Today: – Linear Programming (con't.)

COSC 581, Algorithms April 10, 2014

Many of these slides are adapted from several online sources

Reading Assignments

- Today's class:
 - Chapter 29.4
- Reading assignment for next class:
 - Chapter 9.3 (Selection in Linear Time)
 - Chapter 34 (NP Completeness)

Optimality of SIMPLEX

- Duality is a way to prove that a solution is optimal
- Max-Flow, Min-Cut is an example of duality
- Duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

Duality in LP

 Given an LP, we'll show how to formulate a dual LP in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called primal LP)

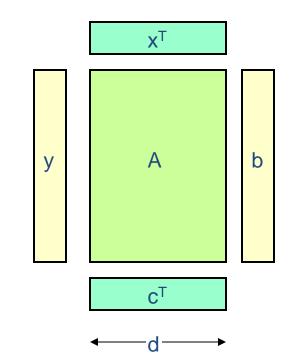
Primal Dual LPs:

n

Primal: maximize $c^T x$ subject to: $Ax \le b$ $x \ge 0$ (standard form)

Dual: minimize $y^T b$ subject to: $y^T A \ge c^T$ $y \ge 0$

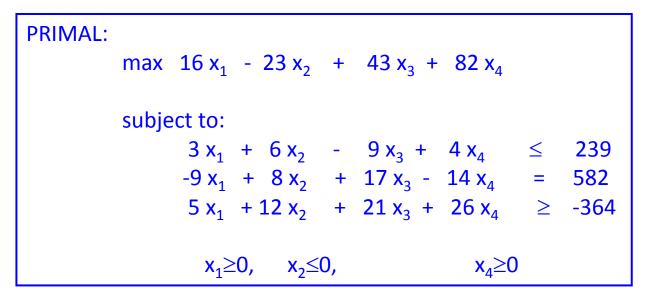
(standard form)



Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each \leq with \geq
- Each of the m constraints in primal has associated variable y_i in the dual
- Each of the *n* constraints in the dual as associated variable *x_i* in the primal

Example : Primal-Dual



```
DUAL:

min 239 y_1 + 582 y_2 - 364 y_3

subject to:

3 y_1 - 9 y_2 + 5 y_3 \ge 16

6 y_1 + 8 y_2 + 12 y_3 \le -23

-9 y_1 + 17 y_2 + 21 y_3 = 43

4 y_1 - 14 y_2 + 26 y_3 \ge 82

y_1 \ge 0, \qquad y_3 \le 0
```

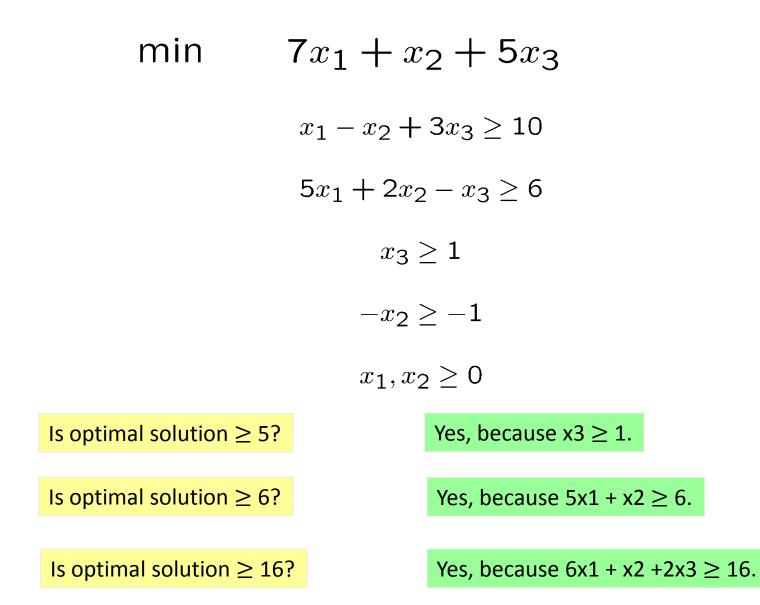
Think about bounding optimal solution...

min $7x_1 + x_2 + 5x_3$ $x_1 - x_2 + 3x_3 \ge 10$ $5x_1 + 2x_2 - x_3 \ge 6$ $x_3 \geq 1$ $-x_2 \ge -1$ $x_1, x_2 \ge 0$

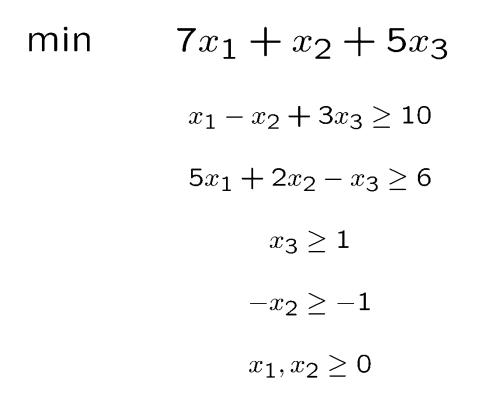
Yes, consider (2,1,3)

Is optimal solution \leq 30?

Think about bounding optimal solution...



Strategy for bounding solution?



What is the strategy we're using to prove lower bounds?

Take a linear combination of constraints!

Strategy for bounding solution?

Note: Use of primal as *minimization*

 Just to show you something a bit different from the text, the following discussion assumes the primal is a minimization problem, and thus the dual is a maximization problem

Doesn't change the meaning (compared to text)

Primal-Dual Programs

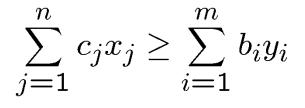
mmin $\sum_{j=1}^{n} c_j x_j$ max $\sum b_i y_i$ i=1j=1 $\sum_{j=1}^{n} a_{ij} x_j \ge b_j$ m $\sum y_i a_{ij} \le c_j$ y_i i=1 $x_j \ge 0$ $y_i \ge 0$ **Dual Program Primal Program Primal solutions Dual solutions**

Weak Duality

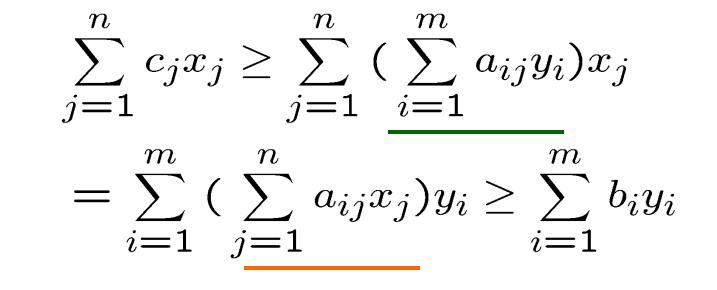
PrimalDual
$$\min \sum_{j=1}^{n} c_j x_j$$
 $\max \sum_{i=1}^{m} b_i y_i$ $\sum_{j=1}^{n} a_{ij} x_j \ge b_j$ $\sum_{i=1}^{m} y_i a_{ij} \le c_j$ $x_j \ge 0$ $y_i \ge 0$

Theorem

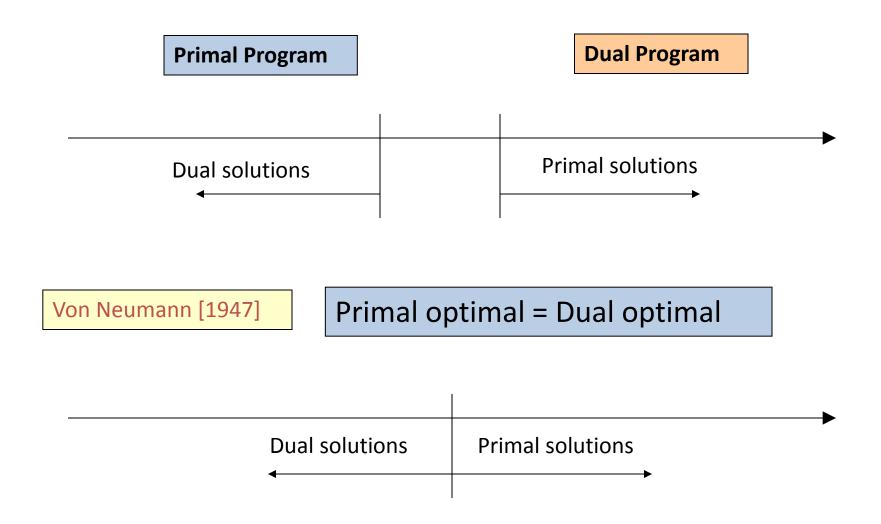
If x and y are feasible primal and dual solutions, then any solution to the primal has a value no less than any feasible solution to dual.



Proof



Primal Dual Programs



Strong Duality – Prove that if primal solution = dual solution, then the solution is optimal for both

$$\max \sum_{j=1}^{n} c_j x_j \qquad \min \sum_{i=1}^{m} b_i y_i$$
$$\sum_{j=1}^{n} a_{ij} x_j \le b_j \qquad \sum_{i=1}^{m} y_i a_{ij} = c_j$$
$$y_i > 0$$

PROVE:
$$\max \sum_{j=1}^{n} c_j x_j = \min \sum_{i=1}^{m} b_i y_i$$

Farka's Lemma

• Exactly one of the following is solvable: $Ax \le 0$

$$c^{\mathrm{T}}x > 0$$

and:

$$A^{\mathrm{T}}y = c$$
$$y \ge 0$$

where:

- x and c are n-vectors
- y is an *m*-vector
- -A is $m \times n$ matrix

Fundamental Theorem on Linear Inequalities

Let a_1, a_2, \ldots, a_m, b be vectors in *n*-dimensional space. Then either one of the following happens:

(1) b is a nonnegative linear combination of linearly independent vectors from a_1, \ldots, a_m .

(2) There exists a hyperplane $\{x | cx = 0\}$, containing t - 1 linearly independent vectors from a_1, a_2, \ldots, a_m , such that cb < 0 and $ca_1, \ldots, ca_m \ge 0$, where $t = rank\{a_1, \ldots, a_m, b\}$.

Proof of Fundamental Theorem

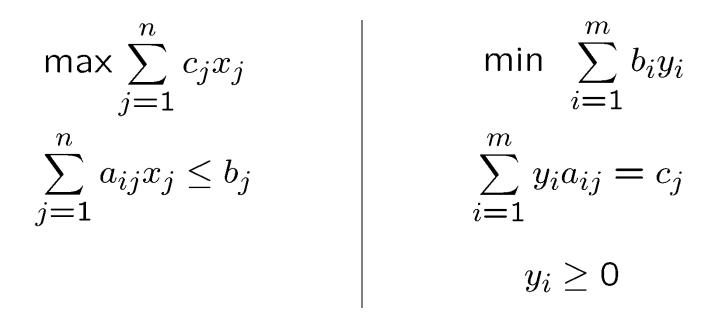
(i) Write $b = \lambda_{i_1} a_{i_1} + \ldots + \lambda_{i_n} a_{i_n}$. If $\lambda_{i_1}, \ldots, \lambda_{i_n} \ge 0$, we are in case 1.

(ii) Otherwise choose the smallest h among i_1, \ldots, i_n with $\lambda_h < 0$. Let $\{x | cx = 0\}$ be the hyperplane spanned by $D \setminus \{a_h\}$ so that $cb = \lambda_h < 0$.

(iii) If $ca_1, \ldots, ca_m \ge 0$, then we are in case 2.

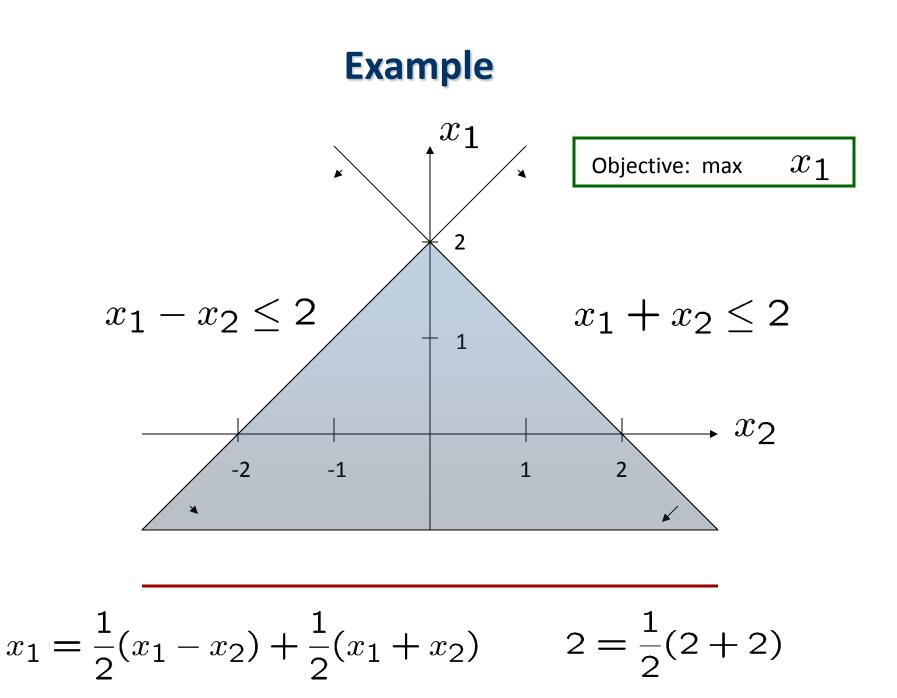
(iv) Otherwise choose the smallest s such that $ca_s < 0$. Then replace D by $(D \setminus \{a_h\}) \cup \{a_s\}$, and repeat.

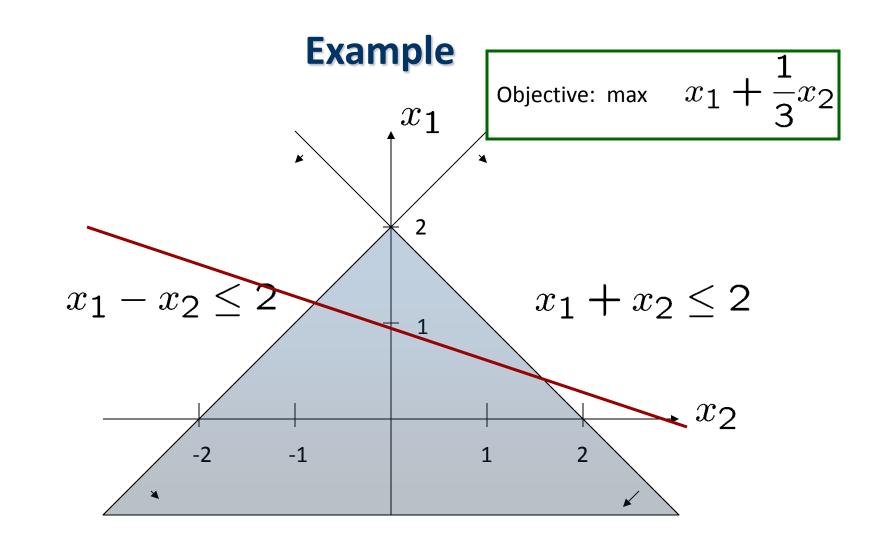
Strong Duality



PROVE:
$$\max \sum_{j=1}^{n} c_j x_j = \min \sum_{i=1}^{m} b_i y_i$$

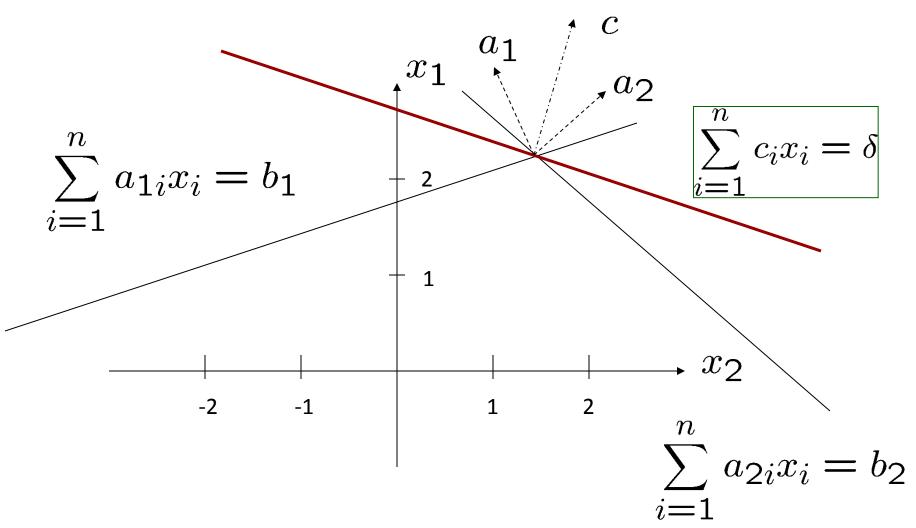
In other words, the optimal value for the primal is the optimal value for the dual.



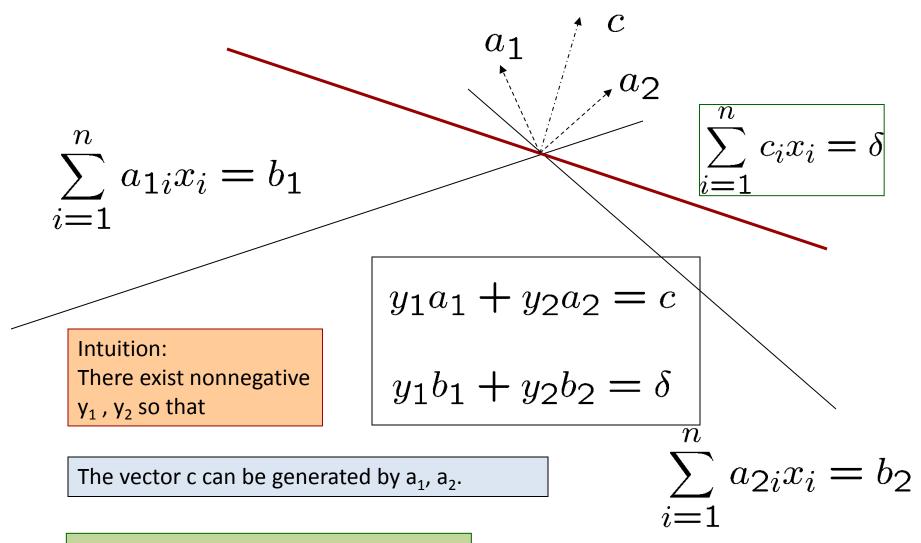


 $x_1 + \frac{1}{3}x_2 = \frac{1}{3}(x_1 - x_2) + \frac{2}{3}(x_1 + x_2) \quad 2 = \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot 2$

Geometric Intuition

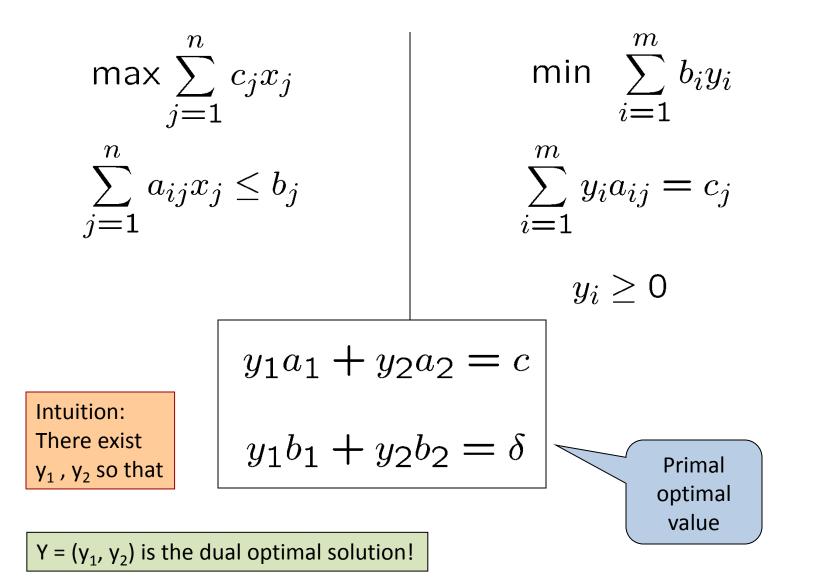


Geometric Intuition

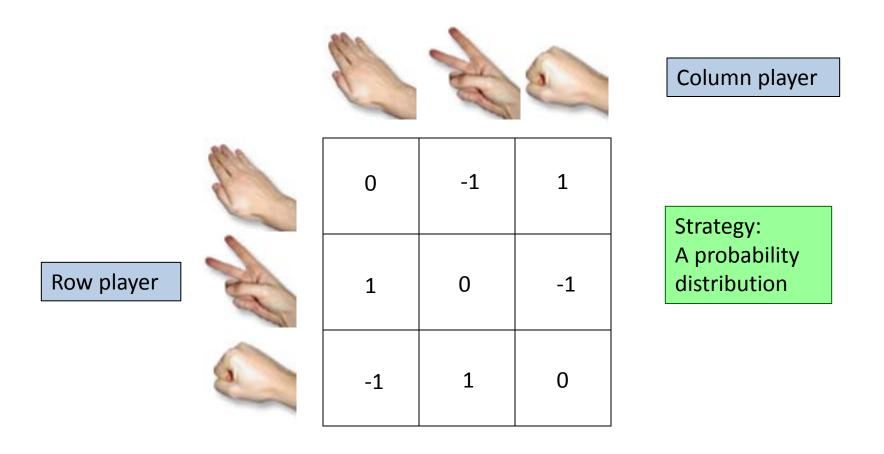


 $Y = (y_1, y_2)$ is the dual optimal solution!

Strong Duality

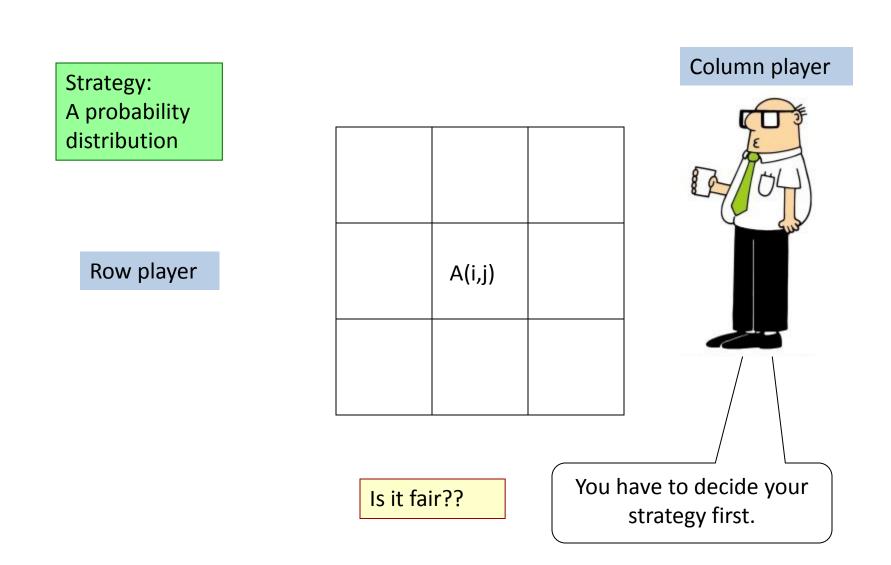


Here's another analogy: 2 Player Game



Row player tries to maximize the payoff, column player tries to minimize

2 Player Game



Von Neumann Minimax Theorem

$\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx$

Which player decides first doesn't matter!

Key Observation

 $\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx$

If the row player fixes his strategy,

then we can assume that y chooses a **pure** strategy

 $\min_{x \in \Delta^n} yAx$ n $\sum_{i=1}^{n} x_i = 1$ i=1

 $x_i \ge 0$

Vertex solution is of the form (0,0,...,1,...0), i.e. a pure strategy

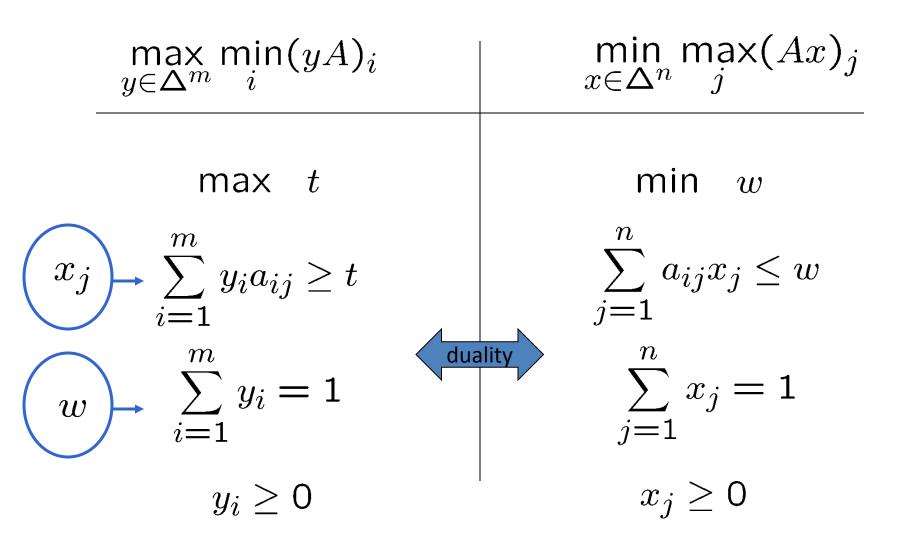
Key Observation

$\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \max_{y \in \Delta^m} \min_i (yA)_i$

similarly

 $\min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx = \min_{x \in \Delta^n} \max_j (Ax)_j$

Primal-Dual Programs



Reading Assignments

- Reading assignment for next class:
 - Chapter 9.3 (Selection in Linear Time)
 - Chapter 34 (NP Completeness)