## Today: – Linear Programming (con't.)

## COSC 581, Algorithms April 10, 2014

Many of these slides are adapted from several online sources

## **Reading Assignments**

- Today's class:
  - Chapter 29.4
- Reading assignment for next class:
  - Chapter 9.3 (Selection in Linear Time)
  - Chapter 34 (NP Completeness)

## **Optimality of SIMPLEX**

- Duality is a way to prove that a solution is optimal
- Max-Flow, Min-Cut is an example of duality
- Duality: given a maximization problem, we define a related minimization problem s.t. the two problems have the same optimal objective value

## Duality in LP

 Given an LP, we'll show how to formulate a dual LP in which the objective is to minimize, and whose optimal value is identical to that of the original LP (now called primal LP)

## Primal Dual LPs:

n

Primal: maximize  $c^T x$ subject to:  $Ax \le b$  $x \ge 0$ (standard form)

Dual: minimize  $y^T b$ subject to:  $y^T A \ge c^T$  $y \ge 0$ 

(standard form)



## Forming dual

- Change maximization to minimization
- Exchange roles of coefficients on RHSs and the objective function
- Replace each  $\leq$  with  $\geq$
- Each of the m constraints in primal has associated variable  $y_i$  in the dual
- Each of the *n* constraints in the dual as associated variable *x<sub>i</sub>* in the primal

## **Example : Primal-Dual**



```
DUAL:

min 239 y_1 + 582 y_2 - 364 y_3

subject to:

3 y_1 - 9 y_2 + 5 y_3 \ge 16

6 y_1 + 8 y_2 + 12 y_3 \le -23

-9 y_1 + 17 y_2 + 21 y_3 = 43

4 y_1 - 14 y_2 + 26 y_3 \ge 82

y_1 \ge 0, \qquad y_3 \le 0
```

## Think about bounding optimal solution...

min  $7x_1 + x_2 + 5x_3$  $x_1 - x_2 + 3x_3 \ge 10$  $5x_1 + 2x_2 - x_3 \ge 6$  $x_3 \geq 1$  $-x_2 \ge -1$  $x_1, x_2 \ge 0$ 

Yes, consider (2,1,3)

Is optimal solution  $\leq$  30?

## Think about bounding optimal solution...



## Strategy for bounding solution?



What is the strategy we're using to prove lower bounds?

Take a linear combination of constraints!

### Strategy for bounding solution?

## Note: Use of primal as *minimization*

 Just to show you something a bit different from the text, the following discussion assumes the primal is a minimization problem, and thus the dual is a maximization problem

Doesn't change the meaning (compared to text)

## **Primal-Dual Programs**

mmin  $\sum_{j=1}^{n} c_j x_j$ max  $\sum b_i y_i$ i=1j=1 $\sum_{j=1}^{n} a_{ij} x_j \ge b_j$ m $\sum y_i a_{ij} \le c_j$  $y_i$ i=1 $x_j \ge 0$  $y_i \ge 0$ **Dual Program Primal Program Primal solutions Dual solutions** 

#### **Weak Duality**

PrimalDual
$$\min \sum_{j=1}^{n} c_j x_j$$
 $\max \sum_{i=1}^{m} b_i y_i$  $\sum_{j=1}^{n} a_{ij} x_j \ge b_j$  $\sum_{i=1}^{m} y_i a_{ij} \le c_j$  $x_j \ge 0$  $y_i \ge 0$ 

#### Theorem

If x and y are feasible primal and dual solutions, then any solution to the primal has a value no less than any feasible solution to dual.



Proof



#### **Primal Dual Programs**



# Strong Duality – Prove that if primal solution = dual solution, then the solution is optimal for both

$$\max \sum_{j=1}^{n} c_j x_j \qquad \min \sum_{i=1}^{m} b_i y_i$$
$$\sum_{j=1}^{n} a_{ij} x_j \le b_j \qquad \sum_{i=1}^{m} y_i a_{ij} = c_j$$
$$y_i > 0$$

**PROVE:** 
$$\max \sum_{j=1}^{n} c_j x_j = \min \sum_{i=1}^{m} b_i y_i$$

## Farka's Lemma

• Exactly one of the following is solvable:  $Ax \le 0$ 

$$c^{\mathrm{T}}x > 0$$

and:

$$A^{\mathrm{T}}y = c$$
$$y \ge 0$$

where:

- x and c are n-vectors
- y is an *m*-vector
- -A is  $m \times n$  matrix

#### **Fundamental Theorem on Linear Inequalities**

Let  $a_1, a_2, \ldots, a_m, b$  be vectors in *n*-dimensional space. Then either one of the following happens:

(1) b is a nonnegative linear combination of linearly independent vectors from  $a_1, \ldots, a_m$ .

(2) There exists a hyperplane  $\{x | cx = 0\}$ , containing t - 1 linearly independent vectors from  $a_1, a_2, \ldots, a_m$ , such that cb < 0 and  $ca_1, \ldots, ca_m \ge 0$ , where  $t = rank\{a_1, \ldots, a_m, b\}$ .

#### **Proof of Fundamental Theorem**

(i) Write  $b = \lambda_{i_1} a_{i_1} + \ldots + \lambda_{i_n} a_{i_n}$ . If  $\lambda_{i_1}, \ldots, \lambda_{i_n} \ge 0$ , we are in case 1.

(ii) Otherwise choose the smallest h among  $i_1, \ldots, i_n$  with  $\lambda_h < 0$ . Let  $\{x | cx = 0\}$  be the hyperplane spanned by  $D \setminus \{a_h\}$  so that  $cb = \lambda_h < 0$ .

(iii) If  $ca_1, \ldots, ca_m \ge 0$ , then we are in case 2.

(iv) Otherwise choose the smallest s such that  $ca_s < 0$ . Then replace D by  $(D \setminus \{a_h\}) \cup \{a_s\}$ , and repeat.

## **Strong Duality**



PROVE: 
$$\max \sum_{j=1}^{n} c_j x_j = \min \sum_{i=1}^{m} b_i y_i$$

In other words, the optimal value for the primal is the optimal value for the dual.





 $x_1 + \frac{1}{3}x_2 = \frac{1}{3}(x_1 - x_2) + \frac{2}{3}(x_1 + x_2) \quad 2 = \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot 2$ 

#### **Geometric Intuition**



## **Geometric Intuition**



 $Y = (y_1, y_2)$  is the dual optimal solution!

## **Strong Duality**



## Here's another analogy: 2 Player Game



Row player tries to maximize the payoff, column player tries to minimize

#### 2 Player Game



## Von Neumann Minimax Theorem

# $\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx$

Which player decides first doesn't matter!

## **Key Observation**

 $\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx$ 

If the row player fixes his strategy,

then we can assume that y chooses a **pure** strategy

 $\min_{x \in \Delta^n} yAx$ n $\sum_{i=1}^{n} x_i = 1$ i=1

 $x_i \ge 0$ 

Vertex solution is of the form (0,0,...,1,...0), i.e. a pure strategy

#### **Key Observation**

## $\max_{y \in \Delta^m} \min_{x \in \Delta^n} yAx = \max_{y \in \Delta^m} \min_i (yA)_i$

similarly

 $\min_{x \in \Delta^n} \max_{y \in \Delta^m} yAx = \min_{x \in \Delta^n} \max_j (Ax)_j$ 

## **Primal-Dual Programs**



## **Reading Assignments**

- Reading assignment for next class:
  - Chapter 9.3 (Selection in Linear Time)
  - Chapter 34 (NP Completeness)