Today:

- Linear Programming (con’t.)

COSC 581, Algorithms

April 8, 2014

Reading Assignments

- Today's class:
- Chapter 29.3, 29.5
- Reading assignment for next Thursday's class:
- Chapter 29.4

Recall: Formatting problems as LPs - SSSP

- Single Source Shortest Path :
- Input: A weighted direct graph $\mathrm{G}=<\mathrm{V}, \mathrm{E}>$ with weighted function $w: \mathrm{E} \rightarrow \mathrm{R}$, a source s and a destination t, compute d which is the weight of the shortest path from s to t.
- Formulate as a LP:
- For each vertex v, introduce a variable d_{v} : the weight of the shortest path from s to v.
- LP:
maximize d_{t}
subject to:

$$
\begin{aligned}
& d_{v} \leq d_{u}+w(u, v) \quad \text { for each edge }(u, v) \in E \\
& d_{s}=0
\end{aligned}
$$

Q: Why is this a maximization?
Q: How many variables? |V|
Q: How many constraints? $|\mathrm{E}|+1$

In-Class Exercise \#1
 $$
\begin{aligned} & \operatorname{maximize} d_{t} \\ & \text { subject to: } \\ & \qquad d_{v} \leq d_{u}+w(u, v) \text { for each edge }(u, v) \in \mathrm{E} \\ & d_{s}=0 \end{aligned}
$$

Write out explicitly the linear program corresponding to finding the shortest path from node s to node y in the figure below:

In-Class Exercise \#1

$$
\begin{aligned}
& \operatorname{maximize} d_{t} \\
& \text { subject to: } \\
& d_{v} \leq d_{u}+w(u, v) \text { for each edge }(u, v) \in \mathrm{E} \\
& d_{s}=0
\end{aligned}
$$

Write out explicitly the linear program corresponding to finding the shortest path from node s to node y in the figure below:

maximize d_{y} subject to:

$$
\begin{gathered}
d_{t} \leq d_{s}+3 \\
d_{y} \leq d_{s}+5 \\
d_{x} \leq d_{t}+6 \\
d_{y} \leq d_{t}+2 \\
d_{z} \leq d_{x}+2 \\
d_{t} \leq d_{y}+1 \\
d_{x} \leq d_{y}+4 \\
d_{z} \leq d_{y}+6 \\
d_{x} \leq d_{z}+7 \\
d_{s} \leq d_{z}+3 \\
d_{s}=0
\end{gathered}
$$

Recall: Formatting Max-flow problem as LP

$\operatorname{maximize} \sum_{v \in \mathrm{~V}} f_{s v}-\sum_{v \in \mathrm{~V}} f_{v s}$
subject to:

$$
\begin{array}{ll}
f_{u v} \leq c(u, v) & \text { for all } u, v \in \mathrm{~V} \quad \text { //capacity constraints } \\
\sum_{v \in \mathrm{~V}} f_{v u}=\sum_{v \in V} f_{u v} & \text { for all } u \in \mathrm{~V}-\{\mathrm{s}, t\} \text { //flow conservation } \\
f_{u v} \geq 0 & \text { for all } u, v \in \mathrm{~V} \quad \text { //non-negativity constr }
\end{array}
$$

In-Class Exercise \#2

$$
\begin{array}{ll}
\text { maximize } \sum_{v \in \mathrm{~V}} f_{s v}-\sum_{v \in V} f_{v s} \\
\text { subject to: } & \\
f_{u v} \leq c(u, v) & \text { for all } u, v \in \mathrm{~V} \\
\sum_{v \in V} f_{v u}=\sum_{v \in V} f_{u v} & \text { for all } u \in \mathrm{~V}-\{s, t\} \\
f_{u v} \geq 0 & \text { for all } u, v \in \mathrm{~V}
\end{array}
$$

Write out explicitly the linear program corresponding to finding the maximum flow in the figure below:

In-Class Exercise \#2

Write out explicitly the linear program corresponding to finding the maximum flow in the figure below:

maximize $f_{s s}+f_{s v_{1}}+f_{s v_{2}}+f_{s v_{3}}+f_{s v_{4}}+f_{s t}$
subject to:

$$
\begin{array}{llcrr}
f_{s v_{1}} \leq 16 & f_{v_{1} v_{3}} \leq 12 & f_{v_{4} v_{3}} \leq 7 & f_{s s} \leq 0 & f_{s t} \leq 0 \\
f_{s v_{2}} \leq 13 & f_{v_{3} v_{2}} \leq 9 & f_{v_{4}} \leq 4 & f_{s v_{3}} \leq 0 & f_{v_{1} s} \leq 0 \\
f_{v_{2} v_{1}} \leq 4 & f_{v_{2} v_{4}} \leq 14 & f_{v_{3}} \leq 20 & f_{s v_{4}} \leq 0 & f_{v_{2} s} \leq 0
\end{array}
$$

Solving LPs using SIMPLEX...

- First, another recap (via example) to remember how SIMPLEX works...

Example for Simplex algorithm

Maximize $3 x_{1}+x_{2}+2 x_{3}$
Subject to:

$$
\begin{aligned}
& x_{1}+x_{2}+3 x_{3} \leq 30 \\
& 2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \\
& 4 x_{1}+x_{2}+2 x_{3} \leq 36 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{aligned}
$$

Change to slack form:

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

Simplex algorithm steps

$$
\begin{aligned}
& z=3 x_{1}+x_{2}+2 x_{3} \\
& x_{4}=30-x_{1}-x_{2}-3 x_{3} \\
& x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\
& x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0
\end{aligned}
$$

- Recall: "Feasible solutions" (infinite number of them):
- A feasible solution is any whose values satisfy constraints
- In previous example, solution is feasible as long as all of $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, x_{6} are nonnegative
- Basic solution:
- set all nonbasic variables to 0 and compute all basic variable values
- Iteratively rewrite the set of equations such that:
- There is no change to the underlying LP problem (i.e., new form is equivalent to old)
- Feasible solutions stay the same
- The basic solution is changed, to result in a greater objective value:
- Select a nonbasic variable x_{e} whose coefficient in the objective function is positive
- Increase value of x_{e} as much as possible without violating any of the constraints
- Make x_{e} a basic variable
- Select some other variable to become nonbasic

Example
 $$
\begin{aligned} & z=3 x_{1}+x_{2}+2 x_{3} \\ & x_{4}=30-x_{1}-x_{2}-3 x_{3} \\ & x_{5}=24-2 x_{1}-2 x_{2}-5 x_{3} \\ & x_{6}=36-4 x_{1}-x_{2}-2 x_{3} \\ & x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6} \geq 0 \end{aligned}
$$

- Basic solution: $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=(0,0,0,30,24,36)$
- The objective value is $z=3 \cdot 0+0+2 \cdot 0=0 \quad$ (Not a maximum)
- Try to increase the value of nonbasic variable x_{1} while maintaining constraints:

Increase x_{1} to 30 : means that x_{4} will be OK (i.e., non-negative)
Increase x_{1} to 12 means that x_{5} will be OK 9:
Increase x_{1} to 9 means that x_{6} will be OK.
We have to choose most constraining value $\rightarrow x_{1}$ is most
constrained by x_{6}, so we switch the roles of x_{1} and x_{6}

- Change x_{1} to basic variable by rewriting last constraint to:

$$
x_{1}=9-x_{2} / 4-x_{3} / 2-x_{6} / 4
$$

- Note: x_{6} becomes nonbasic.
- Replace x_{1} with above formula in all equations to get...

Example (con't.)

$$
\begin{aligned}
& z=27+x_{2} / 4+x_{3} / 2-3 x_{6} / 4 \\
& x_{1}=9-x_{2} / 4-x_{3} / 2-x_{6} / 4 \\
& x_{4}=21-3 x_{2} / 4-5 x_{3} / 2+x_{6} / 4 \\
& x_{5}=6-3 x_{2} / 2-4 x_{3}+x_{6} / 2
\end{aligned}
$$

- This operation is called pivot
- A pivot chooses a nonbasic variable, called entering variable, and a basic variable, called leaving variable, and changes their roles.
- The pivot operation results in an equivalent LP.
- Reality check: original solution ($0,0,0,30,24,36$) satisfies the new equations.
- In the example,
$-x_{1}$ is entering variable, and x_{6} is leaving variable.
$-x_{2}, x_{3}, x_{6}$ are nonbasic, and x_{1}, x_{4}, x_{5} becomes basic.
- The basic solution for this new LP form is ($9,0,0,21,6,0$), with $z=27$.
(Yippee $\rightarrow z=27$ is better than $z=0$!)

Example (con't.)
 $$
\begin{aligned} & z=27+x_{2} / 4+x_{3} / 2-3 x_{6} / 4 \\ & x_{1}=9-x_{2} / 4-x_{3} / 2-x_{6} / 4 \\ & x_{4}=21-3 x_{2} / 4-5 x_{3} / 2+x_{6} / 4 \\ & x_{5}=6-3 x_{2} / 2-4 x_{3}+x_{6} / 2 \\ & \hline \end{aligned}
$$

- We iterate again -try to find a new variable whose value may increase.
- x_{6} will not work, since z will decrease.
$-x_{2}$ and x_{3} are OK. Suppose we select x_{3}.
- How far can we increase x_{3} ?
- First constraint limits it to 18
- Second constraint limits it to 42/5
- Third constraint limits it to $3 / 2$ - most constraining \rightarrow swap roles of x_{3} and x_{5}
- So rewrite last constraint to:

$$
x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8
$$

- Replace x_{3} with the above in all the equations to get...

Example (con't.)

- The new LP equations:
$-z=111 / 4+x_{2} / 16-x_{5} / 8-11 x_{6} / 16$
$-x_{1}=33 / 2-x_{2} / 16+x_{5} / 8-5 x_{6} / 16$
$-x_{3}=3 / 2-3 x_{2} / 8-x_{5} / 4+x_{6} / 8$
$-x_{4}=69 / 4+3 x_{2} / 16+5 x_{5} / 8-x_{6} / 16$
- The basic solution is $(33 / 4,0,3 / 2,69 / 4,0,0)$ with $z=111 / 4$.
- Now we can only increase x_{2}.
- First constraint limits x_{2} to 132
- Second to 4
- Third to ∞
- So rewrite second constraint to:

$$
x_{2}=4-8 x_{3} / 3-2 x_{5} / 3+x_{6} / 3
$$

- Replace in all equations to get...

Example (con't.)

- Rewritten LP equations:

$$
\begin{aligned}
& z=28-x_{3} / 6-x_{5} / 6-2 x_{6} / 3 \\
& x_{1}=8+x_{3} / 6+x_{5} / 6-x_{6} / 3 \\
& x_{2}=4-8 x_{3} / 3-2 x_{5} / 3+x_{6} / 3 \\
& x_{4}=18-x_{3} / 2+x_{5} / 2
\end{aligned}
$$

- At this point, all coefficients in objective functions are negative.
- So, no further rewrite is possible.
- Means that we've found the optimal solution.
- The basic solution is $(8,4,0,18,0,0)$ with objective value $z=28$.
- The original variables are x_{1}, x_{2}, x_{3}, with values $(8,4,0)$

Simplex algorithm --Pivot

```
Pivot ( \(N, B, A, b, c, v, l, e\) )
\(\triangleright\) Compute the coefficients of the equation for new basic variable \(x_{e}\).
\(\widehat{b}_{e} \leftarrow b_{l} / a_{l e}\)
for each \(j \in N-\{e\}\)
    do \(\widehat{a}_{e j} \leftarrow a_{l j} / a_{l c}\)
\(\widehat{a}_{e l} \leftarrow 1 / a_{l e}\)
\(\triangleright\) Compute the coefficients of the remaining constraints.
for each \(i \in B-\{l\}\)
    do \(\widehat{b}_{i} \leftarrow b_{i}-a_{i e} \widehat{b}_{e}\)
            for each \(j \in N-\{e\}\)
            do \(\widehat{a}_{i j} \leftarrow a_{i j}-a_{i e} \widehat{a}_{e j}\)
    \(\widehat{a}_{i l} \leftarrow-a_{i e} \widehat{a}_{e l}\)
\(\triangleright\) Compute the objective function.
\(\widehat{v} \leftarrow v+c_{e} \widehat{b}_{e}\)
for each \(j \in N-\{e\}\)
    do \(\widehat{c}_{j} \leftarrow c_{j}-c_{e} \widehat{a}_{e j}\)
\(\widehat{c}_{l} \leftarrow-c_{e} \widehat{a}_{e l}\)
\(\triangleright\) Compute new sets of basic and nonbasic variables.
    \(\widehat{N}=N-\{e\} \cup\{l\}\)
    \(\widehat{B}=B-\{l\} \cup\{e\}\)
    return \((\widehat{N}, \widehat{B}, \widehat{A}, \widehat{b}, \widehat{c}, \widehat{v})\)
```

N : indices set of nonbasic variables B : indices set of basic variables
A: $a_{i j}$
$b: b_{i}$
$c: c_{i}$
v : constant coefficient.
e : index of entering variable
l : index of leaving variable

$$
\begin{aligned}
& z=v+\sum_{j \in N} c_{j} x_{j} \\
& x_{i}=b_{i}-\sum_{j \in N} a_{i j} x_{j} \text { for } i \in B
\end{aligned}
$$

Issues in Solving LP

- How to determine if LP is feasible?
- What if LP is feasible, but initial basic solution is not feasible?
- Presume we have procedure, INITIALIZE-SIMPLEX, that takes LP in standard form and returns slack form for which initial basic solution is feasible (or states that the problem is infeasible)
- How to determine whether LP is unbounded?
- If none of the constraints limits the amount by which the entering variable can increase, the LP is unbounded
- How to choose entering and leaving variables?
- By selecting variable that limits entering variables the most
- Break ties using Bland's rule, which always chooses variable with smallest index

Formal Simplex algorithm

```
\(\operatorname{Simplex}(A, b, c)\)
    \((N, B, A, b, c, v) \leftarrow \operatorname{Initialize}-\operatorname{Simplex}(A, b, c)\)
    while some index \(j \in N\) has \(c_{j}>0\)
    do choose an index \(e \in N\) for which \(c_{e}>0\)
            for each index \(i \in B\)
                do if \(a_{i e}>0\)
                then \(\Delta_{i} \leftarrow b_{i} / a_{i e}\)
                else \(\Delta_{i} \leftarrow \infty\)
            choose an index \(l \in B\) that minimizes \(\Delta_{i}\)
            if \(\Delta_{l}=\infty\)
            then return "unbounded"
            else \((N, B, A, b, c, v) \leftarrow \operatorname{Pivot}(N, B, A, b, c, v, l, e)\)
    for \(i \leftarrow 1\) to \(n\)
    do if \(i \in B_{+m}\)
        then \(\bar{x}_{i} \leftarrow b_{i}\)
        else \(\bar{x}_{i} \leftarrow 0\)
    return \(\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{n}\right)\)
```


Correctness of SIMplex

(Presume Initialize-Simplex is correct, for now.)

- First:
- Show that if solution is returned, then that solution is feasible
- Show that if SIMPLEX says "unbounded", then the LP is indeed unbounded
- Sketch of this part of proof:
- 3-part invariant (at the beginning of the while loop):
- The slack form is equivalent to that returned by Initialize-Simplex
- For each $i \in B, b_{i} \geq 0$
- The basic solution associated with slack form is feasible
- Show that this invariant is true:
- At the beginning (easy to show)
- During each iteration (show via correctness of pivot)
- At termination (look at 2 cases of when SImplex terminates, and show true for each case)

Correctness of SIMPLEX (con’t.)

- Next, show that SIMPLEX does indeed terminate
- Reason why it might not terminate?
- Cycling:
- Would occur if SIMPLEX oscillates between solutions that leave objective value unchanged ("degeneracy")
- Helpful lemma:
- The slack form of a LP is uniquely determined by the set of basic variables
- Proof:
- By contradiction. Assume there are 2 different slack forms, then work through the algebra to show that the 2 forms must be identical.

Correctness of SIMPLEX (con’t.)

- How to prevent cycling?
- Break ties for choosing entering and leaving variables, using Bland's rule:
- Choose entering variable with smallest index (which also has positive coefficient in objective function)
- After having chosen entering variable, if there are now ties for choosing leaving variable, chose the leaving variable with smallest index
- Proof is tedious, so omitted here - $^{\text {o }}$

Running time of Simplex

- Lemma:
- Assuming that Initialize-Simplex returns a slack form for which the basic solution is feasible, SIMPLEX either reports that a linear program is unbounded, or it terminates with a feasible solution in at most $\binom{n+m}{m}$ iterations
(where $n=\#$ non-basic variables and $m=\#$ basic variables)
- Idea:
- There are at most $\binom{n+m}{m}$ ways to choose the basic variables.
- The set of basic variables defines a unique slack from.
- Thus, there at most $\binom{n+m}{m}$ unique slack forms.
- If S SIMPLEX runs for more than $\binom{n+m}{m}$ iterations, it cycles.
(Thus, need to ensure there isn't cycling. Can do this using Bland's rule, which always chooses variable with smallest index. Proof omitted)

How to find an initial basic feasible solution?

- A LP might be feasible, but the initial basic solution might not be feasible
- To address, formulate an auxiliary LP
- Given an LP in standard form, introduce new variable x_{0} and formulate auxiliary LP as:

Maximize: $\quad-x_{0}$
Subject to:

$$
\begin{array}{ll}
\sum_{j=1}^{n} a_{i j} x_{j}-x_{0} \leq b_{i} & \text { for } i=1,2, \ldots, m \\
x_{j} \geq 0 & \text { for } j=0,1, \ldots, n
\end{array}
$$

- Then original LP is feasible iff the optimal objective value of auxiliary LP is 0 .
- Proof is based on original solution and the fact that $x_{0}=0$ must be an optimal solution to the auxiliary LP.

Design of Initialize-Simplex

- Check original slack form; if feasible, then done
- Otherwise
- Form auxiliary LP, as defined previously
- Perform a single pivot of auxiliary LP, selecting leaving variable as that with most negative value
- In this form, the basic solution is feasible
- Repeatedly call Pivot (i.e., while loop of SImplex) to solve auxiliary LP
- If solution to auxiliary LP is 0 , then original LP is feasible
- Rewrite the auxiliary LP, to eliminate x_{0}

Proof of correctness of Initialize-Simplex is based on algebraic argument, correctness of Pivot, etc.

Optimality of SIMPLEX

- Duality is a way to prove that a solution is optimal
- Can you think of an example of duality we've already seen this semester?
- Max Flow, Min Cut
- This is an example of duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

Duality in LP

- Given an LP, we'll show how to formulate a dual LP in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called primal LP)

Primal Dual LPs:

Dual:
minimize $y^{\top} b$
subject to: $y^{\top} A \geq c^{\top}$

$$
y \geq 0
$$

(standard form)

Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each \leq with \geq
- Each of the m constraints in primal has associated variable y_{i} in the dual
- Each of the n constraints in the dual as associated variable x_{i} in the primal

Example : Primal-Dual

PRIMAL:

$$
\max 16 x_{1}-23 x_{2}+43 x_{3}+82 x_{4}
$$

subject to:

$$
\begin{gathered}
3 x_{1}+6 x_{2}-9 x_{3}+4 x_{4} \leq 239 \\
-9 x_{1}+8 x_{2}+17 x_{3}-14 x_{4}=582 \\
5 x_{1}+12 x_{2}+21 x_{3}+26 x_{4} \geq-364 \\
x_{1} \geq 0, \quad x_{2} \leq 0,
\end{gathered}
$$

DUAL:

$$
\min 239 y_{1}+582 y_{2}-364 y_{3}
$$

subject to:

$$
\begin{aligned}
3 y_{1}-9 y_{2}+5 y_{3} & \geq 16 \\
6 y_{1}+8 y_{2}+12 y_{3} & \leq-23 \\
-9 y_{1}+17 y_{2}+21 y_{3} & =43 \\
4 y_{1}-14 y_{2}+26 y_{3} & \geq 82
\end{aligned}
$$

$$
y_{1} \geq 0
$$

$$
y_{3} \leq 0
$$

Next time...

- We'll look at how to use dual to prove optimality

Reading Assignments

- Reading assignment for Thursday's class:
- Chapter 29.4

