
Today:  
− Linear Programming (con’t.) 

COSC 581, Algorithms 
April 8, 2014 

Many of these slides are adapted from several online sources 



Reading Assignments 

• Today’s class:  
– Chapter 29.3, 29.5 

 

• Reading assignment for next Thursday’s class: 
– Chapter 29.4 

 



Recall:  Formatting problems as LPs – SSSP 

• Single Source Shortest Path : 
– Input:  A weighted direct graph G=<V,E> with weighted 

function w: E→R, a source s and a destination t, compute d 
which is the weight of the shortest path from s to t. 

– Formulate as a LP: 
• For each vertex v, introduce a variable dv: the weight of the 

shortest path from s to v. 
• LP:   

maximize dt  
subject to: 

 dv ≤ du+ w(u,v)        for each edge (u,v)∈E 
 ds =0 
 
Q:  Why is this a maximization? 
Q:  How many variables?   |V| 
Q:  How many constraints?  |E|+1 



In-Class Exercise #1 

Write out explicitly the linear program corresponding to finding the shortest 
path from node s to node y in the figure below: 

maximize dt  
subject to: 

dv ≤ du+ w(u,v) for each edge (u,v)∈E 
ds =0 



In-Class Exercise #1 

Write out explicitly the linear program corresponding to finding the shortest 
path from node s to node y in the figure below: 

maximize  𝑑𝑦 
subject to: 

𝑑𝑡 ≤ 𝑑𝑠 + 3 
𝑑𝑦 ≤ 𝑑𝑠 + 5 
𝑑𝑥 ≤ 𝑑𝑡 + 6 
𝑑𝑦 ≤ 𝑑𝑡 + 2 
𝑑𝑧 ≤ 𝑑𝑥 + 2 
𝑑𝑡 ≤ 𝑑𝑦 + 1 
𝑑𝑥 ≤ 𝑑𝑦 + 4 
𝑑𝑧 ≤ 𝑑𝑦 + 6 
𝑑𝑥 ≤ 𝑑𝑧 + 7 
𝑑𝑠 ≤ 𝑑𝑧 + 3 
𝑑𝑠 = 0 

 

maximize dt  
subject to: 

dv ≤ du+ w(u,v) for each edge (u,v)∈E 
ds =0 



Recall:  Formatting Max-flow problem as LP 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)         for all u, v∈V           //capacity constraints 
∑v∈V fvu = ∑v∈V fuv    for all u ∈ V − {s,t}  //flow conservation 
fuv ≥ 0          for all u, v∈V          //non-negativity constraints 



In-Class Exercise #2 

Write out explicitly the linear program corresponding to finding the maximum 
flow in the figure below: 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)                  for all u, v∈V 
∑v∈V fvu = ∑v∈V fuv     for all u ∈ V − {s,t}  
fuv ≥ 0                          for all u, v∈V 



In-Class Exercise #2 

Write out explicitly the linear program corresponding to finding the maximum 
flow in the figure below: 

maximize ∑v∈V fsv − ∑v∈V fvs  
subject to: 

fuv ≤ c(u,v)                  for all u, v∈V 
∑v∈V fvu = ∑v∈V fuv     for all u ∈ V − {s,t}  
fuv ≥ 0                          for all u, v∈V 

maximize 𝑓𝑠𝑠 + 𝑓𝑠𝑣1 + 𝑓𝑠𝑣2 + 𝑓𝑠𝑣3 + 𝑓𝑠𝑣4 + 𝑓𝑠𝑡 
subject to: 
   𝑓𝑠𝑣1 ≤ 16 
   𝑓𝑠𝑣2≤ 13 
   𝑓𝑣2𝑣1≤ 4 
 
 

   𝑓𝑣1𝑣3≤ 12 
   𝑓𝑣3𝑣2≤ 9 
   𝑓𝑣2𝑣4≤ 14 

 𝑓𝑣4𝑣3 ≤ 7 
   𝑓𝑣4𝑡≤ 4 
   𝑓𝑣3𝑡≤ 20 

   𝑓𝑠𝑠≤ 0 
 𝑓𝑠𝑣3≤ 0 
 𝑓𝑠𝑣4≤ 0 

   𝑓𝑠𝑡≤ 0 
 𝑓𝑣1𝑠≤ 0 
 𝑓𝑣2𝑠≤ 0 

… 



Solving LPs using SIMPLEX… 

• First, another recap (via example) to 
remember how SIMPLEX works… 



Example for Simplex algorithm 
Maximize 3x1+x2+2x3  
Subject to:  

x1+x2+3x3 ≤ 30      
2x1+2x2+5x3 ≤ 24      
4x1+x2+2x3 ≤ 36      
x1, x2, x3≥0  
    

Change to slack form: 
z= 3x1+x2+2x3    
x4=30- x1-x2-3x3     
x5=24- 2x1-2x2-5x3      
x6=36- 4x1-x2-2x3     
x1, x2, x3,  x4, x5, x6 ≥0  



Simplex algorithm steps 

• Recall:  “Feasible solutions” (infinite number of them):  
– A feasible solution is any whose values satisfy constraints 
– In previous example, solution is feasible as long as all of x1, x2, x3,  x4, x5, 

x6 are nonnegative 
• Basic solution:  

– set all nonbasic variables to 0 and compute all basic variable values 
• Iteratively rewrite the set of equations such that: 

– There is no change to the underlying LP problem (i.e., new form is 
equivalent to old) 

– Feasible solutions stay the same 
– The basic solution is changed, to result in a greater objective value: 

• Select a nonbasic variable xe whose coefficient in the objective function is 
positive 

• Increase value of xe as much as possible without violating any of the 
constraints  

• Make xe a basic variable 
• Select some other variable to become nonbasic 

z= 3x1+x2+2x3  
x4=30- x1-x2-3x3    
x5=24- 2x1-2x2-5x3     
x6=36- 4x1-x2-2x3    
x1, x2, x3, x4, x5, x6 ≥0 



Example 
• Basic solution: (x1,x2,x3,x4,x5,x6) =(0,0,0,30,24,36) 

– The objective value is z = 3⋅0 + 0 + 2⋅0 = 0     (Not a maximum) 
 

• Try to increase the value of nonbasic variable x1 while maintaining 
constraints:   

Increase x1 to 30: means that x4 will be OK (i.e., non-negative) 
Increase x1 to 12 means that x5 will be OK  9:  
Increase x1 to 9 means that x6 will be OK.   
We have to choose most constraining value  x1 is most 
constrained by x6 , so we switch the roles of x1 and x6  

• Change x1to basic variable by rewriting last constraint to: 
x1=9-x2/4 –x3/2 –x6/4  

– Note: x6 becomes nonbasic. 
– Replace x1 with above formula in all equations to get… 

 

z= 3x1+x2+2x3  
x4=30- x1-x2-3x3    
x5=24- 2x1-2x2-5x3     
x6=36- 4x1-x2-2x3    
x1, x2, x3, x4, x5, x6 ≥0 



z=27+x2/4 +x3/2 –3x6/4      
x1=9-x2/4 –x3/2 –x6/4     
x4=21-3x2/4 –5x3/2 +x6/4    
x5=6-3x2/2 –4x3  +x6/2    
  

• This operation is called pivot  
– A pivot chooses a nonbasic variable, called entering variable, and a 

basic variable, called leaving variable, and changes their roles. 
– The pivot operation results in an equivalent LP. 
– Reality check:  original solution (0,0,0,30,24,36) satisfies the new 

equations.  
 

• In the example, 
– x1 is entering variable, and x6 is leaving variable. 
– x2, x3, x6 are nonbasic, and x1, x4, x5 becomes basic. 
– The basic solution for this new LP form is (9,0,0,21,6,0), with z=27. 
 (Yippee   z = 27 is better than z = 0!) 

Example (con’t.) 



• We iterate again –try to find a new variable whose value 
may increase.  
– x6 will not work, since z will decrease. 
– x2 and x3 are OK. Suppose we select x3. 

• How far can we increase x3? 
– First constraint limits it to 18 
– Second constraint limits it to 42/5 
– Third constraint limits it to 3/2 – most constraining  swap 

roles of x3 and x5 
• So rewrite last constraint to: 

x3=3/2 – 3x2/8  – x5/4 + x6/8 
• Replace x3 with the above in all the equations to get… 

Example (con’t.) 
z=27+x2/4 +x3/2 –3x6/4      
x1=9-x2/4 –x3/2 –x6/4    
x4=21-3x2/4 –5x3/2 +x6/4 
x5=6-3x2/2 –4x3  +x6/2    



• The new LP equations: 
– z=111/4+x2/16 –x5/8 - 11x6/16    
– x1=33/2- x2/16 +x5/8 - 5x6/16  
– x3=3/2-3x2/8 –x5/4+x6/8  
– x4=69/4+3x2/16 +5x5/8-x6/16  

• The basic solution is (33/4,0,3/2,69/4,0,0) with z=111/4.  
 

• Now we can only increase x2.  
– First constraint limits x2 to 132 
– Second to 4 
– Third to ∞ 

• So rewrite second constraint to: 
  x2= 4 – 8x3/3 – 2x5/3 + x6/3 
 
• Replace in all equations to get… 

 

Example (con’t.) 



• Rewritten LP equations: 
z=28-x3/6 –x5/6-2x6/3  
x1=8+x3/6 +x5/6-x6/3 
x2=4-8x3/3 –2x5/3+x6/3 
x4=18-x3/2 +x5/2 

• At this point, all coefficients in objective functions are negative.  
• So, no further rewrite is possible. 

 
• Means that we’ve found the optimal solution. 
• The basic solution is (8,4,0,18,0,0) with objective value z=28. 
• The original variables are x1, x2, x3 , with values (8,4,0) 

 

Example (con’t.) 



Simplex algorithm --Pivot 

N: indices set of nonbasic variables 
B: indices set of basic variables 
A: aij 
b: bi 
c: ci 
v: constant coefficient. 
e: index of entering variable 
l: index of leaving variable 
 
z=v+∑j∈Ncjxj  
xi=bi- ∑j∈Naijxj  for i∈B 



Issues in Solving LP 
• How to determine if LP is feasible? 
• What if LP is feasible, but initial basic solution is not 

feasible? 
• Presume we have procedure, INITIALIZE-SIMPLEX, that takes LP in 

standard form and returns slack form for which initial basic solution is 
feasible (or states that the problem is infeasible) 
 

• How to determine whether LP is unbounded? 
– If none of the constraints limits the amount by which the entering 

variable can increase, the LP is unbounded 
 

• How to choose entering and leaving variables? 
– By selecting variable that limits entering variables the most 
– Break ties using Bland’s rule, which always chooses variable with 

smallest index 



Formal Simplex algorithm 

+m 



Correctness of SIMPLEX 
(Presume INITIALIZE-SIMPLEX is correct, for now.) 
• First:   

– Show that if solution is returned, then that solution is feasible 
– Show that if SIMPLEX says “unbounded”, then the LP is indeed 

unbounded 
• Sketch of this part of proof: 

– 3-part invariant (at the beginning of the while loop): 
• The slack form is equivalent to that returned by INITIALIZE-SIMPLEX 
• For each 𝑖 ∈ 𝐵, 𝑏𝑖 ≥ 0 
• The basic solution associated with slack form is feasible 

– Show that this invariant is true: 
• At the beginning (easy to show) 
• During each iteration (show via correctness of pivot) 
• At termination (look at 2 cases of when SIMPLEX terminates, and show 

true for each case) 



Correctness of SIMPLEX (con’t.) 
• Next, show that SIMPLEX does indeed terminate  
• Reason why it might not terminate? 

– Cycling: 
• Would occur if SIMPLEX oscillates between solutions that 

leave objective value unchanged (“degeneracy”) 

• Helpful lemma: 
– The slack form of a LP is uniquely determined by the 

set of basic variables 
• Proof:   

– By contradiction.  Assume there are 2 different slack forms, then 
work through the algebra to show that the 2 forms must be 
identical. 



Correctness of SIMPLEX (con’t.) 

• How to prevent cycling? 
• Break ties for choosing entering and leaving variables, 

using Bland’s rule: 
– Choose entering variable with smallest index (which 

also has positive coefficient in objective function) 
– After having chosen entering variable, if there are now 

ties for choosing leaving variable, chose the leaving 
variable with smallest index 

– Proof is tedious, so omitted here   
 

 



Running time of Simplex 
• Lemma: 

– Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic 
solution is feasible, SIMPLEX either reports that a linear program is 

unbounded, or it terminates with a feasible solution in at most 𝑛 + 𝑚
𝑚  

iterations  
 (where n = # non-basic variables and m = # basic variables) 

 
• Idea: 

– There are at most 𝑛 + 𝑚
𝑚  ways to choose the basic variables. 

– The set of basic variables defines a unique slack from. 

– Thus, there at most  𝑛 + 𝑚
𝑚  unique slack forms. 

– If S SIMPLEX runs for more than 𝑛 + 𝑚
𝑚  iterations, it cycles. 

   (Thus, need to ensure there isn’t cycling.  Can do this using Bland’s  
     rule, which always chooses variable with smallest index.  Proof        
              omitted) 

 



How to find an initial basic feasible solution? 

• A LP might be feasible, but the initial basic solution might not be feasible  
• To address, formulate an auxiliary LP 
• Given an LP in standard form, introduce new variable 𝑥0 and formulate 

auxiliary LP as: 
 

Maximize:        −𝑥0 
Subject to: 

�𝑎𝑖𝑖𝑥𝑖

𝑛

𝑖=1

− 𝑥0 ≤ 𝑏𝑖     for 𝑖 = 1, 2, … ,𝑚 

𝑥𝑖 ≥ 0                           for 𝑗 = 0, 1, … ,𝑛 
 
• Then original LP is feasible iff the optimal objective value of auxiliary LP is 0.   
• Proof is based on original solution and the fact that 𝑥0 = 0 must be an 

optimal solution to the auxiliary LP. 
 



Design of INITIALIZE-SIMPLEX 
• Check original slack form; if feasible, then done 
• Otherwise 

– Form auxiliary LP, as defined previously 
– Perform a single pivot of auxiliary LP, selecting leaving 

variable as that with most negative value 
• In this form, the basic solution is feasible 

– Repeatedly call PIVOT (i.e., while loop of SIMPLEX) to solve 
auxiliary LP 

– If solution to auxiliary LP is 0, then original LP is feasible 
• Rewrite the auxiliary LP, to eliminate 𝑥0 

 
Proof of correctness of INITIALIZE-SIMPLEX is based on 
algebraic argument, correctness of Pivot, etc. 

 



Optimality of SIMPLEX 

• Duality is a way to prove that a solution is 
optimal 

• Can you think of an example of duality we’ve 
already seen this semester? 
– Max Flow, Min Cut 

 
• This is an example of duality:  given a 

maximization problem, we define a related 
minimization problem s.t. the two problems 
have the same optimal objective value 



Duality in LP 

• Given an LP, we’ll show how to formulate a 
dual LP in which the objective is to minimize, 
and whose optimal value is identical to that of 
the original LP (now called primal LP) 



Primal Dual LPs: 

Primal: 
maximize    cT x 
subject to:   Ax ≤ b 
          x ≥ 0 
(standard form) 

Dual:  
minimize    yT b 
subject to:   yT A ≥ cT 

                      y ≥ 0 
  
(standard form) 

A 

xT 

y b 

cT 

n 

d 



Forming dual 

• Change maximization to minimization 
• Exchange roles of coefficients on RHSs and the 

objective function 
• Replace each ≤ with ≥ 

 
• Each of the m constraints in primal has associated 

variable 𝑦𝑖 in the dual 
• Each of the n constraints in the dual as associated 

variable 𝑥𝑖 in the primal 



Example : Primal-Dual 
PRIMAL: 
 max   16 x1   -  23 x2    +    43 x3  +   82 x4  
 
 subject to: 
             3 x1   +   6 x2     -     9 x3  +    4 x4        ≤      239 
            -9 x1   +   8 x2     +   17 x3  -   14 x4       =     582 
             5 x1   + 12 x2     +   21 x3  +   26 x4       ≥    -364 
 
                x1≥0,      x2≤0,                         x4≥0 

DUAL: 
 min   239 y1  + 582 y2  -  364 y3   
 
 subject to: 
              3 y1   -    9 y2  +     5 y3        ≥    16 
              6 y1  +     8 y2  +   12 y3        ≤   -23 
             -9 y1  +   17 y2  +   21 y3        =    43 
              4 y1   -   14 y2  +   26 y3       ≥    82 
 
  y1≥0,                       y3≤0                   



Next time… 

• We’ll look at how to use dual to prove 
optimality 



Reading Assignments 

• Reading assignment for Thursday’s class: 
– Chapter 29.4 
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