Today:

- Linear Programming (con’t.)

COSC 581, Algorithms
 April 10, 2014

Reading Assignments

- Today's class:
- Chapter 29.4
- Reading assignment for next class:
- Chapter 9.3 (Selection in Linear Time)
- Chapter 34 (NP Completeness)

Optimality of SIMPLEX

- Duality is a way to prove that a solution is optimal
- Max-Flow, Min-Cut is an example of duality
- Duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

Duality in LP

- Given an LP, we'll show how to formulate a dual LP in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called primal LP)

Primal Dual LPs:

Dual:
minimize $y^{\top} b$
subject to: $y^{\top} A \geq c^{\top}$

$$
y \geq 0
$$

(standard form)

Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each \leq with \geq
- Each of the m constraints in primal has associated variable y_{i} in the dual
- Each of the n constraints in the dual as associated variable x_{i} in the primal

Example : Primal-Dual

PRIMAL:

$$
\max 16 x_{1}-23 x_{2}+43 x_{3}+82 x_{4}
$$

subject to:

$$
\begin{gathered}
3 x_{1}+6 x_{2}-9 x_{3}+4 x_{4} \leq 239 \\
-9 x_{1}+8 x_{2}+17 x_{3}-14 x_{4}=582 \\
5 x_{1}+12 x_{2}+21 x_{3}+26 x_{4} \geq-364 \\
x_{1} \geq 0, \quad x_{2} \leq 0,
\end{gathered}
$$

DUAL:

$$
\min 239 y_{1}+582 y_{2}-364 y_{3}
$$

subject to:

$$
\begin{aligned}
3 y_{1}-9 y_{2}+5 y_{3} & \geq 16 \\
6 y_{1}+8 y_{2}+12 y_{3} & \leq-23 \\
-9 y_{1}+17 y_{2}+21 y_{3} & =43 \\
4 y_{1}-14 y_{2}+26 y_{3} & \geq 82
\end{aligned}
$$

$$
y_{1} \geq 0
$$

$$
y_{3} \leq 0
$$

Think about bounding optimal solution...

$$
\begin{gathered}
7 x_{1}+x_{2}+5 x_{3} \\
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
x_{3} \geq 1 \\
-x_{2} \geq-1 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Think about bounding optimal solution...

$$
\begin{gathered}
7 x_{1}+x_{2}+5 x_{3} \\
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
x_{3} \geq 1 \\
-x_{2} \geq-1 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Is optimal solution ≥ 5 ?

Is optimal solution ≥ 6 ?
Yes, because $x 3 \geq 1$.

Yes, because $5 \times 1+x 2 \geq 6$.

Is optimal solution ≥ 16 ?

Yes, because $6 \times 1+x 2+2 \times 3 \geq 16$

Strategy for bounding solution?

min

$$
\begin{gathered}
7 x_{1}+x_{2}+5 x_{3} \\
x_{1}-x_{2}+3 x_{3} \geq 10 \\
5 x_{1}+2 x_{2}-x_{3} \geq 6 \\
x_{3} \geq 1 \\
-x_{2} \geq-1 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

What is the strategy we're using to prove lower bounds?

Take a linear combination of constraints!

Strategy for bounding solution?

$$
\begin{array}{c|c}
\min & 7 x_{1}+x_{2}+5 x_{3} \\
y_{1} & \max \\
y_{2}-x_{2}+3 x_{3} \geq 10 & y_{1}+6 y_{2}+y_{3}-y_{4} \\
y_{3} & \rightarrow x_{1}+2 x_{2}-x_{3} \geq 6 \\
y_{4} & x_{3} \geq 1 \\
-x_{2} \geq-1 & -y_{1}+2 y_{2}-y_{4} \leq 1 \\
x_{1}, x_{2} \geq 0 & 3 y_{1}-y_{2}+y_{3} \leq 5 \\
y_{1}, y_{2}, y_{3}, y_{4} \geq 0 \\
\hline \text { Don't reverse inequalities. } \\
\hline
\end{array}
$$

$$
x=\left(\frac{7}{4}, 0, \frac{11}{4}\right) y=(2,1,0,0)
$$

What's the objective??

Optimal solution $=26$
To maximize the lower bound.

Note: Use of primal as minimization

- Just to show you something a bit different from the text, the following discussion assumes the primal is a minimization problem, and thus the dual is a maximization problem
- Doesn't change the meaning (compared to text)

Primal-Dual Programs

$$
\begin{gathered}
\min \sum_{j=1}^{n} c_{j} x_{j} \\
y_{i} \rightarrow \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{j} \\
x_{j} \geq 0
\end{gathered}
$$

$\max \sum_{i=1}^{m} b_{i} y_{i}$

$$
\sum_{i=1}^{m} y_{i} a_{i j} \leq c_{j}
$$

$$
y_{i} \geq 0
$$

Weak Duality

$\min \sum_{j=1}^{n} c_{j} x_{j}$	$\max \sum_{i=1}^{m} b_{i} y_{i}$
$\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{j}$	$\sum_{i=1}^{m} y_{i} a_{i j} \leq c_{j}$
$x_{j} \geq 0$	$y_{i} \geq 0$

Theorem

$$
\sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{i=1}^{m} b_{i} y_{i}
$$

If x and y are feasible primal and dual solutions, then any solution to the primal has a value no less than any feasible solution to dual.
Proof

$$
\begin{aligned}
& \sum_{j=1}^{n} c_{j} x_{j} \geq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j} \\
& =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) y_{i} \geq \sum_{i=1}^{m} b_{i} y_{i}
\end{aligned}
$$

Primal Dual Programs

```
Primal Program
```

 Dual Program


```
Von Neumann [1947]
```

Primal optimal = Dual optimal

Strong Duality - Prove that if primal solution $=$ dual solution, then the solution is optimal for both

$$
\begin{aligned}
& \max \sum_{j=1}^{n} c_{j} x_{j} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{j} \\
& \sum_{i=1}^{m} y_{i} a_{i j}=c_{j} \\
& y_{i} \geq 0
\end{aligned}
$$

Farka's Lemma

- Exactly one of the following is solvable:

$$
\begin{gathered}
A x \leq 0 \\
c^{\mathrm{T}} x>0
\end{gathered}
$$

and:

$$
\begin{gathered}
A^{\mathrm{T}} y=c \\
y \geq 0
\end{gathered}
$$

where:
$-x$ and c are n-vectors
$-y$ is an m-vector
$-A$ is $m \times n$ matrix

Fundamental Theorem on Linear Inequalities

Let $a_{1}, a_{2}, \ldots, a_{m}, b$ be vectors in n-dimensional space. Then either one of the following happens:
(1) b is a nonnegative linear combination of linearly independent vectors from a_{1}, \ldots, a_{m}.
(2) There exists a hyperplane $\{x \mid c x=0\}$, containing $t-1$ linearly independent vectors from $a_{1}, a_{2}, \ldots, a_{m}$, such that $c b<0$ and $c a_{1}, \ldots, c a_{m} \geq$ 0 , where $t=\operatorname{rank}\left\{a_{1}, \ldots, a_{m}, b\right\}$.

Proof of Fundamental Theorem

(i) Write $b=\lambda_{i_{1}} a_{i_{1}}+\ldots+\lambda_{i_{n}} a_{i_{n}}$. If $\lambda_{i_{1}}, \ldots, \lambda_{i_{n}} \geq$ 0 , we are in case 1 .
(ii) Otherwise choose the smallest h among i_{1}, \ldots, i_{n} with $\lambda_{h}<0$. Let $\{x \mid c x=0\}$ be the hyperplane spanned by $D \backslash\left\{a_{h}\right\}$ so that $c b=$ $\lambda_{h}<0$.
(iii) If $c a_{1}, \ldots, c a_{m} \geq 0$, then we are in case 2 .
(iv) Otherwise choose the smallest s such that $c a_{s}<0$. Then replace D by $\left(D \backslash\left\{a_{h}\right\}\right) \cup\left\{a_{s}\right\}$, and repeat.

Strong Duality

$$
\begin{array}{l|}
\max \sum_{j=1}^{n} c_{j} x_{j} \\
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{j} \\
\sum_{i=1}^{m} y_{i} a_{i j}=c_{j} \\
y_{i} \geq 0 \\
\text { PROVE: } \quad \max \sum_{j=1}^{m} c_{j} x_{j} y_{i} \\
\sum_{i=1}^{m} b_{i} y_{i}
\end{array}
$$

In other words, the optimal value for the primal is the optimal value for the dual.

Example

$$
x_{1}=\frac{1}{2}\left(x_{1}-x_{2}\right)+\frac{1}{2}\left(x_{1}+x_{2}\right) \quad 2=\frac{1}{2}(2+2)
$$

$$
x_{1}+\frac{1}{3} x_{2}=\frac{1}{3}\left(x_{1}-x_{2}\right)+\frac{2}{3}\left(x_{1}+x_{2}\right) \quad 2=\frac{1}{3} \cdot 2+\frac{2}{3} \cdot 2
$$

Geometric Intuition

Geometric Intuition

$Y=\left(y_{1}, y_{2}\right)$ is the dual optimal solution!

Strong Duality

Here's another analogy: 2 Player Game

Row player tries to maximize the payoff, column player tries to minimize

2 Player Game

Strategy: A probability distribution
 Row player

Column player

Is it fair??
You have to decide your strategy first.

Von Neumann Minimax Theorem

$\max _{y \in \min _{x}} y A x=\min _{x \in \triangle} \max _{x \in \triangle} y A x$ $y \in \Delta^{m} x \in \Delta^{n}$ $x \in \Delta^{n} y \in \Delta^{m}$ Strategy set

Which player decides first doesn't matter!

Key Observation

$$
\max _{y \in \Delta^{m}} \min _{x \in \Delta^{n}} y A x
$$

If the row player fixes his strategy, then we can assume that y chooses a pure strategy

$$
\begin{gathered}
\min _{x \in \Delta^{n}} y A x \\
\sum_{i=1}^{n} x_{i}=1 \\
x_{i} \geq 0
\end{gathered}
$$

Vertex solution is of the form $(0,0, \ldots, 1, \ldots 0)$, i.e. a pure strategy

Key Observation

$\max _{y \in \Delta^{m}} \min _{x \in \Delta^{n}} y A x=\max _{y \in \Delta^{m}} \min _{i}(y A)_{i}$

similarly

$\min _{x \in \Delta^{n}} \max _{y \in \Delta^{m}} y A x=\min _{x \in \Delta^{n}} \max _{j}(A x)_{j}$

Primal-Dual Programs

$\max _{y \in \Delta^{m}} \min _{i}(y A)_{i}$

$\max t$

$$
\begin{gathered}
x_{j} \rightarrow \sum_{i=1}^{m} y_{i} a_{i j} \geq t \\
w \sum_{i=1}^{m} y_{i}=1 \\
y_{i} \geq 0
\end{gathered}
$$

$\min w$
$\sum_{j=1}^{n} a_{i j} x_{j} \leq w$

$$
\sum_{j=1}^{n} x_{j}=1
$$

$$
x_{j} \geq 0
$$

Reading Assignments

- Reading assignment for next class:
- Chapter 9.3 (Selection in Linear Time)
- Chapter 34 (NP Completeness)

