positive.
* n/b may not be an integer, but we ignore floors and

ceilings. Why?
 Requires memorization of three cases.

Reading Assighments

e Reading assignment for next class:
— Chapter 4.2, 4.5

	Merge Sort and Recurrences
	Reading Assignments
	3 Common Algorithmic Techniques
	Divide and Conquer
	An Example: Merge Sort
	Merge Sort – Example
	Merge-Sort (A, p, r)
	Procedure Merge
	Merge – Example
	Correctness of Merge
	Correctness of Merge
	Analysis of Merge Sort
	Recurrences
	Recurrence Relations
	Substitution Method
	Example 1 – Exact Function
	Recursion-tree Method
	Recursion Tree – Example
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Recursion Trees – Caution Note
	Summing up Cost of Recursion Trees
	Recursion Tree for Merge Sort
	Can also write out algebraically…
	Example 2
	Example #3
	Example #4
	Recall 3 Methods for Solving Recurrence Relations
	Next Time: The Master Method
	Reading Assignments

