
Merge Sort and Recurrences

COSC 581, Algorithms
January 14, 2014

Reading Assignments

• Today’s class:
– Chapter 2, 4.0, 4.4

• Reading assignment for next class:

– Chapter 4.2, 4.5

3 Common Algorithmic Techniques

• Divide and Conquer
• Dynamic Programming
• Greedy Algorithms

Divide and Conquer
• Recursive in structure

– Divide the problem into sub-problems that are
similar to the original but smaller in size

– Conquer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

– Combine the solutions to create a solution to
the original problem

An Example: Merge Sort
Sorting Problem: Sort a sequence of n elements into

non-decreasing order.

• Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements
each

• Conquer: Sort the two subsequences recursively
using merge sort.

• Combine: Merge the two sorted subsequences to
produce the sorted answer.

Merge Sort – Example

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

26 18 6 32 15 43 1 9

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 15 43 1 9

 6 18 26 32 1 9 15 43

 1 6 9 15 18 26 32 43

18 26

18 26

18 26

32

32

 6

 6

32 6

18 26 32 6

43

43

15

15

43 15

 9

 9

 1

 1

 9 1

43 15 9 1

18 26 32 6 43 15 9 1

18 26 6 32

 6 26 32 18

15 43 1 9

 1 9 15 43

 1 6 9 15 18 26 32 43

Original Sequence Sorted Sequence

Merge-Sort (A, p, r)
INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSort (A, p, r) // sort A[p..r] by divide & conquer
1 if p < r
2 then q ← (p+r)/2
3 MergeSort (A, p, q)
4 MergeSort (A, q+1, r)
5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Procedure Merge
Merge(A, p, q, r)
1 n1 ← q – p + 1
2 n2 ← r – q
3 for i ← 1 to n1
4 do L[i] ← A[p + i – 1]
5 for j ← 1 to n2
6 do R[j] ← A[q + j]
7 L[n1+1] ← ∞
8 R[n2+1] ← ∞
9 i ← 1
10 j ← 1
11 for k ←p to r
12 do if L[i] ≤ R[j]
13 then A[k] ← L[i]
14 i ← i + 1
15 else A[k] ← R[j]
16 j ← j + 1

Input: Array containing
sorted subarrays A[p..q]
and A[q+1..r].

Output: Merged sorted
subarray in A[p..r].

Sentinels, to avoid having to
check if either subarray is
fully copied at each step.

 j

Merge – Example
 6 8 26 32 1 9 42 43 … … A
k

 6 8 26 32 1 9 42 43

 k k k k k k k

i i i i

 ∞ ∞

 i j j j j

 6 8 26 32 1 9 42 43

 1 6 8 9 26 32 42 43

 k

L R

Correctness of Merge
Merge(A, p, q, r)
1 n1 ← q – p + 1
2 n2 ← r – q
3 for i ← 1 to n1
4 do L[i] ← A[p + i – 1]
5 for j ← 1 to n2
6 do R[j] ← A[q + j]
7 L[n1+1] ← ∞
8 R[n2+1] ← ∞
9 i ← 1
10 j ← 1
11 for k ←p to r
12 do if L[i] ≤ R[j]
13 then A[k] ← L[i]
14 i ← i + 1
15 else A[k] ← R[j]
16 j ← j + 1

Loop Invariant for the for loop
At the start of each iteration of the
for loop:
 Subarray A[p..k – 1]
contains the k – p smallest elements
of L and R in sorted order.
L[i] and R[j] are the smallest elements of
L and R that have not been copied back into
A.

Initialization:
Before the first iteration:
•A[p..k – 1] is empty.
•i = j = 1.
•L[1] and R[1] are the smallest
 elements of L and R not copied to A.

Correctness of Merge
Merge(A, p, q, r)
1 n1 ← q – p + 1
2 n2 ← r – q
3 for i ← 1 to n1
4 do L[i] ← A[p + i – 1]
5 for j ← 1 to n2
6 do R[j] ← A[q + j]
7 L[n1+1] ← ∞
8 R[n2+1] ← ∞
9 i ← 1
10 j ← 1
11 for k ←p to r
12 do if L[i] ≤ R[j]
13 then A[k] ← L[i]
14 i ← i + 1
15 else A[k] ← R[j]
16 j ← j + 1

Maintenance:
Case 1: L[i] ≤ R[j]
•By LI, A contains p – k smallest elements
of L and R in sorted order.
•By LI, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.
•Line 13 results in A containing p – k + 1
smallest elements (again in sorted order).
Incrementing i and k reestablishes the LI
for the next iteration.
Similarly for L[i] > R[j].
Termination:
•On termination, k = r + 1.
•By LI, A contains r – p + 1 smallest
 elements of L and R in sorted order.
•L and R together contain r – p + 3 elements.
 All but the two sentinels have been copied
 back into A.

Analysis of Merge Sort
• Running time T(n) of Merge Sort:
• Divide: computing the middle takes Θ(1)
• Conquer: solving 2 subproblems takes 2T(n/2)
• Combine: merging n elements takes Θ(n)
• Total:

T(n) = Θ(1) if n = 1
T(n) = 2T(n/2) + Θ(n) if n > 1

⇒ T(n) = Θ(n lg n) (CLRS, Chapter 4)

Recurrences

• Recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs

• Often used to define a recursive algorithm’s
runtime

• Example: T(n) = 2T(n/2) + n

Recurrence Relations
• Equation or an inequality that characterizes a

function by its values on smaller inputs.
• Solution Methods (Chapter 4)

– Substitution Method.
– Recursion-tree Method.
– Master Method.

• Recurrence relations arise when we analyze the
running time of iterative or recursive algorithms.
– Ex: Divide and Conquer.

T(n) = Θ(1) if n ≤ c
T(n) = a T(n/b) + D(n) + C(n) otherwise

Substitution Method
• Guess the form of the solution, then

use mathematical induction to show it correct.
– Substitute guessed answer for the function when the

inductive hypothesis is applied to smaller values –
hence, the name.

• Works well when the solution is easy to guess.

• No general way to guess the correct solution.

Example 1 – Exact Function
Recurrence: T(n) = 1 if n = 1
 T(n) = 2T(n/2) + n if n > 1
Guess: T(n) = n lg n + n.
Induction:

•Basis: n = 1 ⇒ n lgn + n = 1 = T(n).
•Hypothesis: T(k) = k lg k + k for all k < n.
•Inductive Step: T(n) = 2 T(n/2) + n
 = 2 ((n/2)lg(n/2) + (n/2)) + n
 = n (lg(n/2)) + 2n
 = n lg n – n + 2n
 = n lg n + n

Recursion-tree Method
• Making a good guess is sometimes difficult with

the substitution method.
• Use recursion trees to devise good guesses.
• Recursion Trees

– Show successive expansions of recurrences using
trees.

– Keep track of the time spent on the subproblems of
a divide and conquer algorithm.

– Help organize the algebraic bookkeeping necessary
to solve a recurrence.

Recursion Tree – Example

• Running time of Merge Sort:
T(n) = Θ(1) if n = 1
T(n) = 2T(n/2) + Θ(n) if n > 1

• Rewrite the recurrence as
T(n) = c if n = 1
T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and
 time per array element for the divide and
 combine steps.

Recursion Tree for Merge Sort
For the original problem,
we have a cost of cn,
plus two subproblems
each of size (n/2) and
running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems
has a cost of cn/2 plus two
subproblems, each costing
T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and
merge.

Cost of sorting
subproblems.

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c

lg n

cn

cn

cn

cn
Total : cnlgn+cn

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c

• Each level has total cost cn.
• Each time we go down one level,

the number of subproblems
doubles, but the cost per
subproblem halves ⇒ cost per
level remains the same.

• There are lg n + 1 levels, height is
lg n. (Assuming n is a power of
2.)

• Can be proved by induction.
• Total cost = sum of costs at each

level = (lg n + 1)cn = cnlgn + cn =
Θ(n lgn).

Recursion Trees – Caution Note

• Recursion trees only generate guesses.
– Verify guesses using substitution method.

• A small amount of “sloppiness” can be
tolerated. Why?

• If careful when drawing out a recursion tree
and summing the costs, can be used as direct
proof.

Summing up Cost of Recursion Trees

• Evaluate:
– Cost of individual node at depth i
– Number of nodes at depth i
– Total height of tree

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c

• Cost of node at depth i = 𝑐𝑐
2𝑖

• Number of nodes at depth i = 2𝑖
• Depth of tree

= # times can divide cn by 2𝑖
until we get value of 1

= lg 𝑛+ 1

• Putting together:

� 2𝑖
𝑐𝑐
2𝑖

lg 𝑛+1

𝑖=0

 = � 𝑐𝑐
lg 𝑛+1

𝑖=0

= Θ(𝑛 lg𝑛)

Can also write out algebraically…

𝑇 𝑛 = 𝑐𝑐 + 2𝑇
𝑛
2

 = 𝑐𝑐 + 2 𝑐𝑐/2 + 2𝑇 𝑛
4

 = 𝑐𝑐 + 2𝑐𝑐/2 + 2 2𝑐𝑐/4 + 2𝑇 𝑛
8

 = …

 = ∑ 2𝑖 𝑐𝑐
2𝑖

lg 𝑛+1
𝑖=0 = ∑ 𝑐𝑐lg 𝑛+1

𝑖=0

= Θ(𝑛 lg𝑛)

Example 2

• Formulate (and solve) recursion tree for:
𝑇 𝑛 = 2𝑇 𝑛 − 1 + 𝑐

Example #3

• Insertion sort can be expressed as a recursive
procedure as follows:
– In order to sort A[1..n], we recursively sort

A[1.. n–1] and then insert A[n] into the sorted
array A[1..n–1]. Write a recurrence for the
running time of this recursive version of insertion
sort.

Example #4
• Argue that the solution to the recurrence:

𝑇 𝑛 = 𝑇
𝑛
3

+ 𝑇
2𝑛
3

+ 𝑐𝑐

where c is constant,

is Ω(𝑛 lg𝑛) by appealing to a recursion tree.

Recall 3 Methods for Solving
Recurrence Relations

• Solution Methods (Chapter 4)
– Substitution Method -- Today
– Recursion-tree Method -- Today
– Master Method -- Next time

Next Time: The Master Method
• Based on the Master theorem.
• “Cookbook” approach for solving recurrences of

the form
 T(n) = aT(n/b) + f(n)

• a ≥ 1, b > 1 are constants.
• f(n) is asymptotically positive.
• n/b may not be an integer, but we ignore floors and

ceilings. Why?

• Requires memorization of three cases.

Reading Assignments

• Reading assignment for next class:

– Chapter 4.2, 4.5

	Merge Sort and Recurrences
	Reading Assignments
	3 Common Algorithmic Techniques
	Divide and Conquer
	An Example: Merge Sort
	Merge Sort – Example
	Merge-Sort (A, p, r)
	Procedure Merge
	Merge – Example
	Correctness of Merge
	Correctness of Merge
	Analysis of Merge Sort
	Recurrences
	Recurrence Relations
	Substitution Method
	Example 1 – Exact Function
	Recursion-tree Method
	Recursion Tree – Example
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Recursion Trees – Caution Note
	Summing up Cost of Recursion Trees
	Recursion Tree for Merge Sort
	Can also write out algebraically…
	Example 2
	Example #3
	Example #4
	Recall 3 Methods for Solving Recurrence Relations
	Next Time: The Master Method
	Reading Assignments

