Today: – Linear Programming (con't.)

COSC 581, Algorithms April 8, 2014

Many of these slides are adapted from several online sources

Reading Assignments

- Today's class:
 - Chapter 29.3, 29.5
- Reading assignment for next Thursday's class:
 Chapter 29.4

Recall: Formatting problems as LPs – SSSP

- Single Source Shortest Path :
 - Input: A weighted direct graph G=<V,E> with weighted function w: $E \rightarrow R$, a source s and a destination t, compute d which is the weight of the shortest path from s to t.
 - Formulate as a LP:
 - For each vertex v, introduce a variable d_v: the weight of the shortest path from s to v.
 - LP:

maximize d_t subject to: $d_v \le d_u + w(u,v)$ for each edge $(u,v) \in E$ $d_s = 0$

- Q: Why is this a maximization?
- Q: How many variables? |V|
- Q: How many constraints? |E|+1

In-Class Exercise #1

maximize d_t subject to: $d_v \le d_u + w(u,v)$ for each edge $(u,v) \in E$ $d_s = 0$

Write out explicitly the linear program corresponding to finding the shortest path from node *s* to node *y* in the figure below:

In-Class Exercise #1

maximize d_t subject to: $d_v \le d_u + w(u,v)$ for each edge $(u,v) \in E$ $d_s = 0$

Write out explicitly the linear program corresponding to finding the shortest path from node *s* to node *y* in the figure below:

maximize d_v subject to: $d_t \le d_s + 3$ $d_{\gamma} \leq d_s + 5$ $d_x \le d_t + 6$ $d_y \le d_t + 2$ $d_z \le d_x + 2$ $d_t \leq d_y + 1$ $d_x \le d_y + 4$ $d_z \leq d_v + 6$ $d_x \le d_z + 7$ $d_s \leq d_z + 3$ $d_s = 0$

Recall: Formatting Max-flow problem as LP

maximize $\sum_{v \in V} f_{sv} - \sum_{v \in V} f_{vs}$ subject to:

> $f_{uv} \leq c(u,v)$ $\sum_{v \in V} f_{vu} = \sum_{v \in V} f_{uv}$ $f_{uv} \geq 0$

for all $u, v \in V$ //capacity constraintsfor all $u \in V - \{s,t\}$ //flow conservationfor all $u, v \in V$ //non-negativity constraints

In-Class Exercise #2

$$\begin{array}{ll} \underset{v \in \mathsf{V}}{\text{maximize } \sum_{v \in \mathsf{V}} f_{sv} - \sum_{v \in \mathsf{V}} f_{vs} \\ \text{subject to:} \\ f_{uv} \leq c(u,v) & \text{for all } u, v \in \mathsf{V} \\ \sum_{v \in \mathsf{V}} f_{vu} = \sum_{v \in \mathsf{V}} f_{uv} & \text{for all } u \in \mathsf{V} - \{s,t\} \\ f_{uv} \geq 0 & \text{for all } u, v \in \mathsf{V} \end{array}$$

Write out explicitly the linear program corresponding to finding the maximum flow in the figure below:

In-Class Exercise #2

$$\begin{array}{ll} \underset{v \in \mathsf{V}}{\text{maximize } \sum_{v \in \mathsf{V}} f_{sv} - \sum_{v \in \mathsf{V}} f_{vs} \\ \text{subject to:} \\ f_{uv} \leq c(u,v) & \text{for all } u, v \in \mathsf{V} \\ \sum_{v \in \mathsf{V}} f_{vu} = \sum_{v \in \mathsf{V}} f_{uv} & \text{for all } u \in \mathsf{V} - \{s,t\} \\ f_{uv} \geq 0 & \text{for all } u, v \in \mathsf{V} \end{array}$$

...

Write out explicitly the linear program corresponding to finding the maximum flow in the figure below:

maximize $f_{ss} + f_{sv_1} + f_{sv_2} + f_{sv_3} + f_{sv_4} + f_{st}$ subject to:

$$\begin{array}{ll} f_{sv_1} \leq 16 & f_{v_1v_3} \leq 12 & f_{v_4v_3} \leq 7 & f_{ss} \leq 0 & f_{st} \leq 0 \\ f_{sv_2} \leq 13 & f_{v_3v_2} \leq 9 & f_{v_4t} \leq 4 & f_{sv_3} \leq 0 & f_{v_1s} \leq 0 \\ f_{v_2v_1} \leq 4 & f_{v_2v_4} \leq 14 & f_{v_3t} \leq 20 & f_{sv_4} \leq 0 & f_{v_2s} \leq 0 \end{array}$$

Solving LPs using SIMPLEX...

• First, another recap (via example) to remember how SIMPLEX works...

Example for Simplex algorithm

Maximize $3x_1+x_2+2x_3$ Subject to:

> $x_1 + x_2 + 3x_3 \le 30$ $2x_1 + 2x_2 + 5x_3 \le 24$ $4x_1 + x_2 + 2x_3 \le 36$ $x_1, x_2, x_3 \ge 0$

Change to slack form:

$$z = 3x_1 + x_2 + 2x_3$$

$$x_4 = 30 - x_1 - x_2 - 3x_3$$

$$x_5 = 24 - 2x_1 - 2x_2 - 5x_3$$

$$x_6 = 36 - 4x_1 - x_2 - 2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

Simplex algorithm steps

- Recall: "Feasible solutions" (infinite number of them):
 - A feasible solution is any whose values satisfy constraints
 - In previous example, solution is feasible as long as all of x_1 , x_2 , x_3 , x_4 , x_5 , x_6 are nonnegative
- Basic solution:
 - set all nonbasic variables to 0 and compute all basic variable values
- Iteratively rewrite the set of equations such that:
 - There is no change to the underlying LP problem (i.e., new form is equivalent to old)
 - Feasible solutions stay the same
 - The basic solution is changed, to result in a greater objective value:
 - Select a nonbasic variable x_e whose coefficient in the objective function is positive
 - Increase value of x_e as much as possible without violating any of the constraints
 - Make x_e a basic variable
 - Select some other variable to become nonbasic

Example

$$z= 3x_1+x_2+2x_3$$

$$x_4=30-x_1-x_2-3x_3$$

$$x_5=24-2x_1-2x_2-5x_3$$

$$x_6=36-4x_1-x_2-2x_3$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

- Basic solution: $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 30, 24, 36)$
 - The objective value is z = 3.0 + 0 + 2.0 = 0 (Not a maximum)
- Try to increase the value of nonbasic variable x₁ while maintaining constraints:

Increase x_1 to 30: means that x_4 will be OK (i.e., non-negative) Increase x_1 to 12 means that x_5 will be OK 9: Increase x_1 to 9 means that x_6 will be OK. We have to choose most constraining value $\Rightarrow x_1$ is most constrained by x_6 , so we switch the roles of x_1 and x_6

- Change x_1 to basic variable by rewriting last constraint to: $x_1 = 9 - x_2/4 - x_3/2 - x_6/4$
 - Note: x_6 becomes nonbasic.
 - Replace x_1 with above formula in all equations to get...

 $z=27+x_{2}/4 + x_{3}/2 - 3x_{6}/4$ $x_{1}=9-x_{2}/4 - x_{3}/2 - x_{6}/4$ $x_{4}=21-3x_{2}/4 - 5x_{3}/2 + x_{6}/4$ $x_{5}=6-3x_{2}/2 - 4x_{3} + x_{6}/2$

- This operation is called pivot
 - A pivot chooses a nonbasic variable, called entering variable, and a basic variable, called leaving variable, and changes their roles.
 - The pivot operation results in an equivalent LP.
 - Reality check: original solution (0,0,0,30,24,36) satisfies the new equations.
- In the example,
 - $-x_1$ is entering variable, and x_6 is leaving variable.
 - x_2 , x_3 , x_6 are nonbasic, and x_1 , x_4 , x_5 becomes basic.
 - The basic solution for this new LP form is (9,0,0,21,6,0), with z=27. (Yippee $\rightarrow z = 27$ is better than z = 0!)

- We iterate again –try to find a new variable whose value may increase.
 - $-x_6$ will not work, since z will decrease.
 - x_2 and x_3 are OK. Suppose we select $x_{3.}$
- How far can we increase x_3 ?
 - First constraint limits it to 18
 - Second constraint limits it to 42/5
 - Third constraint limits it to 3/2 most constraining \rightarrow swap roles of x_3 and x_5
- So rewrite last constraint to:

 $x_3 = 3/2 - 3x_2/8 - x_5/4 + x_6/8$

• Replace x_3 with the above in all the equations to get...

- The new LP equations:
 - $z = 111/4 + x_2/16 x_5/8 11x_6/16$
 - $x_1 = 33/2 x_2/16 + x_5/8 5x_6/16$
 - $x_3 = 3/2 3x_2/8 x_5/4 + x_6/8$
 - $x_4 = 69/4 + 3x_2/16 + 5x_5/8 x_6/16$
- The basic solution is (33/4,0,3/2,69/4,0,0) with *z*=111/4.
- Now we can only increase x_2 .
 - First constraint limits x_2 to 132
 - Second to 4
 - Third to ∞
- So rewrite second constraint to:

 $x_2 = 4 - 8x_3/3 - 2x_5/3 + x_6/3$

• Replace in all equations to get...

• Rewritten LP equations:

 $z=28-x_3/6 - x_5/6 - 2x_6/3$ $x_1=8+x_3/6 + x_5/6 - x_6/3$ $x_2=4-8x_3/3 - 2x_5/3 + x_6/3$ $x_4=18-x_3/2 + x_5/2$

- At this point, all coefficients in objective functions are negative.
- So, no further rewrite is possible.
- Means that we've found the optimal solution.
- The basic solution is (8,4,0,18,0,0) with objective value *z*=28.
- The original variables are x_1, x_2, x_3 , with values (8,4,0)

Simplex algorithm --Pivot

PIVOT(N, B, A, b, c, v, l, e)

- \triangleright Compute the coefficients of the equation for new basic variable x_e .
- 2 $\widehat{b}_e \leftarrow b_I/a_{le}$ 3 for each $j \in N - \{e\}$ 4 **do** $\widehat{a}_{ei} \leftarrow a_{li}/a_{le}$ $\widehat{a}_{el} \leftarrow 1/a_{lc}$ 5 \triangleright Compute the coefficients of the remaining constraints. 6 for each $i \in B - \{l\}$ 7 **do** $\widehat{b}_i \leftarrow b_i - a_{ie} \widehat{b}_e$ 8 9 for each $j \in N - \{e\}$ 10 **do** $\widehat{a}_{ii} \leftarrow a_{ii} - a_{ie} \widehat{a}_{ei}$ $\widehat{a}_{il} \leftarrow -a_{ie}\widehat{a}_{el}$ 11 12 \triangleright Compute the objective function. $\widehat{v} \leftarrow v + c_e \widehat{b}_e$ 13 for each $i \in N - \{e\}$ 14 **do** $\widehat{c}_i \leftarrow c_i - c_e \widehat{a}_{ei}$ 15 16 $\widehat{c}_{l} \leftarrow -c_{e}\widehat{a}_{el}$ \triangleright Compute new sets of basic and nonbasic variables. 17 $\widehat{N} = N - \{e\} \cup \{l\}$ 18 $\widehat{B} = B - \{l\} \cup \{e\}$ return $(\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})$ 19
- 20

N: indices set of nonbasic variables B: indices set of basic variables A: a_{ii} $b: b_i$ $C: C_i$ v: constant coefficient. e: index of entering variable *l*: index of leaving variable $z = v + \sum_{j \in N} c_j x_j$ $x_i = b_i - \sum_{j \in N} a_{ij} x_j \text{ for } i \in B$

Issues in Solving LP

- How to determine if LP is feasible?
- What if LP is feasible, but initial basic solution is not feasible?
 - Presume we have procedure, INITIALIZE-SIMPLEX, that takes LP in standard form and returns slack form for which initial basic solution is feasible (or states that the problem is infeasible)
- How to determine whether LP is unbounded?
 - If none of the constraints limits the amount by which the entering variable can increase, the LP is unbounded
- How to choose entering and leaving variables?
 - By selecting variable that limits entering variables the most
 - Break ties using *Bland's rule*, which always chooses variable with smallest index

Formal Simplex algorithm

```
SIMPLEX(A, b, c)
```

```
(N, B, A, b, c, v) \leftarrow \text{INITIALIZE-SIMPLEX}(A, b, c)
 1
      while some index j \in N has c_j > 0
 2
 3
            do choose an index e \in N for which c_e > 0
 4
                 for each index i \in B
 5
                      do if a_{ie} > 0
 6
                              then \Delta_i \leftarrow b_i/a_{ie}
 7
                              else \Delta_i \leftarrow \infty
 8
                 choose an index l \in B that minimizes \Delta_i
 9
                 if \Delta_l = \infty
10
                    then return "unbounded"
11
                   else (N, B, A, b, c, v) \leftarrow \text{PIVOT}(N, B, A, b, c, v, l, e)
12
      for i \leftarrow 1 to n
            do if i \in B_{+m}
13
                    then \bar{x}_i \leftarrow b_i
14
                   else \bar{x}_i \leftarrow 0
15
      return (\bar{x}_1, \bar{x}_2, ..., \bar{x}_n)
16
```

Correctness of SIMPLEX

(Presume INITIALIZE-SIMPLEX is correct, for now.)

- First:
 - Show that if solution is returned, then that solution is feasible
 - Show that if SIMPLEX says "unbounded", then the LP is indeed unbounded
- Sketch of this part of proof:
 - 3-part invariant (at the beginning of the while loop):
 - The slack form is equivalent to that returned by INITIALIZE-SIMPLEX
 - For each $i \in B$, $b_i \ge 0$
 - The basic solution associated with slack form is feasible
 - Show that this invariant is true:
 - At the beginning (easy to show)
 - During each iteration (show via correctness of pivot)
 - At termination (look at 2 cases of when SIMPLEX terminates, and show true for each case)

Correctness of SIMPLEX (con't.)

- Next, show that SIMPLEX does indeed terminate
- Reason why it might not terminate?
 - Cycling:
 - Would occur if SIMPLEX oscillates between solutions that leave objective value unchanged ("degeneracy")
- Helpful lemma:
 - The slack form of a LP is uniquely determined by the set of basic variables
 - Proof:
 - By contradiction. Assume there are 2 different slack forms, then work through the algebra to show that the 2 forms must be identical.

Correctness of SIMPLEX (con't.)

- How to prevent cycling?
 - Break ties for choosing entering and leaving variables, using *Bland's rule*:
 - Choose entering variable with smallest index (which also has positive coefficient in objective function)
 - After having chosen entering variable, if there are now ties for choosing leaving variable, chose the leaving variable with smallest index
 - Proof is tedious, so omitted here $\, \odot \,$

Running time of Simplex

• Lemma:

- Assuming that INITIALIZE-SIMPLEX returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution in at most $\binom{n+m}{m}$ iterations (where n = # non-basic variables and m = # basic variables)
- Idea:
 - There are at most $\binom{n+m}{m}$ ways to choose the basic variables.
 - The set of basic variables defines a unique slack from.
 - Thus, there at most $\binom{n+m}{m}$ unique slack forms.
 - If S SIMPLEX runs for more than $\binom{n+m}{m}$ iterations, it cycles. (Thus, need to ensure there isn't cycling. Can do this using *Bland's rule*, which always chooses variable with smallest index. Proof omitted)

How to find an initial basic feasible solution?

- A LP might be feasible, but the initial basic solution might not be feasible
- To address, formulate an auxiliary LP
- Given an LP in standard form, introduce new variable x_0 and formulate auxiliary LP as:

Maximize:
$$-x_0$$

Subject to:
$$\sum_{\substack{j=1\\ x_j \ge 0}}^n a_{ij}x_j - x_0 \le b_i \quad \text{for } i = 1, 2, ..., m$$

- Then original LP is feasible iff the optimal objective value of auxiliary LP is 0.
- Proof is based on original solution and the fact that $x_0 = 0$ must be an optimal solution to the auxiliary LP.

Design of INITIALIZE-SIMPLEX

- Check original slack form; if feasible, then done
- Otherwise
 - Form auxiliary LP, as defined previously
 - Perform a single pivot of auxiliary LP, selecting leaving variable as that with most negative value
 - In this form, the basic solution is feasible
 - Repeatedly call PIVOT (i.e., while loop of SIMPLEX) to solve auxiliary LP
 - If solution to auxiliary LP is 0, then original LP is feasible
 - Rewrite the auxiliary LP, to eliminate x_0

Proof of correctness of INITIALIZE-SIMPLEX is based on algebraic argument, correctness of Pivot, etc.

Optimality of SIMPLEX

- Duality is a way to prove that a solution is optimal
- Can you think of an example of duality we've already seen this semester?
 - Max Flow, Min Cut
- This is an example of duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

Duality in LP

 Given an LP, we'll show how to formulate a dual LP in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called primal LP)

Primal Dual LPs:

n

Primal: maximize $c^T x$ subject to: $Ax \le b$ $x \ge 0$ (standard form)

Dual: minimize $y^T b$ subject to: $y^T A \ge c^T$ $y \ge 0$

(standard form)

Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each \leq with \geq
- Each of the m constraints in primal has associated variable y_i in the dual
- Each of the *n* constraints in the dual as associated variable *x_i* in the primal

Example : Primal-Dual


```
DUAL:

min 239 y_1 + 582 y_2 - 364 y_3

subject to:

3 y_1 - 9 y_2 + 5 y_3 \ge 16

6 y_1 + 8 y_2 + 12 y_3 \le -23

-9 y_1 + 17 y_2 + 21 y_3 = 43

4 y_1 - 14 y_2 + 26 y_3 \ge 82

y_1 \ge 0, \qquad y_3 \le 0
```

Next time...

• We'll look at how to use dual to prove optimality

Reading Assignments

- Reading assignment for Thursday's class:
 - Chapter 29.4